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Abstract—Planning trajectories for nonholonomic systems is
difficult and computationally expensive. When facing unexpected
events, it may therefore be preferable to deform in some way the
initially planned trajectory rather than to re-plan entirely a new
one. We suggest here a method based on affine transformations
to make such deformations. This method is exact and fast: the
deformations and the resulting trajectories can be computed alge-
braically, in one step, and without any trajectory re-integration.
To demonstrate the possibilities offered by this new method, we
use it to derive position correction, orientation correction and
obstacle avoidance algorithms for three classical nonholonomic
systems: the unicycle, the bicycle, and an underwater vehicle.

I. INTRODUCTION

A bicycle, a car, an aircraft, or a submarine are but a
few examples of nonholonomic systems. Planning trajectories
for such systems is difficult because, by nature, some of
their degrees of freedom can only be controlled in a coupled
manner (see e.g. [9] and references therein). As a consequence,
when such systems encounter on their ways an unexpected
event (e.g. a random perturbation of the system state or
of the target state, an unforeseen obstacle, etc.), it may be
more efficient to deform in some manner the initially planned
trajectory rather than to re-plan entirely a new one [, &, B, [2].

Lamiraux and colleagues [R] suggested to iteratively deform
the original path by perturbing infinitesimally the control
inputs at each iteration. As underlined by Seiler and col-
leagues [I7], that method requires re-integrating the whole
trajectory at each iteration, which is computationally expen-
sive. These authors then described a new method based on Lie
group symmetries, which requires re-integrating only parts of
the trajectory.

The Lie groups considered in [B, I2] are in fact Euclidean
(or isometry) groups. We propose here to use larger Lie groups,
namely, affine groups, which contain the Euclidean transfor-
mations as subgroups. Using affine transformations allows
making more versatile trajectory corrections. In particular, the
corrections are exact and can be computed algebraically, in
one step, which makes iterative deformations [B] or gradient
search [B, 2] unnecessary. Furthermore, there is no need to
re-integrate even a part of the trajectory. Note that, in contrast
with previous works where the studied systems are invariant
under Euclidean transformations [B, I7], here trajectories

and control inputs are not in general affine-invariant. More
technical precautions need therefore to be taken to define and
guarantee the feasibility (or admissibility) of the deformed
trajectories under the system nonholonomic constraints. In
particular, the admissibility conditions are formulated using
differential equations with discontinuous right-hand sides [4].

In section O, we present the general framework of affine
trajectory correction. We apply this framework, in sections [M
and IV, to three classical examples in nonholonomic mobile
robotics: the unicycle, the bicycle (or kinematic car), and an
underwater vehicle. We discuss, in section M, the advantages
and drawbacks of the presented method, its domain of appli-
cability, and possible future developments.

II. AFFINE TRAJECTORY CORRECTION: GENERAL
FRAMEWORK

A. Affine spaces and affine transformations

An affine space is a set A together with a group action of
a vector space W. An element w € W transforms a point
PeA into_aglother point P’ by P’ = P + w, which can also
be noted PP' = w.

Given a point O € A (the origin), an affine transformation F
of the affine space can be defined by a couple (w, M) where
w € W and M is a non-singular endomorphism of W (i.e. a
non-singular linear application W — W). The transformation
F acts on A by

VPeA F(P)=0+ M(OP)+w.

Note that, if Py is a fixed-point of F, then F can be written
in the form

VP eA F(P)=P,+ M(BD).

B. Admissible trajectories and admissible trajectory deforma-
tions

Let us consider a commanded system of dimension N.
Suppose that n of the system variables form an affine space.



As an example, consider the unicycle model [J]

v o= a

0 = w

z = wcos(d) ’ )
y = wsin(6)

where (a,w) are the system control inputs (or commands)
and (z,y,0,v), the system variables. The (x,y) space can be
viewed as an affine space of dimension n = 2. We call (z,y)
the base variables and the associated affine space, the base
space.

We say that a full-space trajectory C(t)iejo,r) (C(t) =
(z(t),y(t),0(t),v(t)) in the above example) is admissible
if one can find a set of admissible commands (¢ and w
in the example) that generates C. A base-space trajectory C
(C = (z,y) in the example) is admissible if there exists an
admissible full-space trajectory whose projection on the base
space coincides with C.

Let C(t);e[0,r] be a base-space trajectory and 7 € [0,7], a
given time instant. We say that a transformation F occurring
at 7 deforms C(t)icjo,) into C'(t)iejo,7 if

C'(t) = C(t)
C'(t) = F(C(t))-
Given an admissible base-space trajectory C, an affine

transformation F is said to be admissible if F deforms C
into an admissible trajectory.

Vi<t
Vt>r1

C. Differential equations with discontinuous right-hand sides

Throughout this manuscript, we assume that the admissible
control inputs are piecewise continuous functions with finite
limits at the discontinuity points — or piecewise C° functions.
For convenience, we denote by 2° the space of such functions
(see Fig. M, top plot, for an example). Note that allowing
discontinuities of the inputs is realistic. For instance, a car
running on a straight road can be modeled by a system whose
control input is the acceleration. In such a model, any brusque
press on the throttle or on the brake pedal would correspond
to a discontinuity of the acceleration input.
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Fig. 1. Examples of functions of 2° (top) and of 2! (bottom). Note that
the top function is actually the derivative of the bottom function.

Let u be a function of 2° and consider the following dif-

ferential equation with discontinuous right-hand side (see [4])
{ z(t) = u(t) . @)
z(0) = xo

Any solution x of system () is continuous and, from
the definition of 2°, piecewise C*. Conversely, given any
function x that is C° and piecewise C'!, one has @ € 2°. For
convenience, we denote by 2! the space of such x functions
(see Fig. M, bottom plot, for an example).

Finally, we denote by 22 the space of differentiable func-
tions whose derivatives are in Z'. This definition does not
involve technical difficulties since the functions of 2! are
continuous.

Typically, for a system commanded in acceleration, the

acceleration a would belong to 29, the velocity v to 21, and
the position (z,y) to Z°.

D. Dimension of the space of admissible affine deformations

From the previous section, one can see that, typically, some
of the system variables are required to be continuous. These
continuity conditions are particularly critical at the time instant
7 when the deformation occurs. In general, if one needs to
guarantee the continuities of m system variables at 7, this
will define m constraints on the set of admissible affine trans-
formations. On the other hand, the affine transformations of an
n-dimensional space form the Lie group GA,, of dimension
n 4+ n? (n coordinates for the translation and n? coordinates
for the endomorphism of the associated vector space, where n
is the number of base variables). Consequently, if n+n? > m,
we could expect to have at our disposal 7 and n + n? —m
“extra degrees of freedom” to achieve the desired correction
while staying admissible.

For the unicycle (section ) and the bicycle (section [V=Al),
the base space (x,y) is of dimension n = 2. We show that
there are respectively m = 4 and m = 5 continuity conditions
for these systems, yielding respectively n +n? —m = 2 and
n+n? —m = 1 “extra degrees of freedom”. We then suggest
how to play with 7 and these “extra degrees of freedom” to
make corrections towards virtually any desired final position
and orientation. For the underwater vehicle (section IN=B)), the
base space (z, y, ) is of dimension n = 3 and there are m = 6
continuity conditions, yielding n+n? —m = 6 “extra degrees
of freedom”.

III. AFFINE TRAJECTORY CORRECTION: ILLUSTRATION

The above presented framework suggests the following
general scheme to study affine trajectory correction for a
particular system

1) check the conditions for a base-space trajectory to be
admissible;

2) characterize the set of admissible affine deformations;

3) compute the admissible affine deformation that achieves
the desired trajectory correction.

To illustrate, let us now apply the above scheme to a simple
classical nonholonomic system: the unicycle.



A. Admissible trajectories

As mentioned previously, a unicycle can be modeled by
system (), where the admissible inputs a and w are in 2°
(see section M=0). From the system equations, it is clear that,
for any admissible full-space trajectory of the unicycle, v and
6 must be in 2" and x and y must be in 22

Conversely, given a base-space trajectory C(t)icjo,r] =
(z(t), y(t))tejo,r) that is in 22, one can safely write

0 = arctan2(y, )

v = PP “
a = v ’

w = 0

which allows computing back the non-base variables v and 6
(in 2') as well as the control inputs ¢ and w (in 2°). This
in turn implies the admissibility of C(t);c[o,7). In summary,
a base-space trajectory is admissible if and only if it belongs
to 92

Important remark: From a computational viewpoint, equa-
tions (@) suggest that, if one obtains an admissible base-
space trajectory C'(t):cjo,r) (for instance by deforming a
given C(t):e[o, 7)), it will be easy to compute the control
inputs that generate that trajectory by some differentiations
and elementary operations. /A

B. Admissible affine deformations

Consider now an admissible base-space trajectory
C(t)tejo,r) and an affine deformation F occurring at
time 7. One has by definition C'(t).e(r,7) = F(C(t)te(r,1)-
Since F is a smooth application, it is clear that C'(t);c(r,1)
— note that the interval is open at 7 — is in 22 if and only if
C(t)te(r,r) is in 22,

Regarding the time instant 7, the continuities of z and y
impose that 7(C(7)) = C(7). Thus F can be written in the
form

VP e A ]‘-(P):C(T)-‘FM(C(T)ﬁ). “)

One now needs to guarantee the continuities of v and 6 at T,
since the two remaining conditions (differentiability and finite
limits for the derivative) do not depend on the behavior of C’
at the discrete point 7, and are therefore already satisfied by
virtue of the smoothness of F.

Consider for this the velocity vector v = (&,y) ' . Remark
that the continuity of this velocity vector is equivalent to that
of v and 6. The continuities of v mean that v(7—) and v(7+)
(where the signs — and + denote respectively the left and right
limits) are well defined, and that v(7—) = v(7+) = v(7).

Similarly, the continuity of v/ would mean that v/(74) =
v/(t—=) = v(7). On the other hand, one has v/(74) =
M(v(7)). These equalities together imply M (v (7)) = v(7).

Let us now decompose M is the basis {uj,u,} where
u; = (cos(f),sin(f)) is the unit tangent vector and u; =
(—sin(0),cos(f)) is the unit normal vector. The condition
M(v(7)) = v(7) is equivalent to

)T

1A
I\ pueR M—<O 1+u>’ (5)

where M is the matrix representing M in the basis {u, u_ }.

In summary (and in relation with the discussion of sec-
tion [I=D), the admissible affine transformations at time 7 form
a Lie subgroup of dimension 2 of GAs, parameterized by A
and p in equation (H).

Physical constraints: In practice, other constraints, such as
upper limits on the absolute acceleration or on the trajectory
curvature, further restrict the set of admissible affine defor-
mations. This can also be treated in the proposed framework,
since the changes in acceleration or curvature from the original
trajectory can be easily computed from the affine transforma-
tion at hand (see also [1]). A

C. Trajectory correction

We consider only the correction of the final position and
assume that 7 is given. It is possible to achieve more complex
corrections (e.g. correcting the final orientation) or to choose
“optimal” 7s: these developments are left to the reader.

From equation (#), to correct the final position C(7") towards
a desired position P; = (24, y4), one needs to look for a linear
application M such that

M(C(T)C(T)) = C(r)Pa. (6)

Let Q = [u),u_] and let the matrix representing M in the
basis {uj,uL} be

1 A
M_<O 1+u>'

Equation (B) implies
)=(oi ) o
Let next

z(T) — x(r)
y(T) —y(7)
(z1,11) " = Q M &(T) — z(r), y(T) —y(r)) "
(p2,92) " = Q Nwa — x(7),ya — y(7)) .

Equation (@) then implies

xqg — x(7T)

QMQ_l ( Ya — y(7)

A= (z2 —z1)/y1, p= (Y2 —v1)/y1,

provided that y; # 0, i.e. that the tangent at 7 does not go
through C(T'). Fig. @ shows examples of trajectory corrections
for the unicycle.

Note that any desired position in the whole space — and not
only those in the vicinity of the initially planned final position
as in [I7] — can theoretically be reached. Remark on the other
hand that the distance (e.g. the Lo distance) of the corrected
trajectory from the original trajectory is a continuous function
of A and p, meaning that using small As and us results in small
changes in the overall trajectory (and in the commands).

D. Obstacle avoidance, meeting trajectory constraints

In the previous development, one can in fact replace 7' by
any time instant ¢ > 7. This allows implementing interactive
obstacle avoidance algorithms as follows (see Fig. O for an
example)



1) determine a time instant t,,s When the initially planned
trajectory would collide with the obstacle;

2) select a new, non colliding, intermediate position
(Zinter, Yinter) to Which one could make a correction;

3) make the correction of (x(tobs),y(tobs)) towards
(xintera yinter)s with a 71 < tobs;

4) re-correct the final position towards the initially planned
final position, with a 75 > tops.

Linear acceleration (a) Linear speed (v)
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Fig. 2. An example of obstacle avoidance for the unicycle. The original
trajectory (z,y) (red) was planned knowing the position of the black
obstacles. During the execution, an unforeseen obstacle (cyan) appears on the
original path. A new trajectory (z1,y1) (blue) is obtained by deforming the
original trajectory. The blue star indicates the position (x(71), y(71)) where
the deformation occurs, and the black plain line joins (z(tobs), Y(tobs)) to
(Zinters Yinter)- Next, in order to get back to the original target, an other
trajectory (green) is obtained by deforming the blue one. The green star
indicates the position (x1(72),y1(72)) where the deformation occurs, and
the black dashed line joins (z1(7T"),y1(T)) to ((T),y(T)).

This algorithm can be run iteratively to avoid all obstacles.
One can also prescribe a specific position/orientation of the
trajectory at a given time instant ¢4, (this is desirable for
instance when two large obstacles are close to each other,
leaving between them a small doorway through which the
robot can pass), as follows
1) make the correction of (z(tdoor), Y (tdoor)) towards the
specified intermediate position;
2) make the correction of 6(tgqoor) towards the specified
intermediate orientation;
3) re-correct the final position towards the initially planned
final position, using a 7 > t4eor-

IV. OTHER EXAMPLES

To further demonstrate the possibilities offered by affine
trajectory deformations, we now briefly discuss two more
complex cases: the bicycle (section LIV=Al), which can be
viewed as a unicycle whose angular speed is required to be

continuous, and an underwater vehicle (section V=R, which
is a natural 3D extension of the unicycle. This section can be
skipped on the first reading.

A. The bicycle

A bicycle (or kinematic car) can be modeled by the follow-
ing system [J]

P
- p(¢)
) v tan

0 = —1T—
& = wcos(d)
y = wvsin(§)

where (a,p) are the system control inputs and C =
(z,y,60,v, ), the system variables.

1) Admissible trajectories: Consider a base-space trajectory
C = (z,y) € 22. As in section =R, equations (B) allow
computing v € 2%, a € 2° and § € P'. Next, if v is always
nonzero, one can compute ¢ by

¢ = arctan(AL/v). (8)

Since 0 € 21, equation (8) implies that ¢ € 2°, but not
necessarily that ¢ € 2'. Next, one can compute p = gzb For p
to be in 29, one would need ¢ € 2'. But as just remarked,
the latter condition is not automatically guaranteed by C =
(z,y) € 9% On the other hand, demanding that C = (z,y) €
%? would be unduly restrictive. Thus the condition ¢ € 21
must be specified as an independent supplementary condition.
In summary, if C = (x,y) € 22 and if ¢ — as computed
from C by equations (B) and (B) — belongs to 2?, then C is
admissible. Conversely, if C = (z,y) is admissible, one can
easily show that (x,y) € 22 and ¢ € ',

Note that these admissibility conditions can also be for-
mulated in terms of continuity constraints on the path curva-
ture [2, B].

2) Admissible affine deformations: Consider now an ad-
missible base-space trajectory C and an affine deformation
F occurring at time 7 that deforms C into C’. As in sec-
tion II-B, one can show that C’(t);c(-r) is in 2? if and
only if F(v(r)) = v(7), where v is the velocity vector.
One now needs to check the continuities of ¢’ at 7 and at
the discontinuity points of the second derivative of C (the
continuity and differentiability of ¢’ elsewhere are already
guaranteed by the smoothness of F, cf. section [M=H).

Consider for this the acceleration vector a = (&,3) . By
definition, one has

v? tan(¢)

a=auy +TUJ—7

with a not necessarily continuous. One can next write

2
a.uL:%n(@. ©)

Consider now a time instant ¢ > 7 when a is possibly
discontinuous, that is a(t—) # a(t+). Since ¢ and v are
continuous, one has by equation (H)

a(t—)-uy(t) =alt+) -uy(t),



or, in other words, that a(t+) —a(t—) and w|(t) are collinear.
Here comes into play a nice property of affine transformations:
they preserve collinearity. Using this property, one obtains
that M(a(t+) —a(t—)) and M(u(t)) are collinear. But the
former vector is no other than a’(t+) — a’(t—) and the latter
is collinear with | (t), since

_ My 1)
M Cay ()]

Thus a’(t—) - u/, (¢) = a’(t+) - u/, (¢), which in turn implies
the continuity of ¢ at ¢ (note that this conclusion also relies
on the fact that v’ is nonzero if v is nonzero, owing to the
non-singularity of M).

Remark: Since the affine group is the largest transformation
group of the plane that preserves collinearity, the previous
development shows that it is also the largest group that
preserves the admissibility of every bicycle trajectory! A

Turning now to the time instant 7, the same reasoning as
previously shows that ¢ is continuous at 7 if and only if

uj (1)

a'(r+) uL(r) = a(r) ur(n),
or equivalently, if
M(a(r)) -ur(r) = a(r) -ur(r).

Remark now that, since v-u; = 0, condition (I0) is in fact
equivalent to

IAeR  M(a(r)) = a(r) + Av(r).

(10)

Denoting by B the application such that B(v(r)) = 0
and B(a(r)) = v(7r) (one can compute B explicitly by
B =[0,v(7)][v(7),a(r)] 1), one obtains

INeER M=T+AB.

In summary (and in relation with the discussion of sec-
tion M=), the admissible affine transformations at time 7 form
a Lie subgroup of dimension 1 of GA,, given by {Z+ B} \cr-

Inflection points: The previous development is valid only
when v(7) and a(7) are not collinear, that is, when C(7) is not
an inflection point (see also [[I] for an interesting discussion
on inflection points in the context of human movements). A

3) Trajectory correction: Let us now play with 7 and the
“extra degree of freedom” X to make trajectory corrections.

For this, we first study how the final position of the
trajectory C(T') is affected by an admissible affine deformation
occurring at time 7. By definition, one has

C'(T) = C(r)+ (T +\B)CC(TH)
C(T) + AB(C(r)C(TY).

Let us decompose C(7)C(T) in the (in general non-
orthonormal) basis {v(7),a(7)}

C(1)C(T) = av(7) + Ba(r).
By definition of B, one has

C/(T) = C(T) + ABv (7). (11

Consequently, if 3 is nonzero (that is, if C(7)C(T) and v(r)
are non-collinear, or in other words, if the tangent at 7 does
not go through C(T)), then the locus of C'(T) when \ varies
is the line that goes through C(T') and that is collinear with
v(T).
In order to make a correction of the final position from C(T)
to a desired position Py, it therefore suffices to (see Fig. O)
e
1) compute the vector e = C(T') Py;
2) find a time instant 7 when the tangent u(7) is collinear
with eg;
3) compute A = &;/(4v(7)) where the overline denotes
the signed norm;
4) make the affine deformation of parameter A at time 7.
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Fig. 3. Accessible final positions (in cyan) and two examples of position
corrections. The original trajectory is in red. For each correction, the black
plain line represents the tangent at 7 while the black dotted line joins
the original final position C'(T") to the desired final position Py. Note the
collinearity of the plain line and the dotted line.

More complex corrections can be achieved by choosing
appropriate 7s: we provide for instance in the Appendix an
algorithm to correct the final orientation.

Accessible positions: From the previous development, it
appears that a position P, is accessible if and only if the
original trajectory C(t);c[o,r] has a tangent that is parallel to
C(T)P;. Therefore the set of the trajectory tangents (minus
the tangents at the inflection points) determine the accessible
directions for position corrections, as shown in Fig. B. In
practical terms, the more orientations the bicycle experiences
during its initially planned movement, the more positions
can be reached trough affine deformations. During the initial
planning stage, there will therefore be a trade-off between
“optimizing” the trajectory (e.g. minimizing the path length or
the norms of the control inputs) and having the trajectory make



many detours (providing thereby more tangents to deal with
unexpected events). Note that composing several deformations
allows bypassing these restrictions. A

B. An underwater vehicle

An underwater vehicle can be modeled by the following
system [[1]

= R(g,0) | wy
wz b
= v cos 1) cos B
= vsin cos
= —vsinf

(12)

T S R N N SRS

where (a,w,,w,,w,) are the system control inputs, C =
(z,y,2,¢,0,1,v), the system variables, and

1 singtanf cos¢tanf
R(¢,0)=1 0 cos ¢ —sin¢
0 singsech cos@sect

1) Admissible trajectories: Following the same line of
reasoning as previously, a necessary condition for the
admissibility of a base-space trajectory C(t)icjo,r] =
(z(t), y(t), 2(t))tefo,r) is that 2, y and z belong to 22

Conversely, assume that =, y and z belong to 2?. Remark
first that, from the system’s equations (I2), the “roll” angle
¢ is independent of (x(t),y(t), 2(t))¢cjo,r]- Next, given an
“extra” roll angle profile ¢(t)icjo,7) € 2', one can safely
write (assuming that the velocity is always nonzero and that
the trajectory stays away from the singularities of the Euler
convention [IT])

) = arctan2(y, &)

o = JEiPi

0 = arcsin(z/v)

a = v ,
wil) ¢

Wy = R(p,0) 1| 6

Wy P

In summary, a base-space trajectory is admissible if and
only if it is in 22.

2) Admissible affine deformations: Consider now an ad-
missible base-space trajectory C and an affine deformation F
occurring at time 7 that deforms C in to C’. As in section [I=R,
one can show that C'(t);c(, 1] belongs to 22, owing to the
smoothness of F.

At the time instant 7, the continuities of x, y and z impose
that 7(C(7)) = C(7). Thus F can be written in the form

VPeA F(P)=C(r)+ MECn)P). (13)

Next, following again the same reasoning as in section MI=H,
the continuities of v, ¢ and 6 are equivalent to setting
M(v(r)) = v(71).

In summary, an affine deformation F occurring at time 7 is
admissible if and only if M(v(7)) = v(7) when F is written

in the form (3). As a consequence, the admissible affine
transformations at time 7 form a Lie subgroup of dimension 6
of GAg

In practice, we shall compute M in the basis {u), w1, wo}
where w; and wy are two unit vectors forming an orthonormal
basis with u. In this basis, the condition M(v (7)) = v(7)
is equivalent to setting the first column of the matrix that
represents M to (1,0,0). It suffices therefore to find the six
remaining coefficients.

3) Trajectory correction: We consider only the correction
of the final position, at a given 7. It is possible to achieve more
complex corrections as well (correcting the final orientation,
avoiding obstacles, etc.) or to optimize the time instant 7: these
developments are left to the reader.

Theoretically, three free coefficients are sufficient to reach
any final position. As a consequence, we have here more
coefficients than what is needed. We solve this “redundancy”
problem by choosing an affine transformation that is the
“closest” to the identity matrix, i.e., that affects the least the
original trajectory.

As in section =0, to correct towards a desired position
Py = (x4, Y4, 24), one needs to look for a linear application
M such that

M(C(T)C(T)) = C(7)Pa. (14)

Let Q = [u), w1, Ws] and let the matrix representing M in
the basis {u), w, wa} be

1 A I
M=| 0 1+v 3
0 o 1+ x
Equation (I4) implies
x(T) — z(7) xq — x(T)
QMQ "' | y(T)—y(r) | = wa—y(") (15)
2(T) — 2(7) za — 2(7)
Let next
(@1,91,21) T = QN (@(T)—a(7), y(T)—y(7), 2(T)—2(7)) T,
(72,y2,22) " = Q7 (wa — (), ya — y(7), 20 — 2(7)) .
Equation (I3) then implies
A
l]/L To — I
U = v2—-wn1 |, (16)
£ zZ9 — 21
o
X
where
Y1 21 0 0 0 0
U= 0 0 Y1 2 0 0

0 0 0 0 Y1 2

The (A, p, v, &, 0,%) with minimal norm (i.e. that yields a
M closest to identity according to the Frobenius distance)
and that satisfies the under-determined system (I8) is given
by Ut (xy — 21,92 — y1,22 — 21) |, where U™ denotes the



Moore-Penrose pseudo-inverse of U.

Finally, one needs to choose the “independent” angle
®(t)te[r,r)- Here our strategy consists of keeping the same
¢ as in the original trajectory. Other strategies (e.g. keeping
the same absolute roll as in the original trajectory) can also be
used. Fig. B shows some examples of trajectory corrections.
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Fig. 4. Examples of trajectory corrections for an underwater vehicle. The
original trajectory is in red.

V. DISCUSSION

As stated at the beginning of section [, one can apply the
following general scheme to study affine trajectory corrections
for nonholonomic systems

1) check the conditions for a base-space trajectory to be
admissible. Often (but not always), a base-space trajec-
tory is admissible if it — and some functions computed
from it — belong to certain classes 2°;

2) based on the admissibility conditions of trajectories,
particularly at the time instant when the deformation
occurs, characterize the set of admissible affine defor-
mations. Often (but not always), the admissible affine
deformations at a given time instant form a Lie group
of dimension n +n? —m where n is the number of base
variables and m the number of continuity conditions;

3) finally, play with 7 and the n+mn? —m “extra degrees of
freedom” to achieve the desired correction. If there are
more “extra degrees of freedom” than needed, one can
“optimize” by choosing the affine transformations that
are the closest to identity.

This general scheme suggests in turn the classes of systems
that can or cannot be tackled by the proposed method. For

instance, an underwater vehicle whose changes in turning rate
(Pz = Wy, py = Wy, p, = w,) are commanded instead of the
turning rates (wg, wy, w;) could probably be treated by the
method (since in this case n+n? —m = 3). The development
of the theory to deal with general classes of nonholonomic
systems are also the subject of ongoing efforts.

As mentioned in the Introduction, one advantage of the
proposed method is that it requires no re-integration of the
trajectory. On the other hand, differentiations of the trajectory
must be performed in order to recover the commands (see
“Important remark” in section M=Al). Note however that, if
multiple deformations are made (for instance to avoid multiple
obstacles), the differentiations need to be performed only once,
after all the deformations have been applied.

The group property of affine transformations can also be
used to further accelerate the computations (as in [IT2] with
Euclidean transformations). Assume for instance that two
affine transformations F; and F, are applied at time instants
71 and 7y, with 71 < 75. Then one can apply Fi to C(t)¢c[r, 7]
and next F5 o JFp, which is also an affine transformation, to
C(t)tG(Tz,T]'

Another advantage, also mentioned in the Introduction, is
that our method can be executed in one step, while other
methods require iterative deformations of the trajectory [¥]
or gradient descent to find the appropriate deformation coef-
ficients [B, 02]. This may result in significant performance
gains, in particular, in real-time applications or in highly
compute-intensive tasks such as the building of probabilistic
roadmaps [I0].

Finally, the method is exact: for instance, a desired position
can be reached exactly, and not only approached iteratively “as
close as we want”. This may have important consequences.
For example, in the initial trajectory planning, one would no
longer need to spend time finding a trajectory that ends very
close to the target. Instead, one can plan a trajectory that ends
roughly somewhere near the target, and then make an affine
deformation towards the exact target position. In a similar vein,
gap-reduction algorithms [B] may also substantially benefit
from our method.

A last word on the biological implications of the ideas
presented here. One source of inspiration for the present
work was indeed the recent studies of affine invariance in
human perception and movements (see e.g. [I] and references
therein). Conversely, one could ask (and experimentally test)
whether humans use algorithms similar to those described here
to correct their hand or locomotor trajectories.
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APPENDIX
A. Correcting the final orientation of the bicycle

Remark that, if § = 0 in equation (Id), the final position
C(T) does not move when A varies. However, the final
orientation does vary with \. Exploiting this fact, one can
make corrections of the final orientation without changing the
final position.

As remarked earlier, 5 = 0 when C(7)C(T") and v(r) are
collinear, that is, when the tangent line at time 7 goes through
C(T). Consequently, in order to make a correction of the final
tangent vector from u (7’) to a desired tangent vector ug while
keeping the final position unchanged, it suffices to (see Fig. B,
left plot)

1) find a time instant 7 when the tangent line goes through

C(T);
2) compute the appropriate A (see below);
3) make the affine deformation of parameter A\ at time 7.

-5 0 5 10 15 20 25 -5 0 5 10 15 20 25

Fig. 5. Left: accessible final orientations (in cyan) and two examples of
orientation corrections. The black line represents the tangent at 7. Note that
the black line goes through the final position, which remains unchanged by the
orientation corrections. Right: correction of the final position and orientation.

Computation of \: Remark that the final orientation of
the deformed trajectory is given by the vector M (u(T)).
Observe next that

M(u(T)) = uy(T) + Myv(7)

where y is the coefficient multiplying a(7) in the decomposi-
tion of w(7’) in the basis {v(7),a(r)}.

Consider [ the intersection between the line containing uy
and the line parallel to v and which goes through the tip
of wy(T) (see illustration in Fig. B). The directed distance
between [ and the tip of w)(T') is given by

g M _ cos(v(Tm(T))'

tan(v(7), uq)

The appropriate A must then satisfy Ayv(7) = d, which leads
to A =d/(yv(r)). A

Accessible orientations: The accessible orientations are
restricted to the half-circle defined by the tangent line and
in which lies 6(T'), as shown in Fig. B. Different choices of
the tangent lines (when there exist more than one possible
tangent line) induce different sets of accessible orientations,
whose union forms the total set of accessible orientations.

V(1)

Fig. 6. Illustration for the computation of A in the correction of the final
orientation.

Note that composing several deformations allows bypassing
these restrictions. A
Correcting the final position and orientation: Combining
the previous development and the results of section [V=AJ
allows making corrections towards (almost) any positions and
orientations in space as follows
1) correct the final position towards the desired position;
2) from the deformed trajectory, correct the final orientation
towards the desired orientation while keeping the final
position unchanged.

Fig. B, right plot, shows an example of correction of both the
final position and orientation. A
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