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Abstract—We describe the winning entry to the Amazon
Picking Challenge. From the experience of building this system
and competing in the Amazon Picking Challenge, we derive
several conclusions: 1) We suggest to characterize robotic system
building along four key aspects, each of them spanning a
spectrum of solutions—modularity vs. integration, generality
vs. assumptions, computation vs. embodiment, and planning
vs. feedback. 2) To understand which region of each spectrum
most adequately addresses which robotic problem, we must
explore the full spectrum of possible approaches. To achieve this,
our community should agree on key aspects that characterize the
solution space of robotic systems. 3) For manipulation problems
in unstructured environments, certain regions of each spectrum
match the problem most adequately, and should be exploited
further. This is supported by the fact that our solution deviated
from the majority of the other challenge entries along each of
the spectra.

I. INTRODUCTION

The Amazon Picking Challenge tested the ability of robotic
systems to fulfill a fictitious order by autonomously picking
the ordered items from a warehouse shelf (Fig. [I). The system
presented here outperformed the 25 other entries, winning by a
significant margin. In this paper, we provide a detailed techni-
cal description and experimental evaluation of our system. We
also present three main conclusions from our system-building
experience:

1) Robotic systems can be characterized along four key
aspects. Each of these aspects can be instantiated by
selecting from a spectrum of approaches.

2) To develop a shared understanding of system building,
i.e. which region of each spectrum most adequately ad-
dresses a particular robotic problem, we should explore
these spectra and characterize systems based on them.

3) For manipulation in unstructured environments, we be-
lieve that certain regions of each spectrum match the
problem characteristics most adequately and should
therefore be examined by roboticists with increased
emphasis.
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Fig. 1. Our robot picks a “plush duck toy” during the challenge.

The four key aspects of system building are:

A. Modularity vs. Integration: In robotics, the behavior
of the entire system determines success, not the performance
of individual modules [8]]. Still, a high degree of modularity
allows breaking down problems into simpler subproblems,
which is especially useful when the overall problem is too
complex to solve. Wrong modularization, however, can make
solving problems unnecessarily difficult. Until we fully under-
stand which modularization is most adequate for manipulation
in unstructured environments, we suggest to build tightly inte-
grated systems and constantly revise their modularization [27].

B. Computation vs. Embodiment: Robot behavior results
from the interplay of computation (software) and embodi-
ment (hardware). Computation is a powerful and versatile
tool but adapting the embodiment sometimes leads to simple
and robust solutions. We suggest that in manipulation, one
should consider alternative embodiments as part of the solution
process, so as to most synergistically match software and
hardware.

C. Planning vs. Feedback: Planning performs search in a
world model, leading to verifiable solutions. Feedback from
physical interactions, on the other hand, reduces uncertainty
and allows to find local solutions without expensive compu-
tation. We thus suggest to use planning only when necessary
and explore the use of feedback as an alternative when the
manipulation task does not require global search.

D. Generality vs. Assumptions: For robotics research, find-
ing general solutions is highly desirable because they apply
to a wide range of robotic tasks. However, solving the most
general problem might be unnecessary or even unfeasible.



We suggest to search for reasonable and useful assumptions
that aid solving manipulation problems in unstructured en-
vironments. By extracting, sharing, and revising assumptions
that prove useful for an increasingly broader variation of a
problem, we will naturally progress towards a general solution.

These aspects are not novel and certainly will not surprise
the robotic practitioner. However, what should come as a
surprise is the sparsity with which the corresponding spectra
have been explored by our community and how rarely these
aspects are used explicitly to characterize robotic systems.
Case in point: Our solution to the Amazon Picking Challenge
explores different regions on these spectra than most other
challenge entries [13]]. We believe—and will support this belief
in the remainder of this paper—that these differences were
crucial for our success.

We propose that by making the four key aspects of robotic
systems (and possibly additional ones that we did not identify
yet) explicit, our community will begin to understand the
mapping of problem characteristics to the appropriate regions
on these spectra. Our paper is, of course, only a single data
point in this endeavor. But if our community starts characteriz-
ing robotic systems along the proposed axes, thereby making
design choices transparent and comparable, we might move
towards a scientific theory of system building [2] 20} 27.

In Section [[T} we present the specific choices we made for
our system and relate them to the four aspects. Section
then describes the performance of the system both in the
competition and in additional experiments conducted in our
lab. We then discuss the four aspects in Section [V]in a first
attempt to gain insights into the relationship between problem
type and the most appropriate region of the spectra. Finally, in
Section|[VI} we discuss the implications for problems in mobile
manipulation, of which we consider the Amazon Picking
Challenge to be an instance.

II. THE AMAZON PICKING CHALLENGE

In the Amazon Picking Challenge, the task consists of
autonomously picking twelve out of 25 objects (Fig. [2) from
a warehouse shelf and placing them into a storage container
(Fig. [T) within 20 minutes. The robot has knowledge of which
objects are contained in each of the shelf’s twelve bins, but
not of their exact arrangement inside the bin.

a) Evaluation Criteria: For each successfully picked
target object, the robot receives 10, 15, or 20 points, depending
on how many additional objects were in the same bin (between
none and three). Objects that were considered difficult to pick
obtained up to three bonus points. Picking the wrong object
results in -12 points.

b) Objects: The 25 competition objects varied widely in
size and appearance (Fig. [2). Objects ranged from small spark
plugs to bulky boxes, from hard cases to soft plush toys, and
from loose objects to those wrapped in plastic. This variety
presented a challenge for grasping and perception.

c) Environment: The items were placed in the twelve
different bins of the shelf. The robot was allowed to operate
in a 2m X 2m area in front of this shelf. The bins had a rather

Fig. 2.

The 25 picking objects from the challenge

small opening (21 cm x 28 cm) but extend quite far to the back
(43 cm). The small opening was problematic for many state-
of-the-art robotic hands as they barely fit into the bins, once
the shelf is stuffed. As a result, motion capabilities within the
bins were greatly reduced. Since objects could be surrounded
by other objects or could lie close to the side wall of the bin,
grasping opportunities were restricted. Moreover, the bins had
a lid in the front, providing an opportunity for the robot or the
grasped object to get caught while retracting from the bin.

The challenge environment also posed significant challenges
for perception. Due to the narrow bins, objects were often
visible from one side only and partially obstructed. The floors
of the shelf were made of reflective metal, rendering color
and depth information unreliable. During the challenge, the
lighting conditions were particularly difficult due to very bright
spot lights directly above the competition area: objects in
the front of each bin appeared to be effectively white, while
objects in the back appeared as nearly black.

III. TECHNICAL SYSTEM DESCRIPTION

We now describe the hardware and algorithmic components
of our solution. We will mention connections between our
design choices and the four key aspects. In Section [V] we
then provide a more detailed discussion of these choices and
the related trade-offs along the four spectra.

A. Hardware Components

Our robot is composed of a mobile manipulator, a custom
suction-cup gripper, and various on-board sensors (Fig. [3).

1) Mobile Manipulator: We use a seven degree-of-freedom
Barrett WAM [4] mounted on a Nomadic XR4000 mobile
base [53]. Four caster wheels in the base with eight actuatable
axes provide holonomic motion capabilities [22]. The entire
kinematic chain possesses ten holonomic degrees of freedom.

The inclusion of (holonomic) mobility—a choice of embod-
iment that set our solution apart from most other entries in the
Amazon Picking Challenge—greatly facilitated the generation
of motion. The ability to reposition the base enabled the arm
to easily reach inside all of the bins, leading to simpler arm
motion than with a static base. The increased dimensionality of
the configuration space poses challenges for motion planning;
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Fig. 3. Schematic drawing of the robot

we avoided these challenges by generating the robot’s motion
from pre-defined sequences of joint- and task-space feedback
controllers (Sec. [[II-B). This simple, yet effective solution
is an example of how appropriate choices for embodiment
(Sec.[V-B) and the use of feedback (Sec.[V-C) lead to effective
solutions.

2) End-Effector: Our end-effector consists of a modified
crevice nozzle from a vacuum cleaner with a suction cup
mounted at its tip (Fig. ). An off-the-shelf vacuum cleaner,
operating at 250 W, generates sufficient air flow (and suction
in the case of a tight fit between suction cup and object) to
lift up to 1.5 kg.

This simple end-effector can reliably pick all but one of the
challenge objects (the pencil cup) from the narrow, deep shelf
bins. Grasping success is rather insensitive to the exact contact
location with the object, leading to reduced requirements for
perception. At the same time, the end-effector’s thin shape
reduces the need for complex collision avoidance or pre-grasp
object manipulation, as it easily fits in between objects, push-
ing them aside if necessary. This simple choice for the end-
effector illustrates that an appropriate embodiment simplifies
different aspects of the overall solution, including grasping,

grasp planning, and perception (Sec. [V-B).
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Fig. 4. The suction cup end-effector
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Fig. 5. Top-down view of the our picking primitives: Top-down picking,
avoiding the left frontal side lip (left); side picking, aligning the object (grey)
with the right wall (right)

3) Sensors: All sensors are on-board: a base-mounted
SICK LMS-200 laser range finder, an Asus XTion Pro RGB-D
camera on the robot’s forearm, a six-axis ATI Gamma force-
torque sensor on the wrist, and a pressure sensor inside the
tube connecting the vaccum cleaner to the end-effector. These
sensors provide feedback to monitor and guide task execution
and to reduce uncertainty (Sec. [V-C). The robot uses the laser
range finder for particle-filter-based localization with respect
to a 2-D map of the shelf’s base, it uses the force-torque sensor
to guide the end-effector motion, and the pressure sensor to
detect picking failure.

B. Motion Generation

After sorting the list of target items in decreasing order of
expected number of points to be gained, the robot chooses
between two picking strategies:

e Top-down: The end-effector is positioned above the ob-
ject, moves downward until a force measurement signals
contact with the object and activates suction. The pro-
truding metal edges on the left- and rightmost bins of
the shelf are avoided by slightly rotating the end-effector
around the vertical axis in these bins (Fig. EI, left).

e Side: The end-effector approaches the object from the
left or right. The robot executes a force-guarded motion
orthogonal to the bin wall, pushing the object to the side
until it senses contact, and then activates suction (Fig. [3}
right).

Both grasping primitives deliberately move the end-effector
into the object and push it against the floor, walls, or other
objects. Aligning the objects this way simplifies the picking
action. This is an example of exploiting the environment to
guide manipulation [17)] using haptic feedback (Sec. [V-C).

To select one of the two primitives, we developed a scoring
method that estimates their chance of success. The score is
based on (i) how well the given side of the object can be
grasped and (ii) the amount of free space to bring the end-
effector into position. For this, the robot determines the orien-
tation of objects by estimating their bounding box (Sec. [[II-C).
This is important, for example, in the case of books which
must be picked up from the front or back cover.

This scoring scheme is an example of how to facilitate the
solution, in this case for pick planning, by leveraging prior
knowledge about the problem (Sec. [V-D).



Section I11.C.1

m

Section I11.C.2

Section I11.C.3

Fig. 7.

Object recognition pipeline (from left to right): We estimate the region of the image containing the order bin by tracking the shelf in the depth map;

we compute a set of features per pixel of the region; we estimate the probability that a pixel belongs to an object; we assign object labels to each pixel; the
target object is segmented in the image; a bounding box of the object size is fitted to the image segment.
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Fig. 6. Simplified hybrid automaton for one picking primitive: The dashed
nodes and edges handle failures during execution.

The execution of picking motions is realized with con-
tinuous feedback controllers. We transition between these
controllers based on discrete sensor events. This behavior
can be described by hybrid automata [16]]. States in a hybrid
automaton correspond to one or several feedback controllers,
while state transitions are triggered by sensor events. For
each object, we generate and execute a hybrid automaton that
implements the selected picking primitive (see example in
Fig. [6). The automaton describes the actions for a successful
grasp but also contains countermeasures for common failures.
The resulting hybrid automaton consists of 26 states and
50 transitions, of which 34 deal with error handling. Error
handling occurs most frequently in response to sensor input.
For example, if the robot detects an undesired contact with
the shelf, it retracts from the bin and reattempts to pick the
object later.

The hybrid automaton not only enables us to efficiently
exploit feedback (Sec. [V-C) but also to compose motions
defined in different spaces, such as joint space or task space.
This permits combining precise and repeatable joint-space

controllers (for moving the arm-mounted camera to a pre-
defined view position), task-space controllers [37] involving
base and arm (for reaching in and out of the shelf), and
task-space motion involving only the arm (for fine-positioning
inside the shelf).

C. Object Recognition

To successfully pick specific objects, the robot must recog-
nize and locate the target object. Our system captures images
with an RGB-D camera mounted on the robot’s forearm and
performs three steps: feature extraction, object segmentation,
and bounding box fitting. The first step extracts a number of
task-specific features for every pixel of the RGB-D image.
Statistics about these pixel-features for each object enable the
second step to find the image segment that has the highest
probability of belonging to the target object. The third step
takes the point cloud for this segment and fits a bounding box
with size of the target object to this point cloud. This bounding
box allows the robot to decide where and from which direction
it should perform the pick. Fig. |7| shows how the individual
steps connect. We will now examine these three steps in more
detail and relate them to the key aspects of robotic systems.
We have also published a more detailed description of our
object recognition [26].

1) Feature Extraction: To extract features from the target
bin, the robot tracks the shelf in the depth image using the
iterative closest point (ICP) method. Based on the tracking,
it crops the RGB-D image to only show the target bin and
computes the following six features for each pixel:

« a one dimensional color representation, equal to the hue
for saturated pixels and one of three distinct values for
white, gray, and black for unsaturated pixels

« a binary visual edge feature

« the distance to the tracked shelf model

« the height above the ground plane of the shelf bin

o the height in the image plane (for pixels without depth
information)

e a binary feature about the presence/absence of depth
information

These features discriminate between most objects and the
shelf. Instead of searching for features that could solve the
general object recognition problem, these task-specific features
rely on strong assumptions (e.g. that objects are placed in a
known shelf) in order to simplify perception. As a result of



these assumptions, our perception system was able to handle
the unusual lighting conditions during the Amazon Picking
Challenge, non-rigid objects, partial views, and partial depth
data. By making suitable assumptions, our approach outper-
forms generic off-the-shelf methods in the specific settings of
the Amazon Picking Challenge [41]], [26] (Sec. [V-DJ.

2) Object Segmentation: Based on manually segmented
training images, our method precomputes histograms for each
feature and object. It uses these histograms to estimate how
likely each feature value in the current image is for each
object. By multiplying these likelihoods and normalizing them
per pixel, we compute the probability of each pixel in the
current image to belong to a specific object. We compute these
probabilities for all objects that we know are contained in the
target bin and for the bin itself. Our method then smooths
these probability images, labels each pixel corresponding to
the most probable object, and selects the segment that includes
the pixel with the maximum probability for the target object.

This step exploits additional assumptions to facilitate seg-
mentation, for example that only a small subset of all objects
is present in every bin and that the robot knows which objects
these are (Sec. [V-D).

3) Bounding Box Fitting: The segment estimated by the
previous step is now transformed into a point cloud represen-
tation, filtered for outliers, and used to fit a bounding box. The
fitted bounding box is then compared to the true dimensions
of the target object to match the sides of the object correctly.
The result of this step is an approximate estimate of position
and orientation.

Note that bounding box fitting is tailored to the requirements
of our picking strategies. The embodiment of the robot (Sec.
[V-B)), in particular the design of the end-effector, does not only
simplify the picking motion but also relaxes requirements on
exact pose estimation of the target object. Picking is successful
as long as the end-effector makes contact with a pickable side
of the object. This combination of embodiment and algorith-
mic choices illustrates the advantage of tight integration (Sec.
in contrast to premature modularization.

IV. EVALUATION

The Amazon Picking Challenge provides an in-depth evalu-
ation of our system, comparing its performance with 25 teams
from around the world in real-world conditions. We comple-
ment the competition results with nine additional experiments,
using all object configurations used during the competition. We
also discuss capabilities and limitations of our system.

A. Quantitative Evaluation

1) Competition Result: In our competition performance, we
scored 148 out of 190 points (77.8%). We attempted to pick all
twelve objects and were successful for ten. An average picking
motion took 87 seconds. This allowed us to maximally attempt
14 picks within the 20 minutes of challenge duration. The
scored points put us well above the competitors who scored
88 points for second, and 35 points for third place.

2) Post-Hoc Evaluation: To gather more data about our
system’s performance, we reenacted all five shelf configu-
rations that were used in the challenge. We performed two
trials per setup, using the robot system from the challenge
without modifications. The total testing time was 200 minutes
in which the robot picked 95 objects, of which 85 were
target objects. We reached an average point count of 117.6
(o =29.2) which is 62.5% of all available points. This shows
that the competition run was on the upper end of the system’s
capabilities. Still, out of the ten trials, only one (72 points)
would have lead to our team placing second.

B. System Capabilities

Object type: Our robot can pick 24 of the 25 objects,
irrespective of whether they are soft, rigid, heavy, or light.
It cannot pick the pencil cup, as its meshed structure foils the
suction-based gripper (Fig. [8d] Sec. [V-C3).

Object placement: The system is able to execute all grasp
types in all bins and can even pick up objects close to the
back wall.

Lighting conditions: The object recognition is invariant
to extreme lighting condition variations, such as the ones
encountered during the competition.

Shelf pose: The system can handle displacements of the
shelf with continuous feedback from localization.

Shelf collision: Collisions with the shelf occurred during the
tests but they do not lead to system failure.

Long-term operation: During the 200 minutes of running
time, we did not encounter a single total system failure,
although we encountered several unexpected events in the
experiments (next section). We attribute this to the significant
amount of time we invested in adversarial testing, leading
to the many failure cases covered by the hybrid automaton

(Fig. [6).
C. System Limitations

From the 120 attempted picks, the system picked ten wrong
objects and failed to pick 25 objects. Table [[] shows the six
failure categories. We will discuss these failures in detail and
find that all failure cases can be addressed by shifting along
the spectra of the proposed aspects.

85 successful picks
13 object recognition failures
9 bulky objects stuck at removal
9 || missing small objects due to end effector imprecision
2 || displacing objects during approach
2 || meshed pencil cup (cannot be picked with our end-effector)

TABLE I
FAILURE CASES FOR 120 PICKING ATTEMPTS

1) Object Recognition Failures: Perception was one of the
main challenges in the competition. We attribute 13 failed
picking attempts to the object recognition pipeline. These
failures occur when our local features cannot discriminate
between the objects present in the target bin, resulting in wrong
object boundaries (Fig. [Sa) or mistaking another object for
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Fig. 8. Failure cases of our system: (a) Wrong object boundary (b) Mistaking
part of another object (right) for the target object (left) (c) The plush balls
(right) were picked instead of the small spark plug (middle). (d) The pencil
cup cannot be picked up with our end-effector.

the target object (Fig. [8b). Consequently, the robot sometimes
chooses the wrong pre-pick pose or the wrong picking primi-
tive.

We believe that object recognition can be improved most
effectively by shifting along spectrum A towards tighter inte-
gration with the other system components (Sec. [V-A), and
along spectrum C towards more feedback (Sec. [V-C). For
example, we could reject poses that result in physically im-
plausible configurations by tighter integration of segmentation
and geometric pose reasoning. Moreover, we could decrease
the likelihood of picking wrong objects by incorporating
additional feedback, for example, by weighing objects or
visually inspecting them after the pick.

2) Bulky Objects Stuck at Removal: Eight scenarios con-
tained a large box which could only be removed from the bin
by tilting it. Our system failed on all eight attempts. The long
bottle brush also got stuck once on the shelf lip once and
dropped in the process of removal. To address these failures,
we need to shift along spectrum C towards (motion) planning
(Sec.[V-C). Planning would allow us to reason how to reorient
objects to remove them from the bin.

3) Small Objects: Out of ten attempts, the robot failed
nine times attempting to pick up the small spark plugs. In
the competition run, the robot even picked up a non-target
object instead (Fig. [8c). These failures result from the fact that
the reaching movement is executed open-loop, accumulating
a significant error in forward kinematics of the arm, resulting
in a pose error of up to 1 ¢m. This can be addressed easily by
shifting along spectrum C towards more feedback (Sec. [V-C)),
for example by using visual servoing.

4) Displacing Objects: In five out of ten attempts, the
robot toppled over the glue bottle. The bottle then required

a reattempt from the top. In two cases the robot did not have
enough time for a reattempt and lost points. As before, this
failure case can be alleviated by additional feedback; the robot
could detect the tumble and immediately change the strategy.
5) Pencil Cup: The meshed metal pencil cup (Fig. Bd)
does not have enough solid surface to pick it with suction.
This failure mode shows a limitation of our chosen embodi-
ment (Sec. [V-B). It suggests possible extensions to our end-
effector, e.g. adding a mechanical or magnetic gripper.

V. FOUR KEY ASPECTS OF BUILDING ROBOTIC SYSTEMS

We will now generalize our experience from the Amazon
Picking Challenge to building robotic systems in general. We
structure this discussion along the four key aspects and their
respective spectra. For each aspect, we outline the range of
approaches by presenting arguments and examples for both
ends of the spectrum. Then we position our system on this
spectrum.

A. Modularity vs. Integration

There is a continuum between tightly integrated and modu-
lar solutions. This continuum has been previously investigated
in the fields of systems engineering, computer science and
product management [3} 149].

1) Modularity: Building systems of arbitrary complexity
without structuring them into modules is very difficult. Modu-
larity is a way of decomposing complexity by breaking down
a problem into smaller sub-problems that can be solved and
tested individually. Furthermore, modules with defined inter-
faces allow to use, replace, compare, and recombine existing
modules to solve new problems. For these reasons, building
modular systems is the prevalent paradigm in robotics. This
is reflected in the separation of robotics into the classical
fields of perception, planning, control, etc. as well as in
the produced software. For example, high modularity is one
of the core concepts of ROS [40], a popular framework
for implementing robotic systems. Similarly, libraries like
OpenCV [7], PCL [43]], and Movelt [47] represent commonly
employed modules for computer vision and planning, offering
stable interfaces and well-tested functionality.

2) Integration: Robotic systems generate behavior as a
result of integrating many software and hardware compo-
nents [8, [11]. Therefore, the usefulness of a robotic system
is determined by the performance of the integrated system,
rather than by the performance of individual components. To
ensure that the performance of the entire system is maximized,
and to avoid making wrong commitments or addressing sub-
problems that are unnecessarily difficult, all components of
the system should be chosen to maximally exploit potential
synergies between components. To identify these synergies in
the absence of established system-building guidelines requires
early integration [24} 27].

Many important advances in robotics research were
achieved by overcoming existing “modularizations” and the
corresponding boundaries between sub-fields of robotics. For
example, SLAM [48] couples localization and mapping in a



recursive estimation loop to solve the joint problem more ef-
fectively. More recently, combining interaction and perception
led to advances in robot perception [0, [27, 34]].

3) Our Design Choice on the Spectrum: Our system for
the Amazon Picking Challenge used ROS [40] and relied on
various standard modules, for example, for visual process-
ing [7, 143]] and navigation [32]]. However, we embraced tight
integration at various levels. For example, we integrated plan-
ning and control using hybrid automata, adapted our picking
strategies to the embodiment (Sec. [[II-B), and the requirements
for object recognition to the picking strategies (Sec. [[II-C).

Our development process was tailored to building a tightly
integrated system, by adapting many ideas from agile develop-
ment [45]: rapid prototyping, early and continuous integration,
adversarial testing, and shared knowledge.

B. Computation vs. Embodiment

Aspect B describes the degree to which a robotic system
relies on explicit computation (software) or on the embodiment
of the robot (hardware). The idea that mechanisms and mate-
rials can take over some of the processes normally attributed
to computation is known as morphological computation [39].

1) Computation: Since computation is more flexible and
can be altered easily, compared to the embodiment (hardware),
focusing on computation allows building highly complex sys-
tems with diverse behaviors in a short amount of time. Purely
computational approaches to robotics [12} 30, 36] also have
the advantage of potentially being hardware-agnostic.

There are many examples of computation-focused ap-
proaches to problems in robotics. Grasping, for example, can
be posed as a contact point planning problem [36], which
is appealing as it abstracts the problem away from the hand
and the environmental context. Likewise, perception has been
commonly seen as a passive, purely computational problem in
which the robot has to process sensor information [33].

2) Embodiment: Tailoring the hardware to a particular
problem can reduce the required computation. Hardware solu-
tions are often simple and robust, especially when uncertainty
plays a dominant role.

Grasp planning can benefit substantially from embodiment,
as exemplified by simple under-actuated robotic hands [9} [14,
15 35]. These hands exploit passive compliance to robustly
grasp a variety of objects. Although this comes at the cost of
reduced controllability, compliance removes the computational
requirements of grasping while increasing grasp performance.

Appropriate embodiment also facilitates perception. For
example, under-actuated hands reduce the need for accuracy in
object pose estimation. Moreover, placing a vision sensor on
the robot arm increases the sensor’s field of view and reduces
the effect of occlusions [1]].

3) Our Design Choice on the Spectrum: We made delib-
erate design choices to facilitate computation. On the one
hand, we reduced the need for computation by using an
underactuated end-effector. The reduced number of degrees of
freedom simplified grasp planning and object pose estimation.
On the other hand, we reduced the need for computation by

increasing the number of degrees of freedom by mounting the
robot arm on a mobile base. This allowed us to generate mo-
tion mostly through feedback control, rather than resorting to
motion planning. However, in the Amazon Picking Challenge

we failed to pick one challenge object (Sec. [[V-C3] Fig.
due to our chosen embodiment.

C. Planning vs. Feedback

Classical robotics and Al employed the sense-plan-act
paradigm, assuming the robot can build a perfect model of the
world. In the 1980s, the difficulty of obtaining such models
became apparent, initiating a shift towards feedback-driven
approaches [_8]. Interestingly, the control community shifted
again into the opposite direction, from locally convergent
controllers to global approaches, such as optimal control [5]].

1) Planning: Planning finds global solutions, often with
theoretical guarantees, where controllers based on local feed-
back would fail. The most common application of planning
in robotic manipulation is motion planning [30]. To use
these methods, practitioners have to provide models of the
environment, calibrate the robot [21], and localize it in the
environment [48]]. Under these prerequisites, motion planners
serve as general and versatile black-box solvers. Consequently,
motion planning methods have been used successfully in many
applications[29].

2) Feedback: If global search is not required or not possi-
ble, feedback control based on task-relevant features is often
sufficient to generate successful robot motion. Visual servo-
ing [18]], for example, closes a feedback loop around feature
motion, permitting robust achievement of manipulation tasks.
Manipulation tasks, in particular, can be greatly simplified by
exploiting feedback from contact with the environment [17,
311

These feedback approaches are particularly useful in the
presence of uncertainty, high dimensionality, long time hori-
zons, and inaccurate models. In these cases, planning would
be time-consuming, computationally demanding, and often
intractable [38]]. In contrast, feedback handles uncertainty and
partial or imprecise world models by continuously incorporat-
ing local sensor information to adjust the executed motion.

3) Our Design Choice on the Spectrum: Our system relies
on very simple planning. We use on-line grasp approach
planning and execute the motions using pre-defined, feedback-
guided motion primitives, thus avoiding configuration-space
motion planning altogether (Sec. [II-B). This positions our
solution far to the feedback-side of the spectrum, standing in
contrast to the majority of the other challenge entries (80% of
the teams used motion planning, 44% used Movelt [47]], [13]).
Feedback control is so successful in the Amazon Picking Chal-
lenge setting because the task only requires a limited range of
motions, and the shelf provides plenty of contact surfaces to
generate useful feedback. Recent work [28]] demonstrates that
reactive feedback without planning is sufficient in different
realistic logistics settings as well. However, our evaluation
(Sec. shows that some shortcomings of our system, such



as the lack of in-bin reorientation of objects, must be addressed
by some form of planning.

D. Generality vs. Assumptions

This spectrum is relevant for many problems in robotics
and Al, for example in the strong vs. weak AI discussion,
the no free lunch theorem [51], the bias-variance trade-off in
machine learning [19], and the balance between generality and
specificity in system design [50]. Finding completely general
solutions is not possible [51] and we therefore must carefully
select the “right” assumptions to build systems that are as
general as possible in regards to the variant characteristics
while making strong assumptions on those that are invariant.

1) Generality: Finding general solutions is, of course, an
important goal in robotics. When we are able to solve not just
one specific instance of a problem, but the problem in a general
way, these general solutions reflect a deep understanding of the
problem at hand. Additionally, the more general a solution is,
the more useful it can potentially be. By definition, general
solutions apply to a wide range of problems. In contrast,
solutions strongly tailored to a specific problem instance (e.g. a
robot demo) might not lead to insights or contribute to a
broader understanding of system building.

There are a number of general approaches that were suc-
cessfully applied in robotics. Task-generic planning algorithms
such as A* are widely used for mobile robot navigation.
Recursive Bayesian estimation is a very generic framework
that helped solving many different problems in robotics.

2) Assumptions: In machine learning, search, and optimiza-
tion, the no free lunch theorems prove that no problem can
be solved without making appropriate assumptions [S1} 52]:
averaged over all possible problems, there is no method that
outperforms random guessing. The only way to improve on
random guessing is by making assumptions about the problem.

We believe that problems in robotics are characterized by
a significant amount of reoccurring underlying structure (for
example, the laws of physics). Making suitable assumptions
about this structure might enable many solutions that remain
general over instances of robotic problems. To make progress
towards effective solutions, we must therefore find suitable
assumptions. We must understand and share knowledge of
these assumptions to advance robotics.

Incorporating assumptions alleviates the difficulties of gen-
eral purpose solutions. In motion planning, adding informa-
tion about workspace connectivity can reduce the computa-
tional complexity by up to three orders of magnitude [42].
In reinforcement learning, adding explicit knowledge about
physics makes the learning problem tractable by reducing
its dimensionality [25) |44]. Similarly, the recent success of
motor primitive learning can be largely attributed to dynamic
movement primitives, which represent motion as a set of
dynamical systems [23] with few parameters to learn [46],
and thus provide suitable assumptions to restrict the space of
robot motion.

3) Our Design Choice on the Spectrum: Our Amazon
Picking Challenge system used available (general) solutions

whenever they proved sufficient to solve the problem. But
when needed, we incorporated as much assumptions about the
specifics of the competition as possible. Since we could not
find existing approaches for reliably locating the target object,
we used various assumptions to simplify the problem, e.g. that
the objects are placed in a known shelf, which allows for the
use of shelf related features or that the contents of each shelf
bin are known and therefore only a small number of objects
need to be considered (Sec[llI-C). Our general solutions in-
cluded hybrid automata to define the behavior of our system,
a particle filter for localizing the robot, and standard joint-
space and operational space controllers for motion generation.

VI. CONCLUSION

We presented and evaluated our winning system for the
2015 Amazon Picking Challenge. To describe the system, we
proposed four key aspects of system building. A systematic
description of robotic systems according to these aspects (and
additional ones proposed by others in the future) will facilitate
accumulating general knowledge for building robotic systems.
Each of the four aspects spans a spectrum of solutions.

Our entry to the Amazon Picking Challenge focused on cer-
tain regions of each spectrum. We observed that the placement
of our system along these spectra differed significantly from
other competition entries, indicating that these choices were
important for our success. We propose that our four choices
indicate suitable regions for problems in mobile manipulation,
of which we view the Amazon Picking Challenge to be an
instance.

First, as we have not yet developed a general solution to
manipulation, we should emphasize tight integration between
perception, planning, control, and hardware design, avoiding
premature modularization (aspect A).

Second, manipulation requires contact with the environ-
ment. Modeling contact interactions reliably and efficiently
is extremely difficult. This suggests a focus on embodiment,
avoiding complex computation that might not adequately de-
scribe the real world (aspect B).

Third, manipulation planning is difficult due to high-
dimensional configuration spaces, the effects of uncertainty,
and long planning horizons. At the same time, sophisticated
sensing capabilities are readily available. This suggests to
exploit feedback wherever possible (aspect C).

Finally, we should acknowledge that assumptions are neces-
sary to solve complex problems. Finding appropriate assump-
tions therefore is an important goal of robotics research. To
find these assumptions, we advocate solving concrete problems
with strong assumptions, relaxing them incrementally (as-
pect D).

Our lessons on building robotic systems are consistent
with those others derived from their experience in similar
robotics challenges. In the area of autonomous driving [10]
and humanoid robotics [2], the resulting insights have led
to significant advances. We hope that the Amazon Picking
Challenge and our lessons learned will be equally useful for
manipulation.
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