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Abstract—The advantage of modular robot systems lies in
their flexibility, but this advantage can only be realized if there
exists some reliable, effective way of generating configurations
(shapes) and behaviors (controlling programs) appropriate for
a given task. In this paper, we present an end-to-end system
for addressing tasks with modular robots, and demonstrate
that it is capable of accomplishing challenging multi-part tasks
in hardware experiments. The system consists of four tightly
integrated components: (1) A high-level mission planner, (2) A
large design library spanning a wide set of functionality, (3) A
design and simulation tool for populating the library with new
configurations and behaviors, and (4) modular robot hardware.

The broader goal of this project is enabling users to address
real-world tasks using modular robots. We believe this work
represents an important step toward this larger goal.

I. INTRODUCTION

Modular reconfigurable robots have the ability to transform
into different shapes to address a wide variety of tasks. They
promise to be versatile, robust, and low cost [25]. Dozens
of groups have built different kinds of reconfigurable robots
[16, 11], and introduced approaches for programming them
[19, 21, 26].

The advantage of modular robot systems over traditional
systems is their flexibility: by changing configuration, they
can in theory address a wider variety of tasks than a traditional
robot of similar complexity. However, this advantage can only
be realized if there exists some reliable, effective way of
generating configurations (shapes) and behaviors (controlling
programs) appropriate for a given task. At the time of writing,
solving this problem remains a significant barrier to the
application of modular robots to solve complex real-world
tasks.

Recently, there has been increasing interest in automatic
controller synthesis with correctness guarantees from high-
level task specification in the form of formal languages
[2, 3, 8, 10, 18, 24]. Most of is work has focused on traditional
robot systems with a fixed configuration and a finite set of
action capabilities, with the exception of [4] which presents
a framework to synthesize controllers for a modular robot
system from high-level task specifications.

Our goal in this work was to provide a system that enables
users to solve complex tasks using modular robot hardware.
Our approach is library-driven: rather than attempting to
generate new designs from scratch, users specify task re-
quirements and a design tool retrieves designs satisfying the

requirements from a library of existing useful designs. Our
primary contribution is an end-to-end system that integrates
low-level design generation, library management, high-level
mission planning, and modular robot hardware. We present
hardware experiments to demonstrate that it is capable of
addressing challenging multi-part tasks, discuss the strengths
and weaknesses of the system, and provide a roadmap forward
to apply a similar system in a real-world setting.

A. System Overview
Before delving into the details, we provide a brief overview

of the entire system. At the highest level, tasks are specified
in a high-level mission planner using Linear Temporal Logic
(LTL)[7, 10]. The user does not specify what configurations
and behaviors should be used to complete the task, but
rather describes the functionality required in terms of the task
environment and desired behavior properties. For example: “if
the robot is moving in a tunnel, maintain a maximum height
of 3 units”.

To develop a solution to the task, the high-level mission
planner fulfills each of the specified functionalities by auto-
matically selecting robot configurations and behaviors from
the design library. In a sense, the high-level planner treats the
entire modular robot system as a single robot with a set of
capabilities defined by the library.

Once the high-level mission planner has selected config-
urations and behaviors fulfilling all requested functionali-
ties, the mission specification is compiled into a correct-by-
construction finite state automaton that interfaces directly with
the hardware, directing the modules to complete their task.

For this approach to be effective, the library must span a
wide range of useful functionality. We created a physics-based
simulator and design tool that allows users to easily build,
program, and test modular robot designs. Any configuration
or behavior created in the simulator can be directly ported to
the hardware modular robot system, SMORES-EP.

All designs are saved to a web server, and are available
to anyone who has the tool. We released the tool and held
hackathons with volunteer engineering students, ultimately
producing a library with 52 configurations and 97 behaviors
which span a broad range of properties and environments.

B. Contributions and Paper Outline
Our primary research contribution is a complete system

for accomplishing complex tasks with modular robots, with



four tightly integrated components: (1) A high-level mission
planner, (2) A large design library spanning a wide set of
functionality, (3) A design and simulation tool for populating
the library with new configurations and behaviors, and (4)
modular robot hardware. Additionally, we introduce a theo-
retical contribution in high-level control of modular robots
by checking the feasibility of implementing desired robot
behaviors prior to the controller synthesis.

The remainder of this paper is structured as follows. In
Section II, we present related work. In Sections III, we present
the theoretical framework underlying our high-level mission
planner and design library. In Section IV, we present the four
system components mentioned previously. In Sections V, we
present three experimental case studies (two in hardware, one
in simulation). In Section VI and evaluate the effectiveness of
our system and discuss future work. Finally, in Section VII,
we conclude.

II. RELATED WORK

Mehta et al. [13, 14] present tools allowing novice users
to create and print robots from high-level specification. The
focus of their work is on synthesis of electromechanical
systems and low-level controllers, primarily addressing low-
level functionality (such as the ability to walk or grip) rather
than high-level, multi-part tasks situated in an environment.
Schulz et al. [20] present tools for designing foldable robots
and a library of robots created by volunteers. In [23], Tosun et
al. introduce a physics-based simulator, design creation tool,
and a small hierarchically organized library for the SMORES
robot.

Castro et al. [4] introduce high-level control for the CKBot
modular robot, and lay the theoretical foundation for our high-
level mission planner. Our work differentiates itself from [4] in
several ways. We expand the notion of behavior properties to
include both behavior and environmental properties, increasing
the expressiveness and granularity of task specification. In
terms of theory, we also introduce a performance improvement
by grounding actions in concrete configurations and behaviors
prior to automata synthesis. More significant than the theo-
retical differences is the larger scope and capability of our
system. Where Castro et al. present a small library (8 designs,
19 behaviors, 7 properties) and a basic design/simulation tool,
we present a design large library (52 designs, 97 behaviors,
19 properties) and a sophisticated cross-platform design tool,
intended to allow many contributors to build a large, useful
library.

In addition, where Castro et al. perform basic hardware ex-
periments (using a single CKbot configuration to visit regions
on the ground), we have performed more significant hardware
experiments to verify our system. In this paper, we present
two hardware case studies using SMORES-EP modules to
complete multi-stage tasks consisted of traversing challenging
environment, manipulating objects, and disconnecting and
reconnecting modules. We also link our high-level mission
planner to our physics-based simulator, allowing automatic

controller synthesis from a library of robot behaviors. The
synthesized controllers are demonstrated in our simulator.

Several simulators are available for designing robot
controllers, including simulators specifically for modular
robots [5], and Gazebo [9] which is a popular physical simu-
lator. For this work, we opted to use Unity3D [1] because it is
cross-platform and offers more tools to create user interfaces,
which proved very important to making it easy to create new
designs and behaviors. Unity also offers good physics-based
simulation.

III. BACKGROUND

In this section we define basic terms related to modular
robot systems.

A. Definitions

Definition 1 (Module): A module is the basic unit of a
modular robot system. It is a small robot that can respond
to commands, move, and connect to other modules. We define
a module as m = (J,A). J = {J1, . . . , Jd} is set of joints of
the module with d degrees of freedom. A = {A1, . . . , Ak} is
the set of attachment points where the module can connect to
other similar modules. We denote the attachment point Ai of
module m as m.Ai.

Definition 2 (Command): A command to a joint Ji is de-
fined as uJi = (α, V, t), where α ∈ {Position, Velocity} is the
type of the command. V ∈ R is the value of the command and
t ∈ R is the time period of the command. For example, the
joint can be commanded to hold joint position V = π

2 rad, or
to maintain the joint velocity V = π rad

sec for time duration
t. A joint stops moving once it reaches the desired joint
position or the time period has passed. We assume there are
low-level controllers (e.g. PID controllers) that can drive the
corresponding joint to satisfy the command uJi .

Definition 3 (Configuration): A configuration is a set of
connected modules. In this work, we treat a configuration as a
single robot. We define a configuration as C = (M,E), where
M = {m1, . . . ,mq} is the set of modules in the configuration.
E includes pairs of attachment points. (mi1 .Ai2 ,mj1 .Aj2) ∈
E, where mi1 ,mj1 ∈ M , and mi1 6= mj1 . In this work, we
require that each configuration has only one independent part
(it cannot have two disconnected sets of modules that move
independently).

Definition 4 (Behavior): A behavior BC = b1, . . . , bn is a
sequence of behavior states and is associated with a configura-
tion C. Each behavior state is defined as bi = (U, T ). U is the
set of joint commands for all joints in the configuration: for
the given configuration C, we have uJi ∈ U , for all Ji ∈ J
and for all m ∈ M . The time period of the behavior T is
defined as the largest time period of all joint commands in U .

IV. SYSTEM

A. Modular Robot Hardware - SMORES-EP Robot

Our system is built around the SMORES-EP robot, but it
could easily be adapted to work with other hardware platforms.
In this section, we provide a brief introduction to the technical



capabilities of SMORES-EP. A more detailed discussion is
out of the scope of this paper, and is being published in
parallel. The SMORES-EP system is kinematically equivalent
to the earlier version SMORES [6] system but includes a new
electro-permanent latching system. Readers are referred to [6]
for more detail.

Each module has four DoF - three continuously rotating
faces (left, right, and pan) and one central hinge (tilt) with
a 180◦ range of motion (Fig. 1). The DoF marked left, right,
and tilt have rotational axes that are parallel and coincident. A
single module can use its left and right wheels to drive around
as a two-wheel differential drive robot. All four faces of the
SMORES-EP module have electro-permanent (EP) magnets
that serve as low-power, hermaphroditic connector for self-
reconfiguration. Any face of one module can connect to any
face of another.

Some of the motions a SMORES-EP cluster can perform
are limited by the strength of the magnetic connectors, which
can support the weight of at most three modules cantilevered
horizontally against gravity. This limitation is alleviated in
some cases by using rigid connector plates, which are screwed
into the faces of two modules to create a strong permanent
connection between them. Using connector plates, up to four
modules can be cantilevered before exceeding the torque limits
of the motors. However, because the connector plates must be
manually screwed into place, modules with connector plates
cannot self-reconfigure.

Each module has an onboard battery, microcontroller, and
802.11b wireless module to send and receive UDP packets.
In this work, clusters of SMORES modules were controlled
by a central computer running a Python program that sends
wireless commands to control the four DoF and magnets of
each module. Battery life is about one hour (depending on
motor, magnet, and radio usage), and commands to a single
module can be received at a rate of about 20hz. Wireless
networking was provided by a standard off-the-shelf router,
with a range of about 100 feet.

The cluster is localized using AprilTags [15] mounted on
one or more modules. In our experiments, AprilTags were
also mounted on objects of interest in the environment. The
AprilTag tracking software, high-level planner, and SMORES-
EP cluster control software were all run simultaneously on a
Dell laptop (2.4GHz, 4Gb of RAM) with an overall control
loop time of about 4Hz (limited by the AprilTag detection
software).

B. Design and Simulation Tool - VSPARC

To populate the robot design library, we used the Unity3D
Engine [1] to design and implement a software tool
called VSPARC, which stands for Verification, Simulation,
Programming And Robot Construction. It allows users to
design configurations and behaviors for the SMORES-EP
modular robot system, and simulate behaviors with a physics
engine. Moreover, users can save and share their designs
online, which enables us to use VSPARC for crowdsourcing

Left

Right

Pan

Tilt

Fig. 1: SMORES-EP module

Fig. 2: The same behavior file can be used by both the
simulator and the physical robot.

the robot design library. VSPARC’s main features are listed
below:
• Design configurations with unlimited number of modules

and visualize the design in a 3D environment.
• Position and velocity control of all module joints.
• Design behaviors for any configuration by creating a

sequence of joint commands.
• Simulate the performance of any behavior in a physics

engine.
• Create and share designs online. Test and improve other

users’ designs.
Behaviors designed in VSPARC can be exported as XML

files, which can be easily run to control the physical robot.

C. Design Library

Definition 5 (Property): A property is a high-level descrip-
tor of the robot behavior or the environment. A property is de-
fined as p = (pn,Ω), where pn is in an English description as
the name of the property. Ω is the set of values of the property.
For example, a robot property p = (Action, {Move, Push})
means the robot behavior can perform both Move and Push
actions. We can also use properties to describe the environment
in which the robot operates. For example, a property p =
(BoxMass, [2, 5]) means the mass of a box in the environment
could be any value between 2 and 5 units. In this case, the
property is a quantitative description of the environment. In
Table I, we list some examples of property names for common
robot tasks.

TABLE I: Examples of property names



Properties for Properties for
Robot Behavior Environment

Speed Box Mass
Width Stair Height
Height Ground Roughness
Action Tunnel Height

We say a property p1 = (pn1 ,Ω1) satisfies a property p2 =
(pn2 ,Ω2) if and only if pn1 = pn2 and Ω1 ⊆ Ω2.

Definition 6 (Robot Design Library): A robot design li-
brary for a specific modular robot system is a collection
of configurations and behaviors labeled with environment
and robot behavior properties. The library L = {l1, . . . }
consists of a set of library entries. A library entry is de-
fined as l = (C,BC , Pe, Pr), where C is the configuration
and BC is a behavior associated with C. Pe and Pr are
sets of properties that describe the environment and robot
behavior respectively. For example, a library entry l =
(Csnake, Bclimb, Pe, Ps), where Pe = {(Stair Height, [2, 3])}
and Ps = {(Action, [Climb]), (Speed, [1])}, represents a
snake shape configuration with a climb behavior that can
climb a stair with the height of two or three units, with the
speed of 1 unit. Moreover, we say a library entry l satisfies a
property p if there exist a property p′ ∈ Pe ∪ Pr such that p′

satisfies p.
To generate the configurations and behaviors in the library,

we made our design tool available online at www.vsparc.org.
We distributed the tool to undergraduate and graduate student
volunteers, and hosted three hackathons in which participants
created designs and behaviors for several hours. The library
includes 52 designs and 97 behaviors contributed by 20
volunteers. Since the full library is too large to list in this
paper, we provide a representative sampling of configurations,
behaviors, and properties in Fig. 3. The unit for length is the
side length of a single SMORES-EP module. The unit for mass
is the mass of a single SMORES-EP module.

D. Reactive Controller Synthesis and Execution with the Li-
brary

To fully exploit a design library with a wide collection of
robot configurations and behaviors with properties over the
environment and the robot, we want to be able to specify robot
tasks from a high-level perspective and automatically generate
robot controllers that utilizes library entries to satisfy desired
tasks. In this section, we introduce a system to incorporate
library entry searching into a reactive controller synthesis and
execution framework [7, 10] using LTL as the formal language
for task specifications.

To automatically generate a robot controller from high-
level task specification, the robot workspace, robot action
capabilities and environment events are first abstracted into
sets of atomic propositions. Reactive robot tasks, where the
robot needs to respond to different environment events, are
expressed by LTL formulas over those propositions. The
synthesis algorithm can then determine the existence of a
controller satisfying given robot tasks. If such a controller
exists, it can be automatically generated in the form of a finite

state automaton. Finally, the discrete automaton is executed to
control the robot to achieve desired tasks. This framework is
implemented in an open source software package: LTLMoP
(Linear Temporal Logic Mission Planning) Toolkit [7].

In [7], robot action capabilities are first abstracted into
a set of robot propositions. Then the synthesis algorithm
automatically generates a finite state automaton, if possible,
from a given task specification in LTL. Lastly, a user will
map each robot proposition to a low-level robot controller so
that the robot will execute the desired action whenever the
corresponding proposition becomes True.

In this work, instead of manually abstracting robot action ca-
pabilities, a set of library entries in the existing library is auto-
matically mapped with an atomic proposition (Section IV-D1).
Moreover, the matched entries are used to automatically create
additional constraints between the set of robot propositions in
the form of LTL formulas (Section IV-D2). The additional LTL
formulas are appended to the original task specification prior
to synthesis. The synthesized finite state automaton, if it exists,
can be used to control both the simulated or the physical robot
using matched library entries. This framework is illustrated in
Fig. 4.

1) Match library entries with propositions: We denote the
set of robot atomic action propositions as Act representing the
action capabilities of the robot. For example, if the proposition
push is True it means the robot is activating the push
action. For each action propositions y ∈ Act, we allow the
user to assigns a set of environment and robot properties
Py = {p1, . . . , pn} as defined in Definition. 5. Then we can
search through the existing robot design library to find a set
of library entries Ly = {l1, . . . , lk} that satisfies all property
in the set Py .

2) Generate and append additional LTL formulas to the
original task specification: Once we match each robot action
proposition with a set of library entries, we have a relation
λ : Act → 2L that maps each propositions y ∈ Act to a
set of library entries Ly that satisfies the user specified set of
properties Py for y. We say a library entry l can implement
a proposition y if l ∈ λ(y). For any y ∈ Act, if λ(y) = ∅,
we need to make sure proposition y is never True, because
no library entry can implement y. For any y, y′ ∈ Act, if
λ(y) ∩ λ(y′) = ∅, we need to make sure proposition y and
y′ can never be True at the same time, because there does
not exist a library entry that can implement both y and y′. To
encode the mutual exclusion between robot propositions into
the task specification, we specify them in the form of LTL
formulas and take them into account during the synthesis.

3) High-Level Mission Planner - LTLMoP: LTLMoP [7]
is a Python-based toolbox that allows users to specify robot
tasks in Structured English or LTL formulas and automat-
ically synthesizes a correct-by-construction controller, if it
exists, that satisfies given tasks. In addition, LTLMoP can
also execute the synthesized controller with a wide range of
supported robot systems. We incorporate proposition mapping
and LTL generation to LTLMoP to allow controller synthesis
from high-level task specifications with a modular robot design



Behavior Name Single module Rolling Loop DoubleDriver Stair Climber Swerve Driver backhoe
Number of modules 1 8 7 4 9 9

Locomotion
Max robot height 1 2.5 1.5 2 2 4
Max robot width 1 1 3 1 4 4
Max robot length 1 5 3 3.5 3 7
Terrain - Smooth X X X X X
Terrain - Rough X X
Terrain - Sloped X X X

Driving - Straight X X X X X
Driving - Differential drive X X X X

Driving - Holonomic X
Ledge ascent - Max height 0.25 0.75

Ledge ascent - # modules lifted all all
Ledge descent - Max height 1 1.5

Ledge descent - # modules lowered all all

Manipulation
Attachment - Push X X X X X X

Attachment - Magnetic X X X X
Attachment - Carry X

Workspace size
X : [− inf, inf]
Y : [− inf, inf]

Z : [0, 1]

X : [− inf, inf]
Y : [0, 1]
Z : [0, 2.5]

X : [− inf, inf]
Y : [− inf, inf]
Z : [0, 1.5]

X : [− inf, inf]
Y : [− inf, inf]

Z : [0, 2]

X : [− inf, inf]
Y : [− inf, inf]

Z : [0, 2]

X : [−3, 3]
Y : [−3, 3]
Z : [0, 4]

Payload mass 1 2 4 2 3 1

Fig. 3: Matrix of designs and properties. (Unit Length = the side length of a single SMORES-EP module. Unit Mass = the
mass of a single SMORES-EP module)

Fig. 4: Controller synthesis and execution as described in this
work.

library. Fig. 4 shows the framework of the modified LTLMoP.
A user can specify a set of properties for each robot action
proposition with a file in Extensible Markup Language (xml)
format. LTLMoP will parse this file together with the robot
design library and generate a set of additional LTL formulas
that encodes the mutual exclusive relations between all robot
action propositions. These LTL formulas are combined with
the original robot task specification from the user prior to the
controller synthesis. If the synthesis is successful, a discrete
robot controller will be generated. When executing the synthe-
sized controller, if there are multiple library entries matching
a proposition, we choose one randomly. If the synthesis

failed with the additional LTL formulas, possibly due to lack
of library entries that implements some action propositions,
LTLMoP will notify the user who can then design those
missing library entries with VSPARC.

V. EXPERIMENTAL RESULTS

Here, we present three case studies to illustrate the capabil-
ities of our system.

A. Simulated Demos

In these simulated scenarios, we demonstrate the capabil-
ities of the system by showing different robot controllers to
address the same user-defined task specification in different
environment setups.

1) Scenario 1: The environment for Scenario 1 is shown
in Fig. 5. It consists of a button, a lightweight block, a gap in
the ground, and a ramp, all in a straight line. The objective is
for the robot to move from its starting point to the goal area at
the top of the ramp. When the button is pushed, it causes the
block (which begins floating in the air) to fall to the ground,
where it can be pushed into the gap, forming a bridge between
the flat region and ramp. The action definitions for this task
are provided below:



pushButton: type = Manipulation Push
height = 1.5

pushBox: type = Manipulation Push
payload = 2
distance x = 3

climb: type = Locomotion
drive = Straight
terrain = Sloped

The high-level mission planner searches the library for one
or more entries that fulfill all requested properties. In this
case, all the properties are fulfilled by the rollingLoop
configuration, so no reconfiguration is needed to complete the
task. In the top row of Figure 9 and in the accompanying
video, we see the rolling loop complete the task.

2) Scenario 2: The environment for Scenario 2 is also
shown in Fig. 5. It is similar to the environment from Scenario
1, but with several small changes that make the task more
difficult. The button is now to the side of the map, and floats
at a height of 4 module-lengths above the ground. The box
is twice as heavy, weighing 4 module-weights rather than 2.
The ramp has been replaced with stairs with the step height
of 0.75. The action definitions are provided below:

pushButton: type = Manipulation Push
height = 4

pushBox: type = Manipulation Push
payload = 4
distance x = 3

climb: type = Locomotion
drive = Straight
ledge height = 0.75

The rollingLoop can no longer complete this task -
it can’t reach the button, it’s not strong enough to push the
box, and it can’t ascend steps higher than 0.25. When the
specification is compiled, our system selects three different
configurations from the library to complete the task. The
backhoe is used to push the button, because it is the only
configuration with a a large enough vertical workspace. It then
reconfigures into the doubleDriver to drive over and push
the box into the hole, because it is able to drive, turn, and push
objects as heavy as 5 module-weights. Then, it reconfigures
into the stairClimber to climb the stairs. In the bottom
row of Figure 9 and the accompanying video, we see how the
task is completed. For the purposes of this paper, we assume
that reconfiguration between any two configurations is possible
as long as the final configuration does not have more modules
than the initial configuration.

B. Hardware Demos

In these scenarios, a cluster of SMORES modules is directed
to clean the top of a table. The map is shown in Fig. 6. There
are two components to this task: first, the robot must move a
waste bin near the table, and then, the robot must climb up to
the top of the table, explore the surface, and react appropriately
to the objects it encounters. These two scenarios showcase the
translation of behaviors from the simulator to hardware, and
the ability to use LTLMoP to create and execute mission plans
with the hardware and AprilTag sensing in the loop.

Fig. 5: Environments for Scenarios 1 (top) and 2 (bottom) in
the simulator.

Fig. 6: Map of the hardware demo

In order to limit the number of hardware configurations we
would need to use for these demos, we opted to hand-select
the behaviors to use as actions in our mission specification. If
we had wanted, we could have instead specified the actions in
terms of properties and environments, and allowed LTLMoP to
ground them in configurations and behaviors from the library.

1) Moving the Waste Bin: In the first scenario, the
SMORES cluster starts in region Start1 and needs to move
a waste bin from region Pickup to region DropOff (a
distance of 10 module lengths) to be near the table, and then
travel to the table edge (region Start2). The task is made
more difficult by the fact that the waste bin is supported by
four legs, so it cannot be pushed by designs with a height of
two modules or less. The workspace requirement (10 modules
lengths) rules out all stationary manipulators in the library, and
height requirement rules out most car-like designs. Fortunately,
the swerveLifter design, which can carry objects by
driving under them and lifting up, is perfect for the job.

The high-level task is specified as follows:
• carry is set on pickup and reset on false
• dropped is set on drop and reset on false
• do pickup if and only if you were sensing wasteBin and

you are not activating carry
• do goToTable if and only if you are activating dropped
• do drop if and only if you were activating carry and you

are not activating dropped



As seen in the accompanying video and Figure 8, the
resulting state machine directs the robot to complete the task.
The robot waits until it senses the waste bin (marked with
an AprilTag). Then it lowers itself, drives under the waste
bin, carries it next to the table, and executes a swerve-driving
(small-time holonomic) behavior to travel to the table.

Overall, this scenario is a success, with the high-level
planner successfully sequencing library behaviors in response
to the presence of the waste bin. However, we faced several
challenges in completing this task with our system. First, mag-
netic connector strength proved problematic, and we had to
use a passive module in the middle of the structure in order to
perform the sit-down and stand-up behaviors without breaking
off one or more legs. Second, because the swerveLifter
steers by aligning four caster wheels in the same direction
its performance is sensitive to encoder calibration errors in
the DoF controlling wheel direction, and in the video we see
the swerveLifter drift from its intended straight-line path. The
video shown is one of nine takes, with most failures caused
by sensor calibration issues.

2) Table Exploration: With the waste bin in place, the
cluster can clean the top of the table. It should explore the
tabletop and react to what it finds: if it senses a piece of trash,
it should push it off the table, and if it senses a coffee mug,
it should back up and spin in place (alerting the mug’s owner
that it should be removed). After exploring both locations on
the table, it should return to the ground.

We selected to include behaviors from the snake7 and
module1 configurations in the spec for this mission. The
snake7.climbup behaviors allows the robot to lift its front
two modules up to the top of the table. Once there, the front
module can use undock to disconnect from the rest of the
body, allowing it to function independently as a module1
configuration and use the differentialDrive, spin,
and push behaviors. When the robot is ready to come back
down, it can use dock to re-connect to the body, and the
snake7.climbdown behavior to return to the floor.

The high-level mission spec is shown below:
• if you are sensing mug then do spin
• if you are sensing trash then do push
• loc1visited is set on loc1 and reset on false
• loc2visited is set on loc2 and reset on false
• do docking if and only if you were in dock and you are

activating (loc1visited and loc2visited)
• do undock if and only if you were in dock and you are

not activating (loc1visited or loc2visited)
• do climbdown if and only if you were in dock and you

activated (loc1visited and loc2visited)
• do climbup if and only if you were in ground and you

are not activating (loc1visited or loc2visited)
• infinitely often do docking
The resulting state machine directs the robot to successfully

clean the table, as shown in the accompanying video and
Fig. 7,8. An overhead camera system tracks AprilTags attached
to the first module of the snake, allowing LTLMoP to servo
the left and right wheels of the module in differential drive

snake7.climb module.spin module.push snake7.descend

Fig. 7: Cleaning the Table

swerveLifter.goUnder swerveLifter.carry swerveLifter.dropOff swerveLifter.driveUp

Fig. 8: Moving the Waste Bin

and sense proximity to the coffee mug and trash (also marked
with AprilTags).

As with the waste bin moving scenario, we faced several
challenges when solving this task using our system. The
climbUp behavior is open loop, and not robust to initial robot
position - in several trials, we started the snake too close to the
ledge, causing it to jam its head into the corner of the ledge
and break. Autonomous re-assembly of the snake head and
body was the least reliable part of the experiment, succeeding
about 25% of the time. We believe this could be significantly
improved in the future by implementing a docking procedure
that includes error checking and multiple re-tries, similar to
the one used in [17].

Magnetic connector strength once again presented a chal-
lenge in this scenario. In the video, we see the snake break in
the middle during its descent, and then re-connect to complete
the descent successfully. This was sporadic, likely due to
modules on the top of the table catching on the edge as they
are pulled down. This kind of problem is difficult to predict
in the simulator.

The video we present is one of 13 takes, with most failures
caused by poor initial positioning of the snake and failure
to re-connect the head. Once the proper initial position was
found, the entire mission ran fairly repeatably.
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Fig. 9: Simulated Demo

VI. DISCUSSION AND FUTURE WORK

A. Simulator-to-hardware translation

Prototyping designs and behaviors in the simulator resulted
in significant time savings over prototyping in hardware. The
primary difficulties in translating behaviors from the simulator
to the hardware lay in hardware issues the simulator did not
reflect, i.e. connection strength and encoder calibration errors.
Future work includes modeling connector strength and encoder
errors in the simulator, to identify problems without doing a
hardware test.

A major avenue of future work is the incorporation of
sensing. We are working on a sensor module with an RGB-
D camera for the SMORES robot. This sensor information
will allow our system to autonomously complete tasks in new
environments.

B. Composing Library Elements to Complete Missions

Environment and behavior properties provide an expressive
way for the user to specify the requirements of a task.
However, the fact that a behavior is labeled with a specific
property does not guarantee it will perform as intended in all
circumstances. Adapting open-loop behaviors to environments
different from the one in which they were designed can cause
them to fail, as evidenced by the problems in establishing
proper initial robot position for the climbUp behavior in the
table cleaning scenario. Developing methods for automatically
analyzing tasks and environments is a field of active research
[22]. Determining optimal sets of environment factors and
integrating methods for automatic task analysis and would be
an interesting avenue for future work. Introducing closed-loop
behaviors that use sensor feedback is also future work.

It’s worth noting that some behaviors are much more
tolerant to varying environments than others. In our hard-
ware experiments with the stairClimber configuration,
we found that a single open-loop gait was able to climb
steps of several varying sizes with no problems. Establishing
confidence bounds on behavior success as a function of

environment parameters and including this information in the
library is future work.

C. Low-level behavior creation
Developing sophisticated designs and behaviors in the sim-

ulator requires skill and experience. In our experience with
the hackathons, undergraduate engineers became significantly
faster and more adept at creating designs and behaviors
through hours of practice. Newcomers spent on average about
one hour creating a useful behavior, while experienced users
would spend about twenty minutes.

Most users required only a few minutes to build a new
configuration and conceive the fundamental motions it should
perform. Most of the design time was often spent coding joint
trajectories to achieve the desired motion without violating
constraints, such as maintaining balance and avoiding connec-
tor strength overload. In the future, we hope to incorporate mo-
tion planning tools and allow users to specify desired motions
without explicitly coding joint angles. Evolutionary techniques
will be explored to generate behaviors automatically.

We also plan to automatically generate behaviors for new
configurations with substructures that embed the kinematics
of existing configurations [12]. The same embedding detection
algorithm could also be used to port behaviors from SMORES
to another modular robot system, or vice-versa.

VII. CONCLUSION

In this paper, we present (1) a physics-based simulator that
allows creating and managing a modular robot design library
with multiple users; (2) a framework for labeling each entry
in the library with descriptive properties; (3) a connection to a
reactive controller synthesis tool for automatically generating
robot controllers from the library; and (4) experiments with
both simulated and physical modular robots that demonstrate
the performance of generated controllers. At the low-level,
the tedious, error-prone process of designing configurations
and behaviors for a modular robot system is simplified by
our growing modular robot design library. At the high-level,
controller synthesis with formal language provides guarantees
on the correctness of synthesized controllers. The seamless
connection between the high-level and low-level aspects re-
sults in a useful end-to-end system for controlling modular
robot systems to accomplish user specified tasks.

The system still has limitations. Better modeling of the mod-
ular robot system, such as connector strength and joint encoder
error, is needed to bridge the gap between the simulator and the
physical hardware. A more rigorous method for expanding and
consolidating properties in the library is necessary to guarantee
the library covers a wide range of capabilities.

Overall, this work furthers the broader goal of this project
and makes progress towards building a correct, robust, and
accessible system that allows users to accomplish real-world
tasks using modular robots.
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