
1

Realtime Registration-Based Tracking via
Approximate Nearest Neighbour Search

Travis Dick, Camilo Perez, Azad Shademan, Martin Jagersand
University of Alberta, Department of Computing Science.
{tdick,caperez}@ualberta.ca, {azad,jag}@cs.ualberta.ca

Abstract—We introduce a new 2D visual tracking algorithm
that utilizes an approximate nearest neighbour search to estimate
per-frame state updates. We experimentally demonstrate that the
new algorithm capable of estimating larger per-frame motions
than the standard registration-based algorithms and that it is
more robust in a vision-controlled robotic alignment task.

I. INTRODUCTION

An important goal of computer vision is to provide algo-
rithms that allow cameras to be used as sensors in robotic
settings; that is, to estimate useful state information from a
real-time video sequence depicting the robot’s environment.
2D visual tracking is specifically concerned with estimating
the position and orientation of an object’s image appearing
in the frames of a video sequence. In many tasks, this 2D
information is all that is required to achieve high performance,
rather than the harder-to-estimate real world 3D pose. For
example, as in visual servoing, we can accurately position a
robotic manipulator by aligning 2D visual features.

Algorithms for visual tracking vary along two dimensions:
their appearance model and their state estimation method. The
appearance model predicts an object’s appearance (position,
orientation, colour, etc.) in an image as a function of some
underlying state, and the state estimation method searches for
a state that explains a given image in terms of the appearance
model. For example, registration (or template) based tracking
is a popular appearance model, where we assume that the
object will appear in each frame as a warped version of a given
template image. The set of warps is taken to be a parametric
family, and the state estimation problem is to find warp
parameters that register the template image in each frame.
Typically, registration based tracking algorithms estimate warp
parameters by numerically maximizing some measure of the
quality of template alignment [1], [2], [3], [4]. More general
appearance models might replace the single template image
by a collection of template images [5], a linear subspace [6],
a collection of features [7], [8], or a distribution of the relative
frequencies of colours [9], [10]. Each of these appearance
models, when combined with suitable state-estimation meth-
ods, give rise to tracking algorithms with different benefits.

The merits of each visual tracking algorithm should be
considered when choosing which to use for a particular appli-
cation. In this paper, we focus on registration based tracking,
which is a good approach when the target object does not
have many individual and distinct features such as corners or
edges. Registration based tracking also takes into account all

of the intensity information available for the object, instead of
focusing on a few select regions. Often, this makes it more
accurate than other methods.

In this work we introduce and experimentally validate a
new state estimation method for registration based tracking
that utilizes a nearest neighbour search to update the warp
parameters from one frame to the next.

II. NOTATION AND PROBLEM STATEMENT

We model the video stream as a sequence of grayscale
image functions I0, I1, . . . : R2 → [0, 1] with the interpretation
that It (x) is the intensity of pixel location x = (u, v) ∈ R2

in the image captured at time t. Coordinates outside the
bounds of captured images have intensity 0. We assume
that we have a family of parameterized warping functions{
wθ : R2 → R2 | θ ∈ Rm

}
that describe all the possible mo-

tions of the target object. Specifically, for a fixed set of refer-
ence points R = {x1, . . . , xn} ⊂ R2 there exist ground-truth
parameters θ∗t such that, for each i = 1, . . . , n, the warped
points

(
wθ∗t (xi)

)
t=0,1,...

are the image coordinates of the same
point of the target object in the images I0, I1, . . ., respectively.
One option would be to take θ∗0 to be the parameters of the
identity warp and R to be the set of pixel locations belonging
to the target object, but this is not the only choice. We call
the image function T (x) = I0

(
wθ∗0 (x)

)
the template image.

The goal of 2D registration based visual tracking is, for each
time t, to estimate θ∗t given the images I0, . . . , It, R, and θ∗0 .

We will abuse notation slightly and use the following
shorthand to denote the vector of intensities obtained by
sampling warped versions of each point in R:

It ◦ wθ (R) = [It (wθ (x1)) . . . It (wθ (xn))]
> ∈ [0, 1]

n
.

Similarly, for any image function I , we write

I(R) = [I (x1) . . . I (xn)]
> ∈ [0, 1]

n
,

and for any warping function wθ, we will write

wθ (R) = {wθ (x1) , . . . , wθ (xn)} ⊂ R2.

III. RELATED WORK

A common assumption in registration-based visual tracking
is image constancy, which states that as the object moves,
the intensities of the points belonging to it remain constant.
Formally, we assume that

I0 ◦ wθ∗0 (R) = It ◦ wθ∗t (R)



2

for every time t. The image constancy assumption leads natu-
rally to tracking via minimizing the sum of squared intensity
differences (SSD). In SSD tracking we produce our estimate
θ̂t of θ∗t at time t by minimizing

θ̂t = arg min
θ∈Rm

∥∥I0 ◦ wθ∗0 (R)− It ◦ wθ (R)
∥∥2

(1)

This is a challenging non-linear optimization problem and
much of the registration tracking literature explores various
minimization schemes. All of the related works we consider
incrementally maintain an estimate, say θ̂, of the optimal
warping parameters. We leave the time subscript off of this
estimate with the understanding that it is always the most up-
to-date estimate.

Hager and Belhumeur [3] approach the minimization of
equation (1) by iteratively computing an increment ∆θ and
setting θ̂ ← θ̂+∆θ. The update ∆θ is computed by minimizing
a linearized form of

∆θ̂ = arg min
∆θ∈Rm

∥∥I0 ◦ wθ∗0 (R)− It ◦ wθ̂+∆θ (R)
∥∥2
.

Specifically, they set

∆θ = J+
[
I0 (R) ◦ wθ∗0 − It ◦ wθ̂ (R)

]
where J is the Jacobian of the function f (θ) = It ◦wθ (R) at
θ = θ̂ and J+ denotes the Moore-Penrose pseudoinverse. This
update is performed incrementally until either the estimate
converges or until the next frame arrives. They show that
the Jacobian J can be factored into a large constant factor
and a small factor depending only on θ̂. When computing
each increment ∆θ, only the non-constant factor needs to be
recomputed and this leads to efficient tracking. They show that
this Jacobian factorization is possible for up to affine 6-DOF
warps.

Jurie and Dhome [11] use an identical approach except,
instead of approximating the Jacobian J using finite differ-
ences, they fit hyperplanes to randomly generated data-points
in a neighbourhood of θ̂. They demonstrate experimentally that
their approach allows the algorithm to handle larger per-frame
motions.

Baker and Matthews [1] propose a similar algorithm that
computes an inverse-compositional update rather than an ad-
ditive update. That is, they update their estimate according to
θ̂ ← θ̂ ◦∆θ−1 where the notation θ ◦ ϕ is used to denote the
parameters of the composed warp wθ ◦ wϕ and the notation
θ−1 is used to denote the parameters of the inverse of wθ.
For this notation to make sense, the set of parameterized
warps must form a group under composition. This is not much
of a restriction, though, since many interesting families of
parameterized warps have this property. The update parameters
∆θ are computed by minimizing a linearized form of

∆θ = arg min
∆θ∈Rm

∥∥I0 ◦ wθ∗0 ◦ w∆θ (R)− It ◦ wθ̂ (R)
∥∥2
.

Specifically, they compute

∆θ = J+
[
I0 ◦ wθ∗0 (R)− It ◦ wθ̂ (R)

]
where J is the Jacobian of the function f (∆θ) = I0 ◦
wθ∗0 ◦ w∆θ (R) at ∆θ = 0. Again, this update is performed

incrementally until either the estimate converges or the next
frame arrives. In this approach, the Jacobian J is constant and
can be computed before tracking begins. Baker and Matthews
show that, to a first order approximation, the updates of this so-
called inverse compositional algorithm are equal to the updates
of the Hager and Belhumeur algorithm. This algorithm is very
efficient and can be applied in the case where w parameterizes
the set of homographies.

Benhimane and Malis [2] propose an algorithm that com-
putes a compositional update. Their main contribution is to
replace the Gauss-Newton like minimization procedure of
the previous two algorithms with an efficient second order
minimization (ESM). They update θ̂ ← θ̂ ◦ ∆θ where ∆θ is
computed by minimizing a second-order approximation to

∆θ = arg min
∆θ∈Rm

∥∥I0 ◦ wθ∗0 (R)− It ◦ wθ̂◦∆θ (R)
∥∥2
.

Specifically, they compute

∆θ = 2 (Je + Jc)
+ [
I0 ◦ wθ∗0 (R)− It ◦ wθ̂ (R)

]
where Je is the Jacobian of the function f (θ) = I0 ◦ wθ∗0 ◦
wθ (R) at θ = 0 and Jc is the Jacobian of the function g (θ) =
It ◦ wθ̂◦θ (R) at θ = 0. Unlike the other methods, they must
recompute Jc entirely for each update. Their method tends to
converge in fewer (but more expensive) iterations and, since
it is a second order approximation, it is less susceptible to
local minima. Currently the ESM algorithm of Benhimane and
Malis is the golden-standard for registration-based tracking.

In addition to the various optimization techniques above,
there has been exploration into replacing the sum of squared
intensity differences (inspired by image constancy) with new
similarity measures to improve the robustness of tracking
algorithms. For example, Richa et al. propose using the sum of
conditional variances [12], Hasan et al. propose using the cross
cumulative residual entropy [13], and Dame et al. propose
using mutual information [14]. We believe that these ideas are
largely orthogonal to our work and anticipate that they may
be extended to our new algorithm without much difficulty. In
a later section we present such an extension of the sum of
conditional variances.

IV. THE NEAREST NEIGHBOUR TRACKING ALGORITHM

The most distinctive feature of our algorithm is that it uses
a nearest neighbour search to update the warp parameters
from frame to frame. The observation behind this approach
is that computing the per-frame update parameters can be
reduced to recognizing warped versions of the template T . By
recognition we mean: given a warped version template image
function T̃ (x) = T (wθ(x)), determine the underlying warp
parameters θ by examining the intensities of T̃ . The reduction
goes as follows: let ∆θ∗t = θ̂−1 ◦ θ∗t denote the optimal
update parameters. If we restrict our attention to image-points
belonging to the target object, then we have

It(wθ̂(x)) = It(wθ∗t (w∆θ∗−1
t

(x)))

= I0(wθ∗0 (w∆θ∗−1
t

(x))) (image constancy) (2)

= T (w∆θ∗−1
t

(x)).



3

1: Let θ1, . . . , θN be a collection of representative per-
frame updates.

2: vi ← T ◦ wθi(R) for i = 1, . . . , N .
3: θ̂ ← θ∗0
4: for each new frame It do
5: i ← index of the nearest neighbour of It ◦ wθ̂ in

{v1, . . . , vN} according to d.
6: θ̂ ← θ̂ ◦ θ−1

i

7: end for
Figure 1. Psuedocode for the nearest neighbour tracking algorithm. The
details of how the representative per-frame updates θi should be obtained are
given in section 4.1.

At time t we can sample the intensities of the partially aligned
image It(wθ̂(·)), which we have just shown to be the result
of warping the template T with the inverse of the unknown
optimal update parameters. A method for recognizing warped
versions of T can therefore be used to estimate the optimal
update parameters.

The intuition behind our approach to the recognition prob-
lem is: when two warped templates, say T̃1(x) = T (wθ1(x))
and T̃2(x) = T (wθ2(x)), have a small distance measured by

d
(
T̃1, T̃2

)
=
∥∥∥T̃1 (R)− T̃2 (R)

∥∥∥2

2
,

we should expect the underlying parameters θ1 and θ2 to be
similar as well. We compare the warped templates on the
points in R because, for relatively small θ, we expect the
majority of the points in wθ (R) to belong to the target object
in the template T , which is the condition for 2 to hold. Given a
set of representative warp parameters {θ1, . . . , θN}, we build
a table that associates to each parameter θi the resulting
vector T ◦ wθi (R). Then, given a new warped template T̃ ,
we estimate the unknown underlying parameters θ to be the
those associated with T̃ ’s nearest neighbour in the table:

θ ≈ θi where i = arg min
i=1...,N

d
(
T̃ , T ◦ wθi

)
.

Combining the above ideas and taking {θ1, . . . , θN} to be a
representative sample of the feasible per-frame updates gives
the NN tracking algorithm: upon receiving the template T we
construct a table containing warped templates; then, for each
time t, we find the index i of the table’s nearest neighbour to
the partially aligned image It ◦ wθ̂ and update θ̂ ← θ̂ ◦ θ−1

i .
Pseudocode is given in figure 1.

There are three final modifications that improve the ef-
ficiency and precision of the NN tracking algorithm. First,
instead of building a single lookup table, we build a sequence
of k tables, each containing parameters describing progres-
sively smaller warps. We use each table in turn to compute a
parameter update in the scheme above, each using the partially
aligned image that takes into account updates computed using
earlier tables. Second, the above scheme chooses its updates
from a finite, albeit potentially large, set of candidates; rather
than including many small warps to get high precision, it is
more efficient to perform a final alignment by minimizing the
SSD as in the related works. We found that running a fixed
number of iterations of the inverse compositional algorithm

provided very high precision. Finally, there are no known algo-
rithms for computing nearest neighbours in high dimensional
Euclidian spaces more efficiently than exhaustively checking
each example. There are, however, very efficient algorithms for
finding approximately nearest neighbours. We found that using
the randomized kD-tree algorithm of Silpa-Anan and Hartley
[15] provided a substantial speedup while not deteriorating
tracking performance. We used the implementation provided
by the excellent flann library of Muja and Lowe [16]. In fact,
one of the major benefits of this approach is the ability to use
the existing highly optimized approximate nearest neighbour
algorithms, instead of being required to produce similarly
optimized code. These modifications are not present in the
pseudo-code because they add clutter and are relatively easy
to implement.

A. Representative Per-Frame Updates

The set of representative per-frame updates {θ1, . . . , θN}
should be chosen so that the optimal updates ∆θ∗t are always
well approximated by some θi. On the other hand, we need
to keep N relatively small so that the nearest neighbour can
be found in real time. We found that the following heuristic
approach worked well in a variety of application domains:
Given parameters σt and σs, let A ∈ R2 be a random
vector sampled from a normal distribution with mean 0 and
covariance matrix diag

(
σ2
t , σ

2
t

)
and B1, . . . , B4 ∈ R2 be i.i.d.

random vectors sampled from a normal distribution with mean
0 and covariance matrix diag

(
σ2
d, σ

2
d

)
. Let p1, . . . , p4 be the

corners of the centered unit square [−0.5, 0.5]
2 and let Θ be

the unique parameters such that wΘ (pi) = pi + A + Bi for
i = 1, . . . , 4. We take θ1, . . . , θN to be i.i.d. samples of Θ.
The parameters σt and σd control the amount of translation
and distortion, respectively, captured by the θ1, . . . , θN .

B. Reversed Sum of Conditional Variances

The Sum of Conditional Variances is an image-patch dis-
similarity measure that is robust in the presence of global
illumination variations. The main idea is to estimate the
probability Pij that, at any given point on the object, intensities
i and j co-occur in the frames I0 and It respectively. Given
that we can estimate this distribution at time t, we can replace
the sum of squared differences with the following objective:

O
(
θ̂
)

=
∑
x∈R

(
Î0 ◦ wθ∗0 (x)− It ◦ wθ̂ (x)

)2

where Î0 is defined by

Î0 (x) = E [C | T = I0 (x)]

and (T,C) are random intensities with joint distribution Pij .
This can be seen as taking all of the intensities present in
I0 and mapping them to our best guess of what they should
be in the current image. As it is formulated, this dissimilarity
measure is difficult to use with the nearest neighbour algorithm
because we store many sampled image vectors generated from
I0 and performing the intensity replacement in all of them is



4

time consuming. Instead, we propose a very similar reversed
sum of conditional variances:

O
(
θ̂
)

=
∑
x∈R

(
I0 ◦ wθ∗0 (x)− Ît ◦ wθ̂ (x)

)2

where
Ît (x) = E [T | C = It (x)] .

This is the same as the sum of conditional variances, except
the intensity replacement is performed in It instead of I0. To
use this dissimilarity measure with the N.N. algorithm, we
only need to estimate Pij and replace It with Ît. See [12]
for more information on the estimation of Pij and a complete
algorithm.

C. Available Implementations

A python implementation of the nearest neighbour algo-
rithm as well as a ROS package for quick and easy use in
robotics applications are both available at http://webdocs.cs.
ualberta.ca/~vis/nntracker/.

V. EXPERIMENTAL EVALUATION

In the following experiments, we compare the NN tracking
algorithm with the IC algorithm of Baker and Matthews
and the ESM algorithm of Benhimane and Malis referred
to as NN+IC, IC, and ESM respectively. These algorithms
were selected for comparison because they are the standard
algorithms in the literature when the appearance model is taken
to be a single template image. Our own implementations for
all three algorithms were used.

A. Static Image Motion

Tracking failures can generally be attributed either a failure
in the appearance model or a failure in the parameter es-
timation method. This experiment stress-tests the parameter
estimation method while ensuring that the single-template
appearance model does not fail; i.e. the target object appears
in each frame exactly as a warped version of the template
image.

We set I0 to be the famous Lenna image, R consists of
points placed in a uniform grid within the centered unit square
[−0.5, 0.5]

2 (the resolution of the grid is algorithm-dependent),
and θ∗0 describes the warp that maps R onto the green square
shown on the left of figure 2. I1 is generated randomly as
follows: let σ > 0, p1, . . . , p4 be the corners of the green
square shown on the left in figure 2, and B1, . . . , B4 ∈ R2

be i.i.d random vectors sampled from a normal distribution
with mean 0 and covariance matrix diag

(
σ2, σ2

)
. Then, let

I1 = I0 ◦ wΘ−1 where Θ is such that wΘ (pi) = pi + Bi for
i = 1, . . . , 4. Given I0, R, θ

∗
0 and I1, the algorithm attempts

to estimate the target’s new position in I1. We say that the an
algorithm converges if the root mean squared error between
the algorithm’s predicted target corners and the target’s true
corners in I1 is no more than 1; that is, when√√√√1

4

4∑
i=1

∥∥pi +Bi − wθ̂ (pi)
∥∥2

2
≤ 1

Figure 2. A typical example of I0 (left) and I1 (right) for the static-image
experiment. The target region is marked in green.

Figure 3. Proportion out of 5000 trials that each of NN+IC, IC, and ESM
converged for various values of σ. See section 5.1 for details.

where θ̂ is the algorithm’s estimate of the warp parameters.
See figure 2 for an example of I0 and I1 with the target
region marked in green. For σ values ranging from 1 to 20,
we ran each algorithm on 5000 2-frame sequences (I0, I1);
figure 3 shows the proportion of trials on which each algorithm
converged.

The NN+IC algorithm used a set R with 50 × 50
resolution, and k = 3 lookup tables each contain-
ing 2000 example parameters generated with (σd, σt) =
(0.06, 0.04) , (0.03, 0.02) , (0.015, 0.01), respectively. The IC
algorithm used a set R with 100× 100 resolution and ran for
a maximum of 30 iterations. The ESM algorithm used a set R
with resolution 50×50 and ran for a maximum of 30 iterations.
These parameters were chosen to maximize performance while
giving each algorithm approximately the same running time.
Running the entire experiment took 49 minutes for the IC
algorithm, 55 minutes for the ESM algorithm, and 33 minutes
for the NN+IC algorithm.

Despite being faster, the NN+IC algorithm was able to
reliably recover the motion for larger σ values than either
of the other two algorithms. We also see that the NN+IC
algorithm substantially outperforms the IC algorithm, which
gives us confidence that the final IC iterations used to perform
the fine alignment aren’t doing all of the work.



5

N.N.+I.C. Angle Range Fast Far Fast Close Illumination
bump 77.8 57.9 58.5 25.1 61.1
stop 100.0 86.6 59.9 50.6 67.6

lucent 87.3 98.2 47.9 51.5 67.1
macmini 52.9 46.1 12.2 15.7 17.4

isetta 99.4 82.3 74.2 17.2 64.1
philadephia 99.7 95.5 49.8 75.0 63.4

grass 19.8 4.2 6.6 5.8 13.2
wall 75.0 79.8 56.8 22.8 56.4

E.S.M. Angle Range Fast Far Fast Close Illumination
bump 77.4 90.9 50.7 40.8 96.3
stop 100.0 96.2 24.5 50.5 54.9

lucent 35.3 23.9 12.0 16.8 89.6
macmini 24.0 9.3 6.8 37.8 9.2

isetta 83.2 89.0 17.2 28.0 99.9
philadephia 82.1 72.3 14.5 71.9 100.0

grass 13.8 6.6 6.9 7.8 17.4
wall 47.4 34.3 8.3 28.4 96.9

I.C. Angle Range Fast Far Fast Close Illumination
bump 77.9 79.1 13.4 30.4 95.2
stop 66.7 47.5 12.1 24.7 42.7

lucent 13.7 20.9 5.4 12.1 19.5
macmini 17.7 5.7 4.5 22.0 8.5

isetta 62.2 32.8 6.0 16.5 91.8
philadephia 61.2 31.2 6.5 46.6 96.7

grass 9.2 6.6 5.6 3.7 10.7
wall 34.8 24.0 7.9 12.2 35.3

Figure 4. Percentage of frames tracked in each benchmark videos for each
of the NN+IC, IC, and ESM algorithms.

B. Metaio Benchmark

Lieberknecht et al. [17] provide a set of benchmark videos
designed specifically for comparing 2D tracking algorithms.
The videos feature 8 different target objects in videos ex-
emplifying each of the following: angle, range, fast far, fast
close, and illumination. The ground truth parameters θ∗t are
known for every frame of all videos, but only the ground truth
for every 250th frame is packaged with the benchmark. The
authors offer to evaluate a sequence of estimated parameters
θ̂0, θ̂1, . . . for each of the benchmark videos, reporting the
percentage of frames that the estimated parameters were
sufficiently close to the ground truth.

We ran our implementations of the NN+IC, IC, and ESM
algorithms on the benchmark videos; results are shown in
4. In the “fast far” sequences, NN+IC often substantially
outperforms the other methods, as shown in 5. This agrees
with the results of the static-image experiment, in that the
NN+IC algorithm is accurately estimating larger parameter
updates than the other algorithms. Many of the failures of
the NN+IC algorithm in the other videos appear to be caused
by the target object partially leaving the frame or becoming
motion blurred. The other algorithms were not as affected by
these situations.

The algorithm parameter settings for this experiment were
identical to those in the static-image experiment.

C. Application to Visual Servoing

In this experiment, we compare the three algorithms in a
robotic control setting. There is a camera mounted on the wrist
of a 4-DOF WAM robotic arm (see 6) and the goal is to move
the arm such that the camera is in a desired pose. This is
achieved by aligning the corners of a tracked rectangular patch

Figure 5. Percentage of frames tracked in the “fast far” video sequences.

Figure 6. Experimental setup for a visual servoing experiment using the
WAM arm with a wrist-mounted camera. Patches of a highly textured surface
in the camera’s field of view were tracked and used as input to a visual
servoing routine in order to precisely align the camera position. The algorithms
were compared based on the speed and reliability of the overall system.

with a goal configuration. In these experiments, we did not
have a model of the arm or calibration information relating the
pose of the camera to the arm or the arm to the environment.

Each configuration of the arm’s joint angles determine the
pixel-locations of the four corners of a rectangular tracked
patch. Let v : R4 → R8 be the so-called motor-visual function
that maps a vector of four joint angles to a vector consisting
of the four corner pixel-locations concatenated into a single
vector. Let s∗ ∈ R8 denote the goal corner locations, q∗ ∈ R4

denote the unknown corresponding joint angles, sc denote the
current corner locations, and qc denote the arm’s current joint
angles. The WAM arm has a built-in controller to set motor
torques in order to achieve a given vector of joint angles. Our
control algorithm updates the desired joint angles, denoted by
qd, at each time according to qd = qc + λJ+ (s∗ − v (qc))
where J is the Jacobian of the motor visual function v (q) at
q = q∗. The parameter λ is called the gain and determines



6

Figure 7. The percentage of successful trials for each each algorithm for
various gains λ in the visual servoing experiment.

Figure 8. The average alignment time taken on successful trials for each
algorithm for various gains λ in the visual servoing experiment.

how quickly the arm moves.
We generated 50 goal joint positions q∗ and starting posi-

tions qs. An offline procedure was used to compute the Jaco-
bians of the motor-visual function at each q∗ and the vector of
corners ss used to initialize the tracker when the arm is in it’s
initial position qs. A single run of the experiment consists of
moving the arm to position qs, initializing the tracker with the
quadrilateral region bounded by corners ss, and then updating
the desired joint angles until either ‖sc − s∗‖ < 10 or the
controller began to diverge. We ran the experiment with each
algorithm and with different gains in the range 0.1 to 0.5. We
record the proportion of trials that were successful and the
average time taken for each successful alignment, shown in
figure 7 and figure 8, respectively.

This task in this experiment is more challenging than
the others because the tracker performance influences the
incoming video sequence. If the algorithm does not compute
its per-frame updates efficiently the frequency of the control
loop drops and causes sometimes violent motion of the arm
which in turn produces a challenging video sequence.

In all but one trial, the NN+IC algorithm tracked suc-
cessfully and efficiently enough for the control algorithm to
converge quickly and smoothly. The IC algorithm could not
track with higher gains because the target was moving too
quickly. With higher gains, ESM was often able to track the
early motions, but at a slow frame rate, and the tracking failed

in the consequently jerky camera motion. In this setting, the
reliability of the visual servoing routine was greatly improved
by using the NN+IC algorithm. In the average time plot, the
I.C. algorithm appears to be doing well for very high gains.
This is due to the fact that the average time is only taken over
successful trials and, for high gains, the I.C. algorithm was
only successful for trials with very short motions.

We tried several parameter settings for each algorithm, but
only display the results for the most successful settings. For
ESM we used a resolution of 30 × 30 and a limit of 15
iterations, for IC we used a 100 × 100 patch and a limit of
30 iterations, and for the NN+IC algorithm we used the same
parameter settings as in the previous experiments, except with
30× 30 resolution.

D. Case Studies

In addition to the above experiments, we ran each of the
three algorithms on video sequences captured in different
domains.

The first sequence we show is the video captured during the
descent of the Mars Curiosity Rover (images publicly available
at http://mars.jpl.nasa.gov/msl/multimedia/raw/?s=0&camera=
MARDI). This video sequence was captured at only 4 frames
per second, so the per-frame camera motions are quite large.
We tried all three algorithms on several patches throughout
the video, but only the N.N.+I.C. algorithm was able to track
for more than 2 or 3 frames. Example frames from the video
sequence are shown in figure 9.

For a more typical every-day domain, we recorded a video
of pouring cereal into a bowl. Human manipulation of objects
actually presents a difficult application domain because our
motions tend to be abrupt and unconstrained. Like in the Mars
descent video, only the N.N.+I.C. algorithm was able to track
for a substantial portion of the video. Example frames are
shown in figure 10.

Finally, we present a sequence captured from a small
unmanned aerial vehicle (U.A.V.). In this experiment we
only compare the N.N. algorithm with the I.C. algorithm
(referred to as “SSD” in the video). Additionally, in these
video sequences the warping function w is taken to be a
parameterization of the 4-DOF similarity transformations that
only allow for translations, rotations, and scaling. As in the
previous examples, the N.N. algorithm is more reliable.

VI. CONCLUSIONS

We have introduced the nearest neighbour registration-
based tracking algorithm that uses an approximate nearest
neighbour search to estimate the per-frame homography pa-
rameter updates. We empirically showed that the algorithm is
more efficient and capable of accurately estimating updates
corresponding to large motions than the standard algorithms
with the same appearance model. Finally, we showed that the
nearest neighbour algorithm was more robust than existing
methods in a robotic visual alignment task.



7

Figure 9. Each of the visual tracking algorithms was run on the video sequence captured by the Mars Curiosity rover during its descent. The shown sampled
frames show that our algorithm was able to track for more than 100 frames, while both ESM and IC failed after fewer than 5.

Figure 10. Each of the visual tracking algorithms was run on a video sequence depicting a bowl of cereal being poured. This video is interesting because
human motion is less constrained than in the other case studied. Again, our algorithm is able to track for substantially more frames than either ESM or IC.

Figure 11. This case study compares the our algorithm, labeled by “NN” in red, with the IC algorithm, labeled by “SSD” in green, on a video capture by
a small UAV.

REFERENCES

[1] S. Baker and I. Matthews, “Equivalence and efficiency of image
alignment algorithms,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1, pp.
I–1090–I–1097, 2001.

[2] S. Benhimane and E. Malis, “Real-time image-based tracking of planes
using efficient second-order minimization,” Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, vol. 1, pp. 943–
948, 2004.

[3] G. Hager and P. Belhumeur, “Efficient region tracking with parametric
models of geometry and illumination,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 10, pp. 1025–1039, 1998.

[4] T. Kanade, “an iterative image registration technique with an application
to stereo vision,” in Proceedings of the 7th International Joint Confer-
ence on Artificial Intelligence (IJCAI), 1981, pp. 674–679.

[5] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 7, pp. 1409–1422, 2012.

[6] D. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning for robust
visual tracking,” International Journal of Computer Vision, vol. 77,
no. 1, pp. 125–141, 2008.

[7] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the IEEE International Conference on Computer Vision,
vol. 2, 1999, pp. 1150–1157.

[8] E. Rosten and T. Drummond, “Machine learning for high-speed cor-
ner detection,” Proceedings of the European Conference on Computer
Vision, pp. 430–443, 2006.

[9] G. R. Bradski, “Computer vision face tracking for use in a perceptual
user interface,” Intel Technology Journal, vol. 2, no. 2, pp. 1–15, 1998.

[10] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-
rigid objects using mean shift,” Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, vol. 2, no. 142–149, 2000.

[11] F. Jurie and M. Dhome, “Hyperplane approximation for template match-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 7, pp. 996–1000, 2002.

[12] R. Richa, R. Sznitman, R. Taylor, and G. Hager, “Visual tracking
using the sum of conditional variance,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
2953–2958, 2011.

[13] M. Hasan, M. Pickering, A. Robles-Kelly, J. Zhou, and X. Jia, “Reg-
isration of hyperspectral and trichromatic images via cross cumulative
residual entropy maximisation,” Proceedings of the IEEE International
Conference on Image Processing (ICIP), pp. 2329–2332, 2010.

[14] A. Dame and E. Marchand, “Accurate real-time tracking using mutual



8

information,” Proceedings of the IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 47–56, 2010.

[15] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image
descriptor matching,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8, 2008.

[16] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” Proceedings of the VISAPP Inter-
national Conference on Computer Vision Theory and Applications, pp.
331–340, 2009.

[17] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab, “A dataset and
evaluation methodology for template-based tracking algorithms,” IEEE
International Symposium on Mixed and Augmented Reality, pp. 145–
151, 2009.


