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Abstract—This paper is concerned with motion planning for
nonlinear robotic systems operating in constrained environments.
Motivated by recent developments in sampling-based motion
planning and Monte Carlo optimization we propose a general
randomized path planning method based on sampling in the
space of trajectories. The idea is to construct a probability
distribution over the set of feasible paths and to perform the
search for an optimal trajectory through importance sampling.
At the core of the approach lies the cross-entropy method for
estimation of rare-event probabilities. The algorithm recursively
approximates the optimal sampling distribution which guides the
set of sampled trajectories towards regions of progressively lower
cost until converging to a delta distribution at the optimum. Our
main goal is to provide a framework for consistent adaptive
sampling correlating the spatial structure of trajectories and
their computed costs. The approach is illustrated with two simple
examples–a point mass vehicle and the Dubins car, and is then
applied to a simulated helicopter flying optimally in a 3-D terrain.

I. INTRODUCTION

Consider a robotic vehicle with state x ∈ X controlled using
actuator inputs u ∈ U , where X is the state space and U
denotes the set of controls. The vehicle dynamics is described
by the function f : X × U → TX defined by

ẋ(t) = f(x(t), u(t)), (1)

which is used to evolve the vehicle state forward in time.
In addition, the vehicle is subject to constraints arising from
actuator bounds and obstacles in the environment. These
constraints are expressed through the vector of inequalities

F (x(t)) ≥ 0, (2)

for all t ∈ [0, tf ], where tf > 0 is the final time of the
trajectory. The goal is to compute the optimal controls u∗ and
time t∗f driving the system from its initial state x0 ∈ X to a
given goal region Xf ⊂ X , i.e.

(u∗, t∗f ) = argmin
u,tf

∫ tf

0

C(u(t), x(t))dt,

subject to ẋ(t) = f(x(t), u(t)),

F (x(t)) ≥ 0, x(0) = x0, x(tf ) ∈ Xf

(3)

for all t ∈ [0, tf ] and where C : U × X → R is a given cost
function. A typical cost function includes a time component
and a control effort component, i.e. C(u, x) = 1 + λ‖u‖2
where λ ≥ 0 is a chosen weight.

The problem (3) has no closed-form solution since both the
dynamics (1) and constraints (2) are nonlinear. Gradient-based
optimization is not suitable unless a good starting guess is
chosen since the constraints (2) impose many local minima. In
addition, constraints corresponding to arbitrary obstacles can
be non-smooth and require special differentiation [3] to guar-
antee convergence. An alternative is to discretize the vehicle

state space X , e.g. using a grid and generate candidate paths
by transitioning between adjacent cells. Such an approach is
generally limited to few dimensions, e.g. dim(X ) ≤ 3 and
to systems with very simple dynamics, e.g. an unconstrained
point mass in the plane. This is due to the exponential (both
in state dimension and planning horizon T ) size of the search
space, also known as the curse of dimensionality.

Since the motion planning problem (3) is computationally
NP-complete in general [13] one has to resort to approximation
algorithms. Sampling-based motion planning has become an
established methodology in this context. The basic idea is to
construct a graph structure with nodes corresponding to states
and with edges satisfying the dynamics (1) and constraints (2).
In essence, the graph is regarded as a finite approximation of
the infinite set of feasible trajectories. The optimal control
problem is then solved approximately through graph search.
The two main families of such methods are rapidly-exploring
dense trees (RDT) [13] and probabilistic roadmaps (PRM)
[2]. In recent years considerable attention has been given to
augmenting the basic sampling-based motion planners with
strategies for accelerating the search. A common realization
is that the complex problem can be solved effectively through
a proper balance of exploration and exploitation [16, 17] and
by guiding the algorithm based on acquired information.

Motivated by these developments we propose a technique
for adaptive sampling which uses the cost of computed so-
lutions to guide the search. In contrast to standard motion
planning, we consider sampling from the space of trajectories
rather than sampling nodes from the state space X alone.
In essence, the problem is solved as a random search by
optimally exploiting the gathered information from prior sam-
ples. At the core of our approach lies the cross-entropy (CE)
method [19, 9] initially developed for estimation of rare-event
probabilities and later employed as a general optimization
framework. The CE method is widely applicable and is used
to successfully solve complex combinatorial problems such as
the minimum graph cut or the traveling salesman problems.
The basic idea behind applying the CE approach to motion
planning is to recursively iterate the two steps:

1) Generate trajectories sampled from a distribution and
compute their costs

2) Update the distribution using a subset of “high-quality”
trajectories

until the set of sampled trajectories becomes concentrated
around the optimum, or equivalently until the distribution
has converged to a delta function. The scheme is general
and converges to an optimum assuming that enough feasible
trajectories can be sampled. As with most randomized methods
there is no guarantee that this would be the global optimum but



with high likelihood the global optimum can be approached if
enough samples are generated.

We first reformulate the motion planning problem into a
finite dimensional constrained optimization in §II. In §III
we provide a quick introduction to the required probabilistic
techniques for the CE approach. The main cross-entropy
algorithm is then given in §IV. Two simple examples are used
to illustrate the theory in §V. The link to standard sampling-
based motion planning is then elaborated in §VI. The method
is finally applied to a complex high-dimensional problem: a
simulated helicopter navigating optimally in an urban terrain.

II. PROBLEM FORMULATION

A trajectory recording the controls and states over the time
interval [0, tf ] is denoted by the function π : [0, tf ]→ U×X ,
i.e. π(t) = (u(t), x(t)) for all t ∈ [0, tf ]. A given control
curve u : [0, tf ] → U determines a unique state trajectory
x : [0, tf ]→ X by evolving the dynamics from an initial state
x0 ∈ X . This is more formally defined through the integral
flow of the ODE (1) denoted by Φu : X × R → X in terms
of

x(t) = Φu(x0, t),∀t > 0. (4)

The space of all trajectories originating at point x0 and
satisfying the dynamics is denoted

P = {π : t ∈ [0,+∞]→ (u(t), x(t)) | x(t) = Φu(x0, t)}.
Consider a finite-dimensional parametrization of trajectories
in terms of vectors z ∈ Z where Z ⊂ Rnz is the param-
eter space. Assume that the parametrization is given by the
function ϕ : Z → P according to

π = ϕ(z) ≡ ϕz.
The (control, state) tuples along a trajectory parametrized by
z are written as π(t) = ϕz(t). Note that we do not impose any
restrictions on Z other that ϕ(Z) ⊂ P . Ideally ϕ(Z) should
be a “good” approximation of P , i.e. for any given π ∈ P
there should always exist a z ∈ Z for which ϕ(z) is “close”
to π.

Let κ : U × X → X project onto the state component, i.e.
κ(u, x) = x. The constrained parameter space Zcon ⊂ Z is
the set of parameters satisfying the boundary conditions and
constraints and is defined by
Zcon = {z ∈ Z | F (κ(ϕz(t))) ≥ 0, κ(ϕz(tf )) ∈ Xf .}, (5)

for some tf > 0 and all t ∈ [0, tf ]. Define the cost function
J : Z → R according to

J(z) =

∫ tf

0

C(ϕz(t))dt.

Problem (3) can now be equivalently restated as finding the
optimal t∗f and (x∗, u∗) = ϕ(z∗) such that

z∗ = arg min
z∈Zcon

J(z). (6)

We consider problems over a continuous set Z since the dis-
crete case is too constraining for problems involving dynamics.
In addition, for systems with very complicated dynamics Z
can be a product of discrete and continuous spaces as in the
hybrid system abstraction considered in §VII.

III. BACKGROUND ON MONTE CARLO OPTIMIZATION

We provide a quick introduction to the probabilistic frame-
work for solving the optimization (6) through sampling trajec-
tories from Zcon. Our development follows closely [18] using
notation adapted to our setting.

A. Importance Sampling

Consider the estimation of the following expression

` = Ep[H(Z)] =

∫
H(z)p(z)dz, (7)

where H : Z → R is some non-negative performance metric
and p is the probability density of Z. Assume that there is
another dominating 1 probability density q which is easy to
evaluate and sample from, such as a Gaussian. The integral (7)
can be expressed as

` =

∫
H(z)

p(z)

q(z)
q(z)dz = Eq

[
H(z)

p(z)

q(z)

]
. (8)

The density q is called the importance density and can be used
to evaluate the integral using i.i.d. random samples Z1, ..., ZN
from q so that

ˆ̀=
1

N

N∑
i=1

H(Zi)
p(Zi)

q(Zi)
(9)

is an unbiased estimator of `. An important question is then
how to select a good density q. The most natural choice is the
density that minimizes the variance of the estimator ˆ̀, i.e.

q∗ = arg min
q

Vq
(
H(Z)

p(Z)

q(Z)

)
,

the solution to which is

q∗(z) =
H(z)p(z)

`
(10)

since Vq∗(`) = 0. The density q∗ is called the optimal
importance sampling density. Of course, this density is only
hypothetical and cannot be implemented in practice since it
involves the value of ` which is what is being estimated in the
first place!

A natural way to find a density q that is closest to q∗ is
in the Kullback-Leibler (KL) sense, i.e. with minimum cross-
entropy distance between q∗ and q. The KL distance between
any two given distributions q and p is defined by

D(p, q)=

∫
p(z) ln p(z)dz−

∫
p(z) ln q(z)dz. (11)

and the required q solves the following optimization
min
q

D(q∗, q). (12)

We next consider the case when Z has a pdf p(·; v̄) belonging
to some parametric family {p(·; v), v ∈ V} where v̄ is the true
or nominal parameter. For instance, this could be a mixture
of Gaussians. It is natural to consider an importance density q
from the same family. Its optimal parameter v is found through
the parametric optimization

min
v

D(q∗, p(·, v))

1the density q dominates Hp when q(z)=0⇒ H(z)p(z)=0.



This is equivalent to maximizing with respect to v∫
H(z)p(z, v̄) ln p(z, v)dz,

which is obtained using (10) and (11). In other words, the
optimal importance density parameter v∗ can be found as

v∗ = argmax
v

Ev̄[H(Z) ln p(Z, v)]. (13)

Finally, the optimal parameter can be approximated numeri-
cally by

v̂∗ = argmax
v∈V

1

N

N∑
i=1

H(Zi) ln p(Zi, v), (14)

where Z1, ..., Zn are i.i.d. samples from p(·, v̄).

B. Estimation of Rare-Event Probabilities

Consider the estimation of the probability that a trajectory
z ∈ Zcon sampled from p(·; v̄) has a cost J(z) smaller than a
given constant γ. It is defined as

` = Pv̄(J(Z) ≤ γ) = Ev̄[I{J(Z)≤γ}], (15)

where I{·} is the indicator function. This can be computed
approximately using (9) according to

ˆ̀=
1

N

N∑
i=1

I{J(Zi)≤γ}
p(Zi; v̄)

p(Zi; v)
,

where Z1, ..., ZN are i.i.d. samples from p(·, v). In order
to determine the optimal v for this computation we can
employ (14) to obtain

v̂∗ = argmax
v∈V

1

N

N∑
i=1

I{J(Zi)≤γ} ln p(Zi, v), (16)

where Z1, ..., ZN are i.i.d. samples from p(·, v̄). The problem
is that when {J(Z) ≤ γ} is a rare event, this approximation is
meaningless because there will be almost no samples z with
J(z) ≤ γ and ˆ̀ will be incorrectly estimated as zero!

The idea behind the CE method is to employ a multilevel
approach using a sequence of parameters {vj}j≥0 and levels
{γj}j≥1. At the end the sequence converges to the optimal v∗

which then can be used to estimate the integral ˆ̀ correctly.
The procedure starts by drawing N samples Z1, ..., ZN using
an initial parameter v0, for instance v0 = v̄. Let % be a small
number, e.g. 10−2 ≤ % ≤ 10−1. The value γ1 is set to the
%–th quantile of H(Z), i.e. γ1 is the largest real number for
which

Pv0(H(Z) ≤ γ1) = %.

The level γ1 can be computed approximately by sorting the
costs of the samples J(Z1), ..., J(ZN ) in an increasing order,
say J1 ≤ ... ≤ JN , and setting γ̂1 = Jd%Ne. The optimal
parameter v1 for level γ̂1 is then estimated using (14) by
replacing γ with γ̂1.

Note that the samples with costs J1, ..., Jd%Ne will also be
the samples used to estimate v1. They form the elite set, i.e. the
%-fraction of the N samples with the best costs. The procedure
then iterates to compute the next γi and vi and terminates
when γi ≤ γ. At this point we set v = vi as the optimal

parameter corresponding to the originally given level γ and
the probability of J(Z) ≤ γ is computed using v. In summary,
each iteration of the algorithm perform two steps, starting with
v0,

1) Sampling and updating of γj : Sample Z1, ..., Zn from
p(·, v̂i−1) and compute the %-th quantile γ̂t.

2) Adaptive Updating of vj : Compute v̂j such that

v̂j = argmin
v∈V

1

|Ej |
∑
Zk∈Ej

ln p(Zk; v), (17)

where Ej is the elite set of samples, i.e. samples Zk for
which J(Zk) ≤ γ̂j .

C. Cross-Entropy Optimization

The idea behind the cross-entropy method is to treat the
optimization (6) as an estimation problem of rare-event prob-
abilities. Define the cost function optimum γ∗ by

γ∗ = min
z∈Zcon

J(z).

Finding the optimal trajectory then amounts to iterating the
rare-event simulation steps defined in §III-B until the cost γj
approaches γ∗. Typically, after a finite number of iterations
p(·, vj) will approach a delta distribution and all samples Zi
will become almost identical. This signifies that the optimum
has been found and z∗ is set to the sample with lowest cost.
Note that the term “optimal” should be used with caution
because although the method explores the state space globally
it might still converge to a local solution if, for instance, no
samples were obtained near the true global value.

IV. MOTION PLANNING

We now construct a general motion planning algorithm
based on the cross-entropy method. We choose to represent
the importance density using a Gaussian mixture model since
it is a compact way to encode a rich set of trajectories across
multiple homotopy classes.

The parameter space is V = (Rnz × R(n2
z+nz)/2)K × RK

with elements v = (µ1,Σ1, ..., µK ,ΣK , w1, ..., wK) corre-
sponding to K mixture components with means µk, covariance
matrices Σk (excluding identical elements due to the matrix
symmetry) and weights wk. The density is defined as

p(z; v) =

K∑
k=1

wk√
(2π)nz |Σk|

e−
1
2 (z−µk)T Σ−1

k (z−µk),

where
∑K
k=1 wk = 1. The number of mixture components K

is chosen adaptively (see e.g. [4]). Even the simplest case with
K = 1 is capable of solving complex multi-extremal problems
globally. The complete algorithm is summarized below.

Algorithm 4.1: CE Motion Planning
1) Choose initial trajectory samples Z1, ..., ZN so that the

set P̂ = {ϕZi
}Ni=1 approximates (sparsely) the set of

feasible trajectories over X ; Set j = 0 and γ̂0 =∞
2) Update v̂j using (17) (e.g. by EM) over the elite set
Ej = {Zi | J(Zi) ≤ γ̂j}



3) Generate samples Z1, ..., ZN from p(·, vj)|Zcon and com-
pute the %–th quantile γ̂j+1 = Jd%Ne

4) If a stopping criteria is met then finish, otherwise set
j = j + 1 and goto step (2)

There are several important points determining the success
of the approach.

a) Initialization.: The initial set of samples should be
generated (step (1)) to achieve a good coverage of X . The
samples do not need to have good quality in terms of the
cost J , they only need to achieve a reasonable exploration of
X . They can be generated using an initial parameter v0, i.e.
Zi ∼ p(·, v0) where v0 can encode some a priori knowledge
about the problem. A more general approach that does not rely
on any problem assumptions is to perform uniform sampling
over Zcon. This corresponds to a high-entropy uninformative
random start also proven effective in the context of mixture
models [15]. An alternative is also to generate the initial set
using a classical motion planning roadmap [13, 2].

b) Parameter Update.: The optimal parameter update
(step (2)) is accomplished using an Expectation-Minimization
(EM) algorithm [15] for K ≥ 2. In the case K = 1 the
components of v̂j are updated simply as

µ =
1

|Ej |
∑
Zk∈Ej

Zk, Σ =
1

|Ej |
∑
Zk∈Ej

(Zk − µ)(Zk − µ)T .

As the algorithm iterates, the uncertainty volume (i.e. the
determinants of the covariances Σk) is shrinking towards
a delta distribution. This might happen prematurely before
reaching a good quality solution if, for instance, too few
samples were used. To prevent such degeneracy it is useful to
inject a small amount of noise with variances ν ∈ Rnz (see [1])
i.e. by setting Σk = Σk + diag(ν) for each k = 1, ...,K.

c) Sampling.: The sampling step (3) in Algorithm (4.1)
is accomplished using a standard accept-reject argument and
is given below only for convenience.

Generating Samples over Zcon
1) Compute Ak =

√
Σk for all k = 1, ...,K and set i = 1

2) Choose k ∈ {1, ...,K} proportional to wk
3) Sample r ∼ Nnz

(0, 1) and set Zi = µk +Akr
4) if Zi 6∈ Zcon then go to line (3)
5) if i = N then finish; else set i = i+ 1 and goto line (2)

Note that the only expensive operation is the square-root (using
e.g. Cholesky decomposition) on line (1) but it is performed
only K times before drawing all N samples. It is also possible
to handle constrained sampling more efficiently through a local
search to detect the boundary of Zcon and escape from Z\Zcon.

V. EXAMPLES

Consider a physical workspace (i.e. an environment) de-
noted byW , whereW = R2, orW = R3 [12]. The workspace
contains a number of obstacles denoted by O1, ...,Ono ⊂ W
with which the vehicle must not collide. Assume that the
vehicle at state x ∈ X is occupying a region A(x) ⊂ W and
that the function prox(A1,A2) returns the closest Euclidean
distance between two sets A1,2 ⊂ W and is negative if they

intersect. One of the constraints defined in (2) is then to avoid
obstacles, generally expressed as
F1(x(t)) = min

i
prox(A(x(t)),Oi), for all t ∈ [0,∞]. (18)

We demonstrate the cross-entropy method to two simple types
of vehicles navigating in a planar obstacle field–a point mass
double integrator and a Dubins car.
A. Piece-wise Cubic Spline

Consider a point mass vehicle operating in the plane with
state space X = R2×R2 and state x = (q, v). It has a double-
integrator dynamics given by q̇ = v and v̇ = u where the
controls u ∈ U = R2 are simply the accelerations. Assume
that the cost function is of the form

C(u, x) = ‖v‖+ λ‖u‖2,

i.e. a combination of the length of the path and its acceleration
where λ > 0 controls the curve smoothness. The goal set
consists of a single point xf ∈ X , i.e. Xf = {xf}.

1) Trajectory Generation: A trajectory is parametrized us-
ing m “knots” (qi, vi) ∈ R4, i = 1, ...,m. The parameter space
is Z = R4m with state z = (q1, v1, ..., qm, vm). Denote the
given start state by x0 = (q0, v0) and denote the goal state by
xm+1 ≡ xf . In essence, the trajectory will be represented by
m+ 1 cubic splines joining the pairs of states xi → xi+1, for
i = 0, ...,m. Since the cost function does not involve time we
can use simply set tf = 1 and generate all trajectories over
the time interval [0, 1]. Let ti = i/(m+ 1) denote the starting
time of the segment beginning at state xi. Over the interval
[ti, ti+1] for each i = 0, ...,m the function ϕz = (u, q, v)
takes the form

u(t) = 6ait̄+ 2bi,

v(t) = 3ait̄
2 + 2bit̄+ ci,

q(t) = ait̄
3 + bit̄

2 + cit̄+ di,

where t̄ := t − ti, ci = 3qi+1 − 3qi − 2vi − vi+1, di =
−2qi+1 + 2qi + vi + vi+1.

2) Numerical Results: Consider an environment depicted
on Fig. 1. It contains one concave obstacle and several ho-
motopy classes which create an interesting planning scenario.
Algorithm 4.1 is run using N = 100 and % = .1 and one
mixture component K = 1. Initial sampling is achieved using
a “nominal” trajectory computed by ignoring the obstacles and
consisting of equally spaced knots along a straight line be-
tween start and goal. The first sampling iteration is performed
using a distribution centered at this nominal parameter. Fig. 1
shows that it quickly converges to the globally optimal solution
(known in advance) in a few iterations. Empirically Fig. 2
shows that the cost function decreases nearly exponentially in
the number of iterations.
B. Dubins Car

The Dubins car is one of the simplest vehicle models with
non-holonomic constraints. Its state space is X = SE(2) with
state x = (rx, ry, θ) denoting the car position (rx, ry) and
orientation θ. The dynamics is defined as

ṙx = v cos θ, ṙy = v sin θ, θ̇ = u, (19)
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Fig. 1. The first four iterations of the CE algorithm 4.1, i.e. j = 1, ..., 4, applied to a point mass vehicle among obstacles. The upper plots show the sampled
trajectories ϕ(Z1), ..., ϕ(ZN ) and the current optimal path ϕ(z∗) (dashed). The lower plots visualize p(·, v̂j) as the level sets of another density over the
(x, y)-position space. The density of each point corresponds to the density of the best trajectory passing through it. The algorithm starts from a nearly uniform
state space exploration and converges towards a delta distribution at the global optimum.
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a) b)
Fig. 2. The same scenario as in Fig. (1) with a) showing the cost J(z∗)
as a function of the algorithm iterations and b) showing the resulting optimal
path ϕ(z∗).

where v > 0 is a given constant speed and u is the controllable
turn rate. The control space is U = [− tanφmax, tanφmax],
where φmax ∈ (0, π/2) is the maximum steering angle. The
Dubins car fails the small-time local controllability (STLC)
test which creates interesting non-trivial control problems 13.
Consider computing the shortest time path arriving at a pre-
scribed goal xf . A simple way to define the problem is to set
Xf = X and define the cost function as

C(u, x) = 1 + λ‖x− xf‖2,

where λ is a positive constant.
1) Trajectory Generation: A trajectory satisfying (19) can

be represented using a set of connected primitives which are
either straight lines with velocity v or arcs with radius v/u
in position space. A primitive is represented by its constant
control u and time duration, denoted by τ > 0. Assume that

a trajectory is parametrized using m such primitives, i.e.

z = (u1, τ1, ..., um, τm) ∈ R2m.

The ending time of the execution of the i-th primitive, denoted
ti, is computed as ti =

∑i
k=1 τk for i = 1, ...,m with t0 = 0.

During time interval t ∈ [ti, ti+1] the parametrization ϕz =
(u, rx, ry, θ) takes the form
u(t) = ui+1

rx(t)=

{
rx(ti)+ v

ui+1
(sin(θi+∆tiui+1)−sin θi), if ui+1 6=0

rx(ti)+v∆ti cos θi, otherwise

ry(t)=

{
ry(ti)+ v

ui+1
(cos θi−cos(θi+∆tiui+1)), if ui+1 6=0

ry(ti)+v∆ti cos θi, otherwise
θ(t)=θi+(∆ti)ui+1,

where ∆ti = t− ti and θi = θ(ti).
2) Numerical Results: Consider the same environment as

in Fig. 1 and the same algorithm parameters as in §V-A.
A trajectory is represented using m = 6 primitives. Fig. 3
shows the algorithm progression and the cost evolution and
final solution are shown on Fig. 4. In order to set the nominal
sampling parameter v0 we first compute the shortest kinematic
path with maximum velocity ignoring any obstacles and then
split it into primitives by properly selecting the coasting times.
The set of primitives is then used as the mean component in
v0 while the standard deviation is chosen to achieve coverage
of the workspace.

Note that the number of primitives m can be adaptively
chosen. For instance, if the condition αi = αi+1 persists
during iteration then we simply remove αi+1, set m = m− 1
and merge the times τi = τi + τi−1. A primitive αi can also
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Fig. 3. The first four iterations of the CE algorithm 4.1 applied to the Dubins car. The upper plots show the sampled trajectories ϕ(Z1), ..., ϕ(ZN ) and the
current optimal path ϕ(z∗) (dashed). The lower plots visualize p(·, v̂j) by plotting the components of the mean µ and standard deviations extracted from the
diagonal of Σ. A total of m = 6 primitives were used and the lower plots shows the graphs of the time durations (i, τi) and commanded velocities (i, ωi).
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a) b)

Fig. 4. The resulting cost J(z∗) of the Dubins car path optimization (see
Fig. (3)) is shown on a) while the resulting optimal path ϕ(z∗) on b).

be removed if the condition τi ≈ 0 persists. In that respect the
algorithm has the capacity to determine an optimal number of
different primitives.

VI. LINKS TO SAMPLING-BASED MOTION PLANNING

It is interesting to note that the CE approach effectively
constructs a sequence of parametric models of sets of progres-
sively “better” trajectories, i.e. with decreasing costs. Since a
trajectory is a set of states this model can also be regarded as
a density over the state space X . A state x ∈ X has a high
importance density, say pX (x), if it belongs to a trajectory
ϕz ∈ P with high density p(z). Such a sampling density is
defined as

pX (X; v) = η · max
Z∈Zcon

{p(Z; v) | X ∈ κ(ϕZ)}, (20)

where X is a random variable over X and η > 0 is a
normalizing constant. For instance, the lower plots of Fig. 1
show the evolution of pX restricted to the position space.

The issue of how to properly sample and connect nodes lies
at the core of almost all classical motion-planning methods.
While various successful methods for improved sampling have
been proposed (e.g. [10, 11, 7, 8, 17, 14]) the optimal nodes
selection remains a hard and unsolved problem. In that respect,
the density pX is in fact an approximation to the optimal
density for sampling nodes. A fruitful future direction is
therefore to employ (20) for adaptive sampling in the context
of probabilistic roadmap methods.

VII. AERIAL VEHICLE APPLICATION

Consider a small autonomous helicopter depicted in Fig. 5
operating in a 3-D terrain. The vehicle is modeled as a single
underactuated rigid body with position r ∈ R3 and orientation
matrix R ∈ SO(3). Its body-fixed angular and linear velocities
are denoted by ω ∈ R3 and v ∈ R3, respectively. The
vehicle has mass m and principal moments of rotational inertia
J1, J2, J3 forming the inertia tensor J = diag(J1, J2, J3).

x

y

z

rudder uψ

collective uc
roll
γr

pitch
γp

a) b)

Fig. 5. Simplified helicopter model used in our tests (a). An example of
a computed sequence of four maneuvers and three trim primitives is shown
(b), connecting two zero-velocity states in the corners of the workspace and
avoiding an obstacle in the center.



The vehicle is controlled through a collective uc (lift pro-
duced by the main rotor) and a yaw uψ (force produced by
the rear rotor), while the direction of the lift is controlled by
tilting the main blades forward or backward through a pitch
γp and sideways through a roll γr. The four control inputs
then consist of the two forces u = (uc, uψ) and the two
shape variables γ = (γp, γr). The state space of the vehicle is
X = SE(3)× R6 × R2 with x = ((R, r), (ω,v), γ).

The equations of motion are[
Ṙ
ṙ

]
=

[
R ω̂
R v

]
, (21)[

J ω̇
mv̇

]
=

[
Jω × ω

mv × ω +RT (0, 0,−9.81m)

]
+ F (γ)u, (22)

where the map ·̂ : R3 → so(3) and control matrix F are
defined by

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

, F (γ) =


dt sin γr 0

dt sin γp cos γr 0
0 dr

sin γp cos γr 0
− sin γr −1

cos γp cos γr 0

 .

Since gravity is the only configuration-dependent term in
the dynamics and is invariant to translations and rotations
around the z-axis, i.e. to transformations by the symmetry
group G = SE(2)×R. This property can be exploited to gen-
erate trajectories composed of two types of simple motions–
constant velocity (trim) curves and transitions between them
(maneuvers), in terms of a maneuver automaton [5].

3) Trim Primitive: Trim motions correspond to helices,
circles, or straight lines in position space. Such curves are
traced using velocity with components (ω′z, v

′
x, v
′
y, v
′
z) which

are related to the body-fixed velocities v and ω through

ω = RT(φ,θ,0)ω
′, v = RT(φ,θ,0)v

′, (23)

where R(φ,θ,ψ) denotes rigid body rotation parametrized by
roll φ, pitch θ, and yaw ψ and where v′ = (v′x, v

′
y, v
′
z) and

ω′ = (0, 0, ω′z).
An invariant trajectory has a constant body-fixed velocity.

Therefore, in order to determine the invariance conditions for
desired ω′ and v′ one sets v̇ = 0 and ω̇ = 0 in (22) and
substitutes (23) into (22). In order to simplify the derivation
of the trim conditions assume two identical inertia components
J2 = J3 and no vertical velocity, i.e. v′z = 0. A closed-form
solution can be computed as

θ = 0, uy = 0, γp = 0, γr = 0,

φ = arctan(−w′zv′x/g),

uc = m(g cosφ − w′zv′x sinφ).

(24)

Finally, the motion along a trim primitive with initial state
x0 = (R(φ,θ,ψ), r, ω,v, γ) at time t0 evolves according to

x(t0 + t) = (R(φ,θ,ψ+∆ψ), R(0,0,∆ψ)r + ∆r, ω,v, γ),

where ∆ψ = tωz and ∆r = (∆rx,∆rx, tvz) with

∆rx =

{
(v′x sin tω′z − v′y(1− cos tω′z))/ω

′
z, if ω′z 6= 0

tv′x, otherwise,

∆ry =

{
(v′x(1− cos tω′z) + v′y sin tω′z)/ω

′
z, if ω′z 6= 0

tv′y, otherwise.

While in our example we consider only planar trims with
v′z = 0 the connecting maneuvers evolve in 3-D position
space. Trims are stored by discretizing the space of allowable
velocities (ω′, v′x, v

′
y).

4) Maneuvers.: Maneuvers are computed to connect two
trimmed states. Let the map $ : X → X\G sub-
tract out the invariant coordinates from a given state, i.e.
$((R(φ,θ,ψ), r, ω,v, γ)) = (R(φ,θ,0),0, ω,v, γ) . A maneuver
between two given primitives with states xα and xβ is com-
puted through nonlinear optimization of a trajectory whose
start and end satisfy the given trim conditions. This is defined
through the following procedure:

Compute: T ; x : [0, T ]→ X ; u : [0, T ]→ U

minimizing: J(x, u, T ) =

∫ T

0

(1 + λ‖u(t)‖2) dt,

subject to: $(x(0)) = xα, $(x(T )) = xβ ,

dynamics eq. (21),(22) for all t ∈ [0, T ].

for some λ > 0 which adds regularity to the problem.
The optimizations were performed offline and all trims and
maneuvers are organized and saved in a library which is loaded
at run-time providing instant look-up during planning.

5) Motion Planning: The cross-entropy algorithm 4.1 is
implemented using m primitives forward from the start state
x0 and m primitives backward in reverse from the goal state
xf . A total of 5 primitives are used for closing the gap between
the evolved states (since dim(SE(2)) = 3 and two maneuvers
are required between the three trims). A trajectory consist-
ing of the minimum number of five primitives is computed
instantly in closed form through inverse kinematics. Fig. 5
shows an example of such a sequence of primitives. The
terrain is represented using a digital elevation map loaded
from a file. Collision checking and avoidance is performed
using the Proximity Query Package (PQP) [6] that compute
closest distance between arbitrary polyhedra and was used
to implement the function prox defined in (18). Trims are
sampled from a continuous Gaussian mixture and the samples
are projected onto the discrete grid of predefined trims.

6) Numerical Results: The algorithm is tested in a digital
terrain corresponding to the training facility in Ft. Benning.
The helicopter is not permitted to fly above buildings. Fig. 6
shows several iterations of the algorithm and the final op-
timized path between two given states. The first iteration
took five seconds of computation time while the remaining
iterations took less than a second. CPU time is dominated by
attempting to sample trajectories which collide with obstacles.
As the informedness of p(Z; v) increases fewer infeasible
trajectories are tried during sampling and each iteration com-
pletes in a few milliseconds.



iteration #1 iteration #2 iteration #5 iteration #8 optimal path
Fig. 6. Several iterations of the CE algorithm applied to the helicopter scenario. As the optimization proceeds the set of samples concentrates in the homotopy
classes with minimum trajectory cost.

VIII. CONCLUSION

The paper addresses the motion planning problem through
a randomized optimization in the continuous space of feasible
trajectories. Adaptive importance sampling using the cross-
entropy method is employed to guide the search towards opti-
mal solution regions. Empirical results show that the proposed
motion planning algorithm can handle non-trivial problems as
long as feasible trajectories can be sampled successfully. Fu-
ture work will focus on deriving formal convergence rates. A
promising direction in that respect is to establish a relationship
between existing motion planning probabilistic completeness
results [2] and existing bounds on the complexity of stochas-
tic programming [19]. As a result it would be interesting
to consider augmenting existing graph-based planners with
the proposed cross-entropy adaptive sampling for optimally
guiding the exploration.
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