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Abstract— New uses of robotics in traditionally manual man-
ufacturing processes require the careful choreography of human
and robotic agents to support safe and efficient coordinated
work. Tasks must be allocated among agents and scheduled
to meet temporal deadlines and spatial restrictions on agent
proximity. These systems must also be capable of replanning on-
the-fly to adapt to disturbances in the schedule and to respond
to people working in close physical proximity. In this paper,
we present a centralized algorithm, named Tercio, that handles
tightly intercoupled temporal and spatial constraints and scales
to larger problem sizes than prior art. Our key innovation is
a fast, satisficing multi-agent task sequencer that is inspired
by real-time processor scheduling techniques but is adapted
to leverage hierarchical problem structure. We use this fast
task sequencer in conjunction with a MILP solver, and show
that we are able to generate near-optimal task assignments
and schedules for up to 10 agents and 500 tasks in less than
20 seconds on average. Finally, we demonstrate the algorithm
in a multi-robot hardware testbed.

I. INTRODUCTION

Robotic systems are increasingly entering domains pre-
viously occupied exclusively by humans. In manufacturing,
there is strong economic motivation to enable human and
robotic agents to work in concert to perform traditionally
manual work. This integration requires a choreography of
human and robotic work that meets upperbound and lower-
bound temporal deadlines on task completion (e.g. assigned
work must be completed within one shift) and spatial re-
strictions on agent proximity (e.g. robots must maintain four
meter separation from other agents), to support safe and
efficient human-robot co-work. The multi-agent coordination
problem with temporospatial constraints can be readily for-
mulated as a mixed-integer linear program (MILP). However,
the complexity of this approach is exponential and leads to
computational intractability for problems of interest in large-
scale factory operations [4].

Various decentralized or distributed approaches achieve
fast computation and good scalability characteristics [5],
[6], [9], [24], [31]. Fast computation is desirable because it
provides the capability for on-the-fly replanning in response
to schedule disturbances [2], [6], [27]. These works boost
computational performance by decomposing plan constraints
and contributions to the objective function among agents [5].
However, these methods break down when agents’ sched-
ules become tightly intercoupled, as they do when multiple
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agents are maneuvering in close physical proximity. While
distributed approaches to coordination are necessary for
field operations where environment and geography affect the
communication among agents, factory operations allow for
sufficient connectivity and bandwidth for either centralized
or distributed approaches to task assignment and scheduling.

In this paper we present Tercio1, a centralized task as-
signment and scheduling algorithm that scales to multi-
agent, factory-size problems and supports on-the-fly replan-
ning with temporal and spatial-proximity constraints. We
demonstrate that this capability enables human and robotic
agents to effectively work together in close proximity to
perform manufacturing-relevant tasks.

Tercio is made efficient through a fast, satisficing multi-
agent task sequencer that is inspired by real-time processor
scheduling techniques but is adapted to leverage hierarchical
problem structure. Our task sequencer computes in polyno-
mial time a multi-agent schedule that satisfies upperbound
and lowerbound temporal deadlines as well as spatial restric-
tions on agent proximity. Although the sequencing algorithm
is satisficing, we show that it is tight, meaning it produces
near-optimal task sequences for real-world, structured prob-
lems. We use this fast task sequencer in conjunction with
a MILP solver, and show that we are able to generate
near-optimal task assignments and schedules for up to 10
agents and 500 tasks in less than 20 seconds on average. In
this regard, Tercio scales better than previous approaches to
hybrid task assignment and scheduling [7], [8], [13], [14],
[15], [32]. An additional feature of Tercio is that it returns
flexible time windows for execution [22], [34], which enable
the agents to adapt to small disturbances online without a full
re-computation of the schedule.

In Section II we place our work in the context of prior art.
In Section III we formally define the problem we solve and
outline our technical approach. Section IV presents the Tercio
algorithm including pseudocode, and Section V describes
the fast multi-agent task sequencer, called as a subroutine
within Tercio. Section VI presents the empirical evaluation,
and describes the application of the algorithm in a multi-
robot hardware testbed.

II. RELATED WORK

There is a wealth of prior work in task assignment and
scheduling for manufacturing and other applications. While

1Our method is named Tercio for the Spanish military formation used
during the Renaissance period, which consisted of several different types of
troops, each with their own strengths, working together as a single unit.



the problem in many cases may be readily formulated
and solved as a mixed-integer linear program (MILP), the
complexity of this approach is exponential and leads to
computational intractability for problems of interest in large-
scale factory operations [4]. To achieve good scalability char-
acteristics, various hybrid algorithms have been proposed. A
brief survey of these methods follows.

One of the most promising approaches has been to
combine MILP and constraint programming (CP) methods
into a hybrid algorithm using decomposition (e.g. Benders
Decomposition) [13], [14], [15]. This formulation is able to
gain orders of magnitude in computation time by using a
CP to prune the domain of a relaxed formulation of the
MILP. However, if the CP is unable to make meaningful
cuts from the search space, this hybrid approach is rendered
nearly equivalent to a non-hybrid formulation of the problem.
Auction methods (e.g. [5]) also rely on decomposition of
problem structure and treat the optimization of each agent’s
schedule as independent of the other agents’ schedules.
These techniques preclude explicit coupling in each agent’s
contribution to the MILP objective function. While the CP
and auction-based methods support upperbound and lower-
bound temporal deadlines among tasks, they do not handle
spatial proximity constraints, as these produce tight depen-
dencies among agents’ schedules that make decomposition
problematic.

Other hybrid approaches integrate heuristic schedulers
within the MILP solver to achieve better scalability char-
acteristics. For example, Chen et al. incorporate depth-
first search (DFS) with heuristic scheduling [8], and Tan
incorporates Tabu Search [32] within the MILP solver. Castro
et al. use a heuristic scheduler to seed a feasible schedule
for the MILP [7], and Kushleyev et al. [16] apply heuristics
for abstracting the problem to groupings of agents. These
methods solve scheduling problems with 5 agents (or groups
of agents) and 50 tasks in seconds or minutes, and address
problems with multiple agents and resources, precedence
among tasks, and temporal constraints relating task start and
end times to the plan epoch time. However, more general
task-task temporal constraints are not considered.

In the next section we describe our approach, which
solves task assignment and scheduling problems with the
full set of features: multiple agents, precedence and temporal
constraints among tasks, and spatial proximity constraints.

III. OUR APPROACH

A. Problem Statement

In this section, we formulate the task assignment and
scheduling problem for multiple robots moving and working
in the same physical space as a mixed-integer linear program
(MILP). Problem inputs include:

• a Simple Temporal Problem (STP) [10] describ-
ing the interval temporal constraints (lowerbound lb
and upperbound ub) relating tasks (e.g. “the first coat
of paint requires 30 minutes to dry before the sec-
ond coat may be applied” maps to interval constraint

secondCoatStart− firstCoatF inish ∈ [30,∞), and
the constraint that “the entire task set must be finished
within the 120 minutes” maps to finishTaskset −
startTaskSet ∈ [0, 120]),

• two-dimensional (x,y) positions specifying the floor
spatial locations where tasks are performed,

• agent capabilities specifying the tasks each agent may
perform and the agent’s expected time to complete each
task, and

• allowable spatial proximity between agents.
A solution to the problem consists of an assignment of

tasks to agents and a schedule for each agent’s tasks such
that all constraints are satisfied and the objective function is
minimized. The mathematical formulation of the problem is
presented below:

min f(A,P, J, S,R, γ) (1)

subject to ∑
a∈Ag

Aa,j = 1, ∀j ∈ γ (2)

lbi ≤ tm − tn ≤ ubi,∀i ∈ T, n,m ∈ γ (3)

tEk − tSk ≥ lba,k −M(1−Aa,k), ∀k ∈ γ, a ∈ Ag (4)

tEk − tSk ≤ uba,k +M(1−Aa,k), ∀k ∈ γ, a ∈ Ag (5)

tSj − tEi ≥M(1− Ji,j), ∀i, j ∈ R (6)

tSi − tEj ≥MJi,j , ∀i, j ∈ R (7)

tSj − tEi ≥M(1− Ji,j) +M(2−Aa,i −Aa,j)
∀i, j ∈ γ (8)

tSi − tEj ≥MJi,j +M(2−Aa,i −Aa,j)
∀i, j ∈ γ (9)

where Aa,j ∈ {0, 1} is a binary decision variable for the
assignment of agent a to task j. Ji,j is a binary decision
variable specifying the relative sequencing of two tasks i
and j (Ji,j = 1 implies task i occurs before j). T is the
set of all interval temporal constraints relating tasks, and is
equivalently encoded and referred to as the Simple Temporal
Problem (STP) [10]. R is the set of task pairs (i, j) that
are separated by less than the allowable spatial proximity.
Ag is the set of all agents, γ is the set of all tasks, and
tSi and tEi represent the start and end times of task i,
respectively. Finally, Pa,i is the variable Aa,i from a previous
agent allocation, used to avoid oscillation between equivalent
solutions. M is a large positive number, and is used to encode
conditional constraints. Figure 1 visually depicts a problem
instance of this MILP, with two robots and six tasks (depicted
as six stripes on the workpiece).

Equation 2 ensures that each task is assigned to one agent.
Equation 3 ensures that the temporal constraints relating
tasks are met. Equations 4 & 5 ensure that agents are
not required to complete tasks faster or slower than they
are capable. Equations 6 & 7 sequence actions to ensure
that agents performing tasks maintain safe buffer distances
from one another. Equations 8 & 9 ensure that each agent



Fig. 1. Example of a team of robots assigned to tasks on a cylindrical
structure.

only performs one task at a time. Note Equations 6 and 7
couple the variables relating sequencing constraints, spatial
locations, and task start and end times, resulting in tight
dependencies among agents’ schedules.

The objective function f(A,P, J, S,R, γ) is application
specific. In our empirical evaluation in Section VI we use
an objective function that includes three equally weighted
terms. The first term minimizes g(A,P, γ),the difference
between the previous agent assignment and the returned
agent assignment. Minimizing this quantity helps to avoid
oscillation among solutions with equivalent quality during
replanning. The second term h(A,R) minimizes the number
of spatial interfaces between tasks performed by different
robots. Inter-robot accuracy is challenging for multi-robot
systems of standard industrial robots. In robot painting, this
can lead to gaps or overlaps at interfaces between work done
by two different robots, and so we seek a task assignment
with the fewest interfaces possible. In Figure 1 the agent
allocation results in one interface between the red work
assigned to the left robot and the blue work assigned to the
right robot. The third term q(A, J, S,E, γ) minimizes the
time to complete the entire process (i.e. the makespan).

B. Technical Approach

Next we outline our technical approach for efficiently solv-
ing this MILP. Tercio is made efficient through a fast, satis-
ficing, incomplete multi-agent task sequencer that is inspired
by real-time processor scheduling techniques, but adapted to
leverage hierarchical problem structure. We decompose the
MILP into a task allocation and a task sequencing problem.
We modify the MILP to support this decomposition, and use
the task sequencer to efficiently solve for the subproblem
involving Equations 3-9, and objective term q(A, J, S,E, γ).
We demonstrate that this approach is able to generate near-
optimal schedules for up to 10 agents and 500 work packages
in less than 20 seconds.

Real-Time Processor Scheduling Analogy: We use a pro-
cessor scheduling analogy to inspire the design of an infor-
mative, polynomial-time task sequencer. In this analogy, each
agent is a computer processor that can perform one task at a
time. A physical location in discretized space is considered a
shared memory resource that may be accessed by up to one
processor at a time. Wait constraints (lowerbounds on inter-
val temporal constraints) are modeled as “self-suspensions,”
[19], [26] times during which a task is blocking while another

TERCIO(STP, Pa,i, Ag, γ,R, cutoff )
1: makespan← inf
2: while makespan ≥ cutoff do
3: A← exclude previous allocation Pa,i from agent capabil-

ities
4: A← TERCIO-ALLOCATION(γ, STP,Ag)
5: STP ← update agent capabilities
6: makespan, seq ←

TERCIO-SEQUENCER(τ ,cutoff )
7: end while
8: STP ← add ordering constraints to enforce seq
9: STP ← DISPATCHABLE(STP )

10: return STP

Fig. 2. Psuedo-code for the Tercio Algorithm.

piece of hardware completes a time-durative task.
Typically, assembly manufacturing tasks have more struc-

ture (e.g., parallel and sequential subcomponents), as well as
more complex temporal constraints than real-time processor
scheduling problems. AI scheduling methods handle complex
temporal constraints and gain computational tractability by
leveraging hierarchical structure in the plan [28]. We bridge
the approaches in AI scheduling and real-time processor
scheduling to provide a fast multi-agent task sequencer
that satisfies tightly coupled upperbound and lowerbound
temporal deadlines and spatial proximity restrictions (shared
resource constraints). While our method relies on a plan
structure composed of parallel and sequential elements, we
nonetheless find this structural limitation sufficient to repre-
sent many real-world factory scheduling problems.

IV. TERCIO ALGORITHM

In this section, we present Tercio, a centralized task as-
signment and scheduling algorithm that scales to multi-agent,
factory-size problems and supports on-the-fly replanning
with temporal and spatial-proximity constraints. Pseudo-code
for the Tercio algorithm is presented in Figure 2.

The inputs to Tercio are as described in Section III-
A. Tercio also takes as input a user-specified makespan
cutoff (Line 2) to terminate the optimization process. This
can often be derived from the temporal constraints of the
manufacturing process. For example, a user may specify that
the provided task set must be completed within an eight-hour
shift. Tercio then iterates (Lines 3-7) to compute an agent
allocation and schedule that meets this makespan. Because
Tercio uses a satisficing and incomplete sequencer, it is not
guaranteed to find an optimal solution, or even a satisficing
solution if one exists. In practice, we show (Section VI)
Tercio produces makespans within about 10% of the optimal
minimum makespan, for real-world structured problems.

A. Tercio Agent Allocation

Tercio performs agent-task allocation by solving a sim-
plified version of the MILP from Section III. The objective
function for the agent allocation MILP is formulated as:

Objective = min g(A,P, γ) + h(A,R) + v, (10)



where, recall g minimizes the difference between the previ-
ous agent assignment and the returned agent assignment to
help avoid oscillations between equivalent quality solutions
during replanning, and h minimizes the number of spatial
interfaces between tasks performed by different robots.

We introduce a proxy variable v into the objective func-
tion to perform work-balancing and guide the optimization
towards agent allocations that yield a low makespan. The
variable v encodes the maximum total task time that all
agents would complete their tasks, if those tasks had no
deadline or delay dependencies and is defined as:

v ≥
∑
j

cj ×Aa,j∀a (11)

where cj is a constant representing the expected time of each
task. We find in practice the addition of this objective term
and constraint guides the solution to more efficient agent
allocations. The agent allocation MILP must also include
Equations 2 and 3 ensuring each task is assigned to exactly
one agent and that the agent-task allocation does not violate
the STP constraints.

B. Tercio Pseudocode

A third-party optimizer [1] solves the simplified agent-
allocation MILP (Line 4) and returns the agent allocation
matrix A. Interval temporal (STP) constraints are updated
based on this agent allocation matrix by tightening task
time intervals (Line 5). For example, if a task is originally
designated to take between five and fifteen minutes but the
assigned robot can complete it no faster than ten minutes,
we tighten the interval from [5, 15] to [10, 15].

The agent allocation matrix, the capability-updated STP,
and the spatial map of tasks are then provided as input to
the Tercio multi-agent task sequencer (Line 6). The task
sequencer (described further in Section V) returns a tight
upperbound on the optimal makespan for the given agent
allocation as well as a sequence of tasks for each agent.

While this makespan is longer than cutoff, the algorithm
iterates (Lines 3-7), each time adding a constraint (Line 3)
to exclude the agent allocations tried previously:∑

a,i|La,i=0

Aa,i +
∑

a,i|La,i=1

(1−Aa,i) > 0 (12)

where La,i is the solution from the last loop iteration.
Tercio terminates when the returned makespan falls be-

neath cutoff, or else when no solution can be found after
iterating through all feasible agent allocations.

If the cutoff makespan is satisfied, agent sequencing
constraints (interval form of [0,∞)) are added to the STP
constraints (Line 8). Finally the resulting Simple Temporal
Problem is compiled to a dispatchable form (Line 9) [22],
[34], which guarantees that for any consistent choice of a
timepoint within a flexible window, there exists a solution
that can be found in the future through one-step propagation
of interval bounds. The dispatchable form maintains flexi-
bility to increase robustness to disturbances, and has been
shown to decrease the amount of time spent recomputing

solutions in response to disturbances by up to 75% for
randomly generated structured problems [34].

V. MULTI-AGENT TASK SEQUENCER

The key to increasing the computational speed of Tercio
is our hybrid approach to task sequencing. Tercio takes as
input a set of agent-task assignments and a well-formed
self-suspending task model (defined below) and returns a
valid task sequence if one can be found by the algorithm.
The task sequencer is merely satisficing and not complete;
however, we empirically validate that it returns near-optimal
makespans when integrated with the Tercio Agent Allocation
algorithm (See Section VI).

Our sequencing algorithm is inspired by prior art in the
field of real-time systems research; we model the multi-
agent coordination problem using the self-suspending task
model. Scheduling of self-suspending task systems has been
the focus of much recent work due to the relatively recent
integration of new hardware and supporting software systems
(e.g., GPUs, PPUs) that trigger external blocking of tasks
[11], [19], [26]. Self-suspensions can alternatively be thought
of as lowerbound temporal constraints relating tasks. For
example, one might specify that a first coat of paint needs
at least 30 minutes to dry before the second coat may be
applied. This 30 minute wait time is a self-suspension of the
painting task.

Prior work computes the uniprocessor schedulability of a
task set with a single suspension [20], [21], [26]. We compute
the multiprocessor schedulability of a task set where multiple
tasks have more than one suspension. Our approach leverages
the use of a scheduling policy that partially restricts the
behavior of the scheduler to reduce multi-processor schedule
anomalies due to self-suspensions. Our approach is similar
in spirit to prior work [23], [30] that restricts the behavior
to reduce anomalies that inherently arise when applying
uniprocessor scheduling methods to self-suspending task sets
[18], [26].

In this section, we first introduce our task model, which is
inspired by work in real-time processor scheduling. Second,
we describe how our fast task sequencer works to satisfy
temporospatial constraints.

A. Well-Formed Task Model

The Tercio Task Sequencer relies on a well-formed task
model that captures hierarchical and precedence structure in
the task network. The basis for our framework is the self-
suspending task model [19], described in Equation 13.

τi : ((C
1
i , E

1
i , C

2
i , E

2
i , . . . , E

mi−1

i , Cmi
i ), Ti, Di). (13)

In this model, that is a task set τ = {τi|i ∈ {1, 2, . . . , n}}
with n tasks τi that must be processed by the computer. For
each task, there are mi subtasks with mi−1 self-suspension
intervals. We use τ ji to denote the jth subtask of τi, C

j
i is the

expected duration (cost) of τ ji . Eji is the expected duration
of the jth self-suspension interval of τi. Ti and Di are the
period and deadline of τi, respectively. For our application



we enforce that all tasks are non-preemptable, meaning the
interruption of a subtask significantly degrades its quality.

While this self-suspending task model provides a solid
basis for describing many real-world processor scheduling
problems of interest, we augment this model to better
capture problem structure inherent in the manufacturing
environment. First, we set the period and deadline of each
task τi equal to a constant, T (i.e., Ti = Di = T, ∀i)
This modification models many assembly line manufacturing
processes where the set of tasks at one location is repeated
once every “pulse” of the production line. In this scenario,
the user allots a certain amount of time, T , for the set of
tasks to be accomplished, and the set of tasks is repeated
with a period of T .

The second adaptation we make is to allow phase offsets φ
for each task τi, where a phase offset is a delay between the
epoch time and the release of the given task. This adaptation
allows a user the ability to require that an agent wait a
specified time interval before starting the first subtask of a
task.

The third change we make is to enable the user to specify
a intra-task and subtask deadlines. An intra-task deadline
Drel

(i,a),(i,b) constrains the start, sai and finish time f bi of
two subtasks τai and τ bi for a given task τi by duration
drel(i,a),(i,b), as shown in Equation 14. A subtask deadline
Dabs

(i,j) upperbounds the duration between the epoch and the
finish time f ji of subtask τ ji by duration dabs(i,j), as shown in
Equation 15.

Drel
(i,a),(i,b) :

(
fbi − sai ≤ drel(i,a),(i,b)

)
(14)

Dabs
(i,j) :

(
f ji ≤ d

abs
(i,j)

)
(15)

These deadline constraints provide additional expressiveness
to encode binary temporal constraints relating tasks in the
manufacturing process. For example, these constraints may
be used to specify that a sequence of subtasks related to
sealant application must be completed within a half hour after
opening the sealant container. These types of constraints are
commonly included in AI and operations research scheduling
models [4], [10], [22], [34].

We also extend the model to include shared memory re-
sources. Each subtask τ ji requires that a set of shared memory
resources Rji be utilized in performing that subtask (e.g. for
memory shared among multiple processors), where R is the
set of all shared memory resources. In the manufacturing
analogy, a resource r ∈ Rji corresponds to a region of space
in the factory that must physically be unoccupied for an
agent to execute a subtask in that location. These shared
memory resources are used to encode hard spatial constraints
that prohibit agents from working too closely in physical
proximity.

Next we describe how the Tercio Task Sequencer leverages
the structure of the well-formed task model to compute a
schedule that satisfies upperbound and lowerbound temporal
constraints, as well as spatial-proximity restrictions. To our
knowledge, this is the first real-time scheduling method for

multi-processor systems that tests the schedulability of non-
preemptive, self-suspending tasks where multiple tasks have
more than one self-suspension with shared memory resource
constraints [18], [19], [25].

B. Multi-agent Task Sequencer Pseudocode

The Tercio multi-agent task sequencer pseudo-code is
presented in Figure 3. The algorithm takes as input the
user-specified makespan cutoff and a task set τ = {τi|i ∈
{1, . . . , n}} that encodes the agent assignments Aji , shared
memory resource constraints Rji , and deadline constraints.
The algorithm returns a valid task sequence for each agent, if
one can be found, and an upperbound on the time to complete
all tasks. This upperbound on completion time is compared
to cutoff to test schedulability of a well-formed task model.

The real-time systems community has developed analytic
schedulability tests as well as methods for testing schedu-
lability through simulation, of both fixed priority (e.g.Rate-
Monotonic [19]) and dynamic priority (e.g. Earliest Deadline
First [29]) algorithms. Tercio schedules through simulation
using a dynamic priority method. Our key innovation lever-
ages the use of a scheduling policy that guides the behavior
of the scheduler to reduce schedule anomalies due to self-
suspensions. We first describe the dynamic priority heuristics
used to guide scheduling behavior, and then describe the
online temporal consistency check that enables dynamic
scheduling of tasks, while guaranteeing inter-subtask tem-
poral constraints are satisfied.

1) Guiding the Behavior of the Scheduler: Our approach
to scheduling tasks bears resemblance to prior art that uses
heuristic methods to alter the behavior of self-suspending
systems to tightly bound the makespan for the task set [19],
[23], [30]. We introduce four heuristics for the scheduling
of subtasks (applied in Line 3) that address the types of
schedule bottlenecks that hinder efficient execution in the
well-formed task model augmented with shared memory
resources.
Dynamic Priority Heuristics. First, we want as many agents
as possible to work concurrently; however, the scheduling of
one agent restricts the available subtask options for other
agents. As such, we introduce a heuristic function, πA(τ

j
i ),

that prioritizes a subtask τ ji assigned to agent Aji in inverse
proportion to the number of available subtasks assigned to
Aji .

Second, when subtasks share a resource (i.e. are located
in close, physical proximity) agents assigned to those tasks
may have to idle due to resource contention. We introduce
a heuristic function, πR(τ

j
i ), that eases resource contention

by prioritizing subtasks that require higher-demand resources
over subtasks that require lower-demand resources.

Third, consider a scenario where two subtasks, τ ji and
τ j+ki with agent assignments Aji and Aj+ki . If Aji does not
execute τ ji in a timely manner, then Aj+ki will idle. We intro-
duce a heuristic function, πP (τ

j
i ), to ease bottlenecks due to

inter-agent precedence constraints. The heuristic prioritizes
the execution of a subtask τ ji in proportion to the number



of following subtasks in task τi that are assigned to other
agents.

Fourth, we observe that humans working alongside robots
are distracted by robots that move large distances quicklyand
frequently. The worker may also distrust or fear a robotic-
system that behaves in this erratic manner. For this reason,
we introduce a heuristic function, πD(τ

j
i ), that prioritizes

a subtask according to the spatial distance between the
subtask’s physical resource and the current location of the
agent assigned to that subtask.

These four heuristics can be combined in various formu-
lations depending on a priori knowledge of what kind of
bottlenecks govern the system. For the results we present
in this paper, we use a multi-tiered sort with πA(τ

j
i ) first,

πP (τ
j
i ) second, πR(τ

j
i ) third, and πD(τ

j
i ) fourth. We find

this setup performs well against our model of real-world
assembly manufacturing problems. Finally, our scheduling
policy requires that an agent not idle if there is an available
subtask, unless executing that subtask will violate a deadline
constraint (Line 5). This condition is checked via an online
consistency test that we describe next.

2) Multi-Agent Online Consistency Check: During the
scheduling simulation, we perform an online consistency
check, which we call the Multiprocessor Russian Dolls Test,
that ensures that scheduling of τ ji at time t will not cause τyx
to violate a temporal or shared memory resource constraint.
This work extends our single-agent online consistency test
[12] to handle multiple agents and shared memory resource
constraints. Our online consistency test is a variant of re-
source edge-finding [17], [33]. The purpose of edge-finding
is to determine whether an event must or may execute before
or after a set of activities [3]. We develop an analytical,
polynomial-time approach that we use online to determine
whether a subtask τ ji can feasibly execute before a set
of other subtasks given the deadline constraints. To our
knowledge, our approach is the first to leverage the structure
of the self-suspending task model to perform fast edge
checking in polynomial time.

Our well-formed self-suspending task model includes ab-
solute deadlines, Dabs

(i,b) relating a subtask τ bi to the plan
epoch time, and inter-subtask deadline, D(i,j),(i,b), from τ ji
to τ bi . We introduce a definition for the an active deadline,
which we use to describe our online consistency test.

Definition 1: Active Deadline - Consider an intra-task
deadline Drel

(i,j),(i,b), or an absolute deadline Dabs
i,j . An intra-

task deadline is considered active between 0 ≤ t ≤
min

(
f ji , D

rel
(i,j),(i,b)

)
, and an absolute deadline is considered

active between 0 ≤ t ≤ min
(
f ji , D

abs
i,j

)
. Dactive is the set

of all active deadlines.
We readily formulate our online consistency test as a

constraint satisfaction problem, as shown in Equations 16-
18, where D∗ is union of all active deadlines and the dead-
line we are considering activating. Equation 16 determines
whether a subtask executed by an agent a and using resource
r can be scheduled without resulting in the immediate or
eventual violation of an active deadline. ξa(i, j, k, a) and

βa(i, j, k, a) refer respectively the next and last subtask to
which agent a is assigned to in {τ ji , . . . , τki }. ξr(i, j, k, r)
and βr(i, j, k, r) refer respectively the next and last subtask
in {τ ji , . . . , τki } that require resource r. dβa(i,j,k,a)

i and
d
βr(i,j,k,r)
i are the absolute deadlines of the last subtasks

assigned to agent a and that require resource r, respectively.

(
δa(i,j),(i,k) ≥ d

βa(x,y,z,a)
x − t ∨ δax,y:z ≥ d

βa(x,y,z,a)
x − t

)
∧
(
δr(i,j),(i,k) ≥ d

βr(x,y,z,r)
x − t ∨ δrx,y:z ≥ d

βr(x,y,z,r)
x − t

)
,

∀Drel
(i,j),(i,k) ∈D∗,∀Dabs

(i,k) ∈D∗, ∀a,∀r (16)

δa(i,j),(i,k) = d
βa(i,j,k,a)
i − t−

(
C
βa(i,j,k,a)
i

+
βa(i,j,k,a)−1∑
ψ=ξa(i,j,k,a)

(
Cψi + Eψi

))
(17)

δr(i,j),(i,k) = d
βr(i,j,k,r)
i − t−

(
C
βr(i,j,k,r)
i

+
βr(i,j,k,r)−1∑
ψ=ξr(i,j,k,r)

(
Cψi + Eψi

))
(18)

δa(i,j),(i,k) (Equation 17) and δr(i,j),(i,k) (Equation 18) are the
slack time for agent a and resource r, respectively, in relation
to an active deadline Drel

(i,j),(i,k) or Dabs
(i,k). An agent’s or

resource’s slack time for a deadline is a bound on the amount
of time that the agent or resource may feasibly commit to
the execution of subtasks not associated with that deadline.

Temporal feasibility is ensured if, for each deadline, we
can nest the time before one deadline within the slack
of another (or vice versa) for all agents and resources
associated with that deadline. Our multi-agent sequencer
uses a polynomial-time version of this online consistency
test to evaluate the feasibility of scheduling subtasks. The
complexity of this consistency check is O(n(a+ r)) where
n is the number of tasks, a is the number of agents, and r
is the number of resources.

VI. EVALUATION AND DISCUSSION

In this section, we empirically validate that Tercio is
fast and produces near-optimal solutions for the multi-agent
task assignment and scheduling problem with temporal and
spatial-proximity constraints. Results are generated on an
Intel Core i7-2820QM CPU 2.30GHz.

A. Generating Random Problems

We evaluate the performance of Tercio on randomly gen-
erated problems that simulate multi-agent construction of a
large structural workpiece, such as an airplane fuselage or
wing. Task times are generated from a uniform distribution
in the interval [1, 10]. Approximately 1

4 of the subtasks are
related via a nonzero wait duration (lowebound constraint)
drawn from the interval [1, 10], and approximately 1

4 of the
subtasks are related via an upperbound temporal deadline
generated randomly to another subtask. The upperbound of
each intra-task and subtask deadline constraint is drawn from



TERCIO-SEQUENCER(τ , cutoff )
1: t← 0 . set simulation time to zero
2: while true do
3: availableTasks← get and sort subtasks ready for execu-

tion at time t according to dynamic priority heuristics
4: for k ← 1 to the number of availableTasks do
5: if executing kth available subtask at t will not violate

temporospatial constraints then
6: seq ← schedule kth available subtask
7: end if
8: end for
9: t← t+ 1 . increment simulation time

10: if all tasks executed then break;
11: end if
12: end while
13: makespan, seq ← extract multiagent schedule
14: if makespan ≤ cutoff then return makespan, seq
15: end if
16: return false

Fig. 3. Pseudo-code for the Tercio Multi-agent Task Sequencer.

Fig. 4. Computation speed as a function of the number of work packages
and the number of agents. Tercio can solve problems up to hundreds of
tasks in seconds versus the dozen tasks solvable by the MILP benchmark
before it times out.

a normal distribution with mean set to the tightest possible
bound. For values less than the mean, we simply redraw
a new deadline value. We vary the number of subtasks mi

within each task τi from a uniform distribution in the interval[
n
4 ,

5n
4

]
. Lastly, physical locations of a subtask are drawn

from a uniform distribution in [1,
∑n
i=1mi] where mi is the

number of subtasks in τi and τi is the number of tasks in τ .

B. Computation Speeds

In Fig. 4 we evaluate scalability and computational speed
of Tercio. We show the median and quartiles of computation
time for 25 randomly generated problems, spanning 4 and
10 agents, and 5 to 500 tasks (referred to as subtasks in the
well-formed model). For comparison, we show computation
time for solving the full MILP formulation of the problem,
described in Section III. Tercio is able to generate flexible
schedules for 10 agents and 500 tasks in seconds. This is a
significant improvement over prior work [7], [8], [32], [16],
which report solving up to 5 agents (or agent groups) and
50 tasks in seconds or minutes.

Fig. 5. Tercio suboptimality in makespan for problems with 4 agents.
Tercio achieves less than a 10% overestimate in makespan on average for
problem sizes at which true optimal can be computed.

Fig. 6. Tercio suboptimality in number of interfaces for problems with
4 agents. Tercio solutions contain an acceptable number of additional
interfaces for problem sizes at which true optimal can be computed.

C. Optimality Levels

Our fast computation relies on the known structure of our
well-formed task model, but it is desirable to be able to take
as input general sets of temporal (STP) constraints. General
STPs can be reformulated into well-formed task models by
adding and tightening well-formed temporal constraints to
make the constraints that violate the well-formed model
redundant. We present results with both random problems
that are well-formed and problems that are general but have
been reformulated into a well-formed task model.

In Figures 5-6 we show that Tercio is often able to
achieve makespans within 10% of the optimal makespan
for both well-formed models and general STPs; Tercio is
able to produce less than four additional interfaces when
compared to the optimal task allocation for well-formed
models and less than eight additional interfaces for general
models. We are unable to measure the suboptimality gap for
larger problems due to the computational intractability of the
full MILP. The purpose of Tercio is to solve the problem of
scheduling with tens of agents and hundreds of tasks; as we
can see in Figure 5, Tercio tightly tracks the optimal solution
for problems tested.

D. Robot Demonstration

We demonstrate the use of Tercio to plan the work of two
KUKA Youbots. Video can be found at http://tiny.

http://tiny.cc/2aytrw


Fig. 7. Hardware demonstration of Tercio where two KUKA Youbots build
a mock airplane fuselage alongside a human quality assurance agent.

cc/2aytrw. The two robots are working to assemble a
mock airplane fuselage. The robots perform their subtasks
at specific locations on the factory floor. To prevent col-
lisions, each robot reserves both the physical location for
its subtask, as well as the immediately adjacent subtask
locations. Initially, the robots plan to split twelve identical
tasks in half down the middle of the fuselage. After the robots
finish their first subtasks, a person requests time to inspect
the work completed on the left half of the fuselage. In the
problem formulation, this corresponds to adding a resource
reservation for the left half of the fuselage for a specified
period of time. Tercio replans in response to the addition
of this new constraint, and reallocates the work among the
robots in a near-optimal manner to make productive use of
both robots and to keep the number of interfaces low.

VII. CONCLUSION

We present Tercio, a task assignment and scheduling
algorithm that is made efficient through a fast, satisficing,
incomplete multi-agent task sequencer inspired by real-time
processor scheduling techniques. We use the fast task se-
quencer in conjunction with a MILP solver to compute an in-
tegrated multi-agent task sequence that satisfies precedence,
temporal and spatial-proximity constraints. We demonstrate
that Tercio generates near-optimal schedules for up to 10
agents and 500 tasks in less than 20 seconds.
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