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Abstract—We present a theoretical analysis of a recent whole
body motion planning method, the Randomized Possibility Graph
[8], which uses a high-level decomposition of the feasibility
constraint manifold in order to rapidly find routes that may
lead to a solution. These routes are then examined by lower-
level planners to determine feasibility. In this paper, we show
that this approach is probabilistically complete for bipedal
robots performing quasi-static walking in “semi-unstructured”
environments. Furthermore, we show that the decomposition into
higher and lower level planners allows for a considerably higher
rate of convergence in the probability of finding a solution when
one exists. We illustrate this improved convergence with a series
of simulated scenarios.

I. INTRODUCTION

The goal of deploying humanoid robots into complex
and challenging terrain motivates us to examine locomotion
planning methods that can offer completeness guarantees
with maximum autonomy. Locomotion planning methods tend
to have various scopes and limitations depending on their
underlying algorithms. Some methods can offer guarantees
for either completeness or probabilistic completeness within
their designated scopes. Other methods might lack proofs of
completeness but can perform well in practice.

The classic approach to locomotion planning, also called
footstep planning, was introduced by Kuffner et al. [14][4]. In
that work, the set of all possible footstep actions is discretized
into a finite action set. From there, A* with an admissible
heuristic can be used to find a solution which is globally
optimal with respect to the action set. When the predetermined
action set is sufficient to find a solution, this method is
complete. However, the action set determines the branching
factor of the search, so having enough actions to satisfy
challenging scenarios could make the search intractable.

A mixed-integer optimization approach by Deits and
Tedrake [6] decomposes the obstacle-free space into convex
regions wherein a bounding box representation of the robot
can fit. With these convex regions, the problem of locomotion
planning is formulated as a mixed-integer quadratically con-
strained quadratic program. This provides completeness and

(a) ρ = 0 (b) ρ = 5Rmax

Fig. 1: Illustration of the effect that the parameter ρ has on
the Mode Sampling stage. The task for the robot is to pass
underneath the set of three bars. Cyan and magenta boxes
represent left and right (respectively) foot placement samples,
and changing the value for ρ affects the size of the sampling
region. Rmax is the length of the largest step that the robot
can take.

global optimality guarantees, as long as the convex regions are
sufficient for finding a solution. However, in the implementa-
tion that was presented, the robot was not able to duck under
obstacles or maneuver its upper body to assist in balance, as
would be needed to traverse underneath the bars in Fig. 1.

The Multi-modal Probabilistic Roadmap (MMPRM) ap-
proach by Hauser et al. [9, 10, 11] uses randomized sampling
to find whole body motions over a set of predetermined
environmental contacts. Given a suitable set of environmental
contact points, this method is proven to be probabilistically
complete for the full range of quasi-static motion of the
robot. This implies that if a quasi-static solution exists, the
probability of it being found will asymptotically approach 1.0
as run time goes to infinity. The key advantage to this approach
is that the full kinematic capabilities of the robot are at its
disposal, rather than a limited subset.

The Randomized Possibility Graph (RPG) method by Grey
et al. [8] expands on MMPRM. The purpose of the RPG is
twofold: (1) eliminate the requirement that the planner must
be provided with a finite set of environmental contact points,
and (2) focus the search effort of the low-level MMPRM



into regions that are promising for finding a solution. This
is accomplished by first exploring the environment at a high
level to find routes that are able to satisfy a set of simplified
necessary or sufficient conditions. If a route satisfies the
sufficient conditions, a fast and efficient planner can be applied
to find a walking motion that follows the route. However, if a
route only satisfies the simplified set of necessary conditions,
then a low-level multi-modal motion planner must be applied
to find viable foot placements and a joint motion that satisfies
the full set of feasibility constraints, such as maintaining
balance and avoiding obstacles.

In this paper, we examine the probabilistic complete-
ness properties of the RPG method when applied to “semi-
unstructured” environments. We define “semi-unstructured” to
mean an environment that contains obstacles with arbitrary
geometry, but where the walkable ground is flat and even.
The restriction to flat and even ground is due to a limitation in
the current implementation of foot placement sampling, which
is similar to the Task Space Region approach of Berenson
et al. [3][2]. This restriction will be loosened in future work,
possibly by utilizing a reachable space representation similar
to the work of Tonneau et al. [18].

In the theoretical examination, we consider a simplified
algorithm which we will call the Worst-case RPG (w-RPG).
The w-RPG exhibits the worst-case behavior of the ordinary
RPG algorithm, which is what the ordinary algorithm would
degenerate into when none of its built-in performance op-
timizations are effective. Since the ordinary RPG will have
strictly better performance, the analysis of w-RPG represents
a lower bound on the worst-case performance of the ordinary
algorithm. Therefore, if the w-RPG is proven to be probabilis-
tically complete, then the RPG is as well.

In addition to the proof of probabilistic completeness, we
analyze a user-chosen parameter, ρ, which affects the rate of
convergence. This analysis provides hints for choosing a value
for ρ that will provide reliable convergence. We also provide
empirical data from simulation trials where the parameter is
varied to demonstrate the quantitative impact of this parameter.

II. PROBLEM DEFINITION

The work by Grey et al. [8] examined the application and
performance of Randomized Possibility Graphs for solving
locomotion planning problems in semi-unstructured environ-
ments. In this context, “semi-unstructured” means the walkable
terrain is flat and even, but the environment contains 3D
obstacles with arbitrary geometry. Since the obstacle geometry
is arbitrary, the robot may require whole body motions in order
to maneuver through the environment, like needing to duck
underneath the overhanging bars in Fig. 1.

A. Probabilistic Completeness

A process is considered probabilistically complete if the
probability of it failing to find a solution when one exists
converges asymptotically to zero as the number of samples
it uses goes to infinity, i.e. the probability of failure can be

Fig. 2: Abstract depiction of the difference between sufficient
(green) vs. necessary (yellow) conditions. The constraint man-
ifold C is projected down to a lower-dimensional manifold
CP . The sufficient condition manifold, CS is a simple shape
which fits entirely inside of CP while the necessary condition
manifold, CN , is a simple shape which contains all of CP .

written as:

Pr[FAILURE] ≤ α exp(−βN) (1)

where α and β are positive constants greater than zero, and
N is the number of samples being used by the process.

B. Modes

Bipedal robots are hybrid dynamic systems (see Ames et
al. [1, 15] for examples of detailed hybrid system models
for bipeds) which exhibit sequences of discrete modes. In the
scope of this paper, a mode is defined by the placement of the
support foot (or feet, in the case of double-support modes).
Each mode corresponds to a set of feasibility constraints which
determine whether a given configuration is physically viable
for that mode. A mode takes the following form:

σ =

{
xf ∈ R3 | f ∈ {Left,Right} if Single-Support(
xLeft ∈ R3, xRight ∈ R3

)
if Double-Support

where xf represents a foot placement consisting of two
translational dimensions and one rotational dimension for the
yaw of the foot.

C. Worst-case Randomized Possibility Graph

For the analysis of this paper, we consider a simplified
version of the RPG scheme which we will call w-RPG. The
simplified version discards the use of sufficient conditions (see
Fig. 2) and the performance benefits that come with them, so
performance of w-RPG represents the worst-case performance
of RPG. Using only the necessary conditions allows for more
straightforward theoretical analysis and helps to establish an
upper bound on the probability of failing to find a solution
when one exists. There are three stages to w-RPG:

a) Possibility Exploration: Instead of growing trees, we
explore possibilities by sampling NP points in the Possibility
Exploration Space E , which in this context is SE(3) because it
allows to devise a straightforward set of necessary conditions.



(a) An example 3D representa-
tion of the space that can be
reached by the left foot from a
fixed location of the right foot
(magenta arrow).

(b) An example of how the reach-
able spaces of two different foot
locations can intersect. The inte-
rior cylinder is a subset of the
left-foot locations that can be
reached from both right-foot lo-
cations.

Fig. 3: 3D illustrations of what a simple reachable space
might look like for a bipedal system. Magenta arrows rep-
resent right-foot placements. Cyan and yellow regions are the
corresponding reachable left-foot locations. The axes represent
x/y translation and yaw.

The submanifold where the necessary conditions are satisfied
is called CN . Any random samples which are not inside of
CN are rejected from the sample set. We then perform an
O(NP

2) operation attempting to connect every pair of points
with a “straight line”. When a route through CN is found that
might be able to connect the start and goal states, this route
is sent to the next stage: Mode Sampling.

b) Mode Sampling: We sample modes uniformly near
the route produced by the Possibility Exploration stage. The
elements of the route are projected from SE(3) to R2, keeping
only the (x, y) values from the route. Then Nσ left and right
foot placements are uniformly sampled within a radius ρ of
each projected vertex along the route. The union of these
circles is referred to as Fσ . The orientations of the foot
placements are uniformly sampled from [0, 2π).

Once the foot placements are sampled, we perform an
O(Nσ

2) operation to test whether each pair of foot placements
can reach each other. Each foot placement is assigned a single-
support mode based on whether it is viable as a left- or right-
foot placement. Each pair of foot placements that can reach
each other are assigned a double-support mode.

c) Multi-modal PRM: Once a discrete set of modes have
been sampled, Multi-modal PRM as described by Hauser et al.
[11] is used to find valid whole body paths through the modes.

III. PROOF OF COMPLETENESS

To prove the probabilistic completeness of the overall
procedure, we first prove the probabilistic completeness of
the Mode Sampling stage, and then prove the probabilistic

(a) (b) (c)

Fig. 4: (a) A slice, s, of the reachable area for the left foot
when the right foot is at the black dot. (b) Samples of the set S
created by translating s around within a small radius. (c) The
shape ∩S created by the intersection of all elements within S.
This is the same as the original shape, but contracted by circles
around the border whose radii are equal to the maximum radius
of the translations.

completeness of the Possibility Exploration stage. Multi-modal
PRM is already proven to be probabilistically complete by
Hauser and Latombe [9], so the final step is to show that
the product of multiple dependent probabilistically complete
processes is also probabilistically complete.

A. Completeness of Mode Sampling

To have a viable sequence of modes, each mode in the
sequence must be adjacent to the mode that comes before
and after it. For two modes to be adjacent, their feasible
spaces must intersect. A quick way to test for adjacency is
to consider the kinematic reachability of one foot with respect
to the other foot. For flat and even terrain, the reachable space
is a function of the (x,y) position and yaw, θ, of the support
foot. An illustration of what such a space might look like can
be found in Fig. 3a. We assume that the reachable space is a
subset of SE(2), containing at least one ball of radius ε > 0.

For a sequence of modes to be valid, the foot placement of
each single-support mode must be simultaneously reachable
from the single-support modes that come before and after it,
like the cylinder shown in Fig. 3b. The following lemma will
help us show that there exists a region of foot placements
wherein every placement is reachable from every member of
a region of placements of the other foot.

Lemma 1: Suppose we have a 2D shape, s (Fig. 4a).
Consider the set of all possible translations of this shape within
a circle of fixed radius r, S = {σ ∈ Trans(s,x) | |x| < r}
where Trans(s,x) translates the shape s by vector x (Fig. 4b).

Then the shape of the intersection of all elements in S, ∩S,
is equal to the shape of s contracted by circles of radius r
densely packed around its border (Fig. 4c).

Proof: Define bs to be the boundary of s. The elements
of s can be divided into two sets: α = {x ∈ s | d(x, bs) ≥ r}
and β = {x ∈ s | d(x, bs) < r} where d(x, bs) computes the
smallest distance between x and bs.

An element x ∈ s will not exist in the shape of ∩S if and
only if at least one shape in S was transformed by a distance



greater than d(x, bs). Otherwise x cannot be outside the border
of any shape in S.

By definition, the elements x ∈ α have the property
d(x, bs) ≥ r, and every element of S was translated by less
than r, so all of the elements of α must remain in ∩S.

Conversely, the elements x ∈ β have the property d(x, bs) <
r. Since S contains elements which have been transformed
by a distance up to r in every direction, the elements of β
cannot remain in ∩S. Moreover, the elements of β are the
same elements that would be covered by circles of radius r
which are densely packed around bs. An illustration of this
effect can be seen in Fig. 4.

The effect of lemma 1 can be generalized to the 3D shape of
Fig. 3a by continuously applying it to slices along the θ axis.
If the original shape represented the space that is reachable
from xf , then the contracted shape would then represent the
set of foot locations that can be reached from any location
within a cylinder centered around xf .

Now we can derive an upper bound on the probability of
failing to sample a set of modes that can enable the system
to reach the goal from the start, if such a set of modes exists.
Assume there exists some solution, which is a function that
outputs a configuration and a mode as a function of time:

γS : [0, tf ] 7−→ RNC × Σ

where NC is the dimension of the configuration space and Σ
is the set of all possible modes. The configuration output will
vary continuously, but the sequence of modes through [0, tf ]
will be discrete and finite. Figure 5a displays an environment
with the foot placements of a hypothetical solution that allows
the robot to traverse from the bottom left to top right. We will
now show that this selection of foot placements is not unique,
and that uniform random sampling is a probabilistically com-
plete way of finding a suitable sequence of modes to connect
the start and the goal states.

Theorem 1: Let there be a sequence of M single-support
modes {σ1, ..., σM} that are sufficient to connect a start state
xstart = (qstart, σstart) to a goal state xgoal = (qgoal, σgoal). (Note
that double-support modes exist between the single-support
modes within the solution, but the double-support modes are
not relevant to this theorem.)

Then the probability that Nσ uniform samples of placements
for each foot will fail to find a set of modes that can connect
xstart to xgoal is at most

M (1− βm)
Nσ (2)

where 0 < βm ≤ 1 is a problem-dependent constant.
Proof: For a sequence of alternating single-support modes

{σ1, ..., σM} to be valid, it is necessary for σi+1 to be reach-
able from σi. Moreover, due to the symmetry of reachability,
it is also necessary for σi to be reachable from σi+1.

The space of foot placements that are reachable from σi is
given by the set R(σi). Therefore, for each mode σ2i+1, i =
0, ..., bM−12 c we can identify a range of alternative foot place-
ments by taking the intersection Σ2i+1 = R(σ2i)∩R(σ2i+2).
The foot placement for σ2i+1 can be replaced by any element

(a) Cyan and magenta arrows represent the foot placements of a
hypothetical solution

(b) Magenta regions represent areas that the right foot can reach for
each given left foot placement.

(c) Dark teal regions represent areas that the left foot can reach from
any right foot placement within each magenta ball. The lighter teal
border shows the original reachable shape, before being contracted.

(d) Each ball represents the foot placements that can be reached from
any foot placement within the previous and next ball.

Fig. 5: An environment consisting of regions where foot place-
ments are valid (white) and invalid (striped). Foot placements
may be invalid due to holes in the ground or obstacles on the
ground, either of which may be stepped over.



in Σ2i+1 without affecting the validity of the mode sequence,
because all elements in Σ2i+1 are reachable from the modes
that come both before and after σ2i+1. Examples of Σ2i+1 can
be seen in the overlapping magenta regions of Fig. 5b.

Let us construct a cylinder named ς2i+1 of radius r2i+1

within each Σ2i+1 for i = 0, ..., bM−12 c (see Fig. 3b for
a 3D illustration of such a cylinder, and Fig. 5b for an
overhead view of a sequence of cylinders). For each ς2i+1,
the set of foot placements which are reachable by every
member of the cylinder will be ∩R(ς2i+1). From Lemma
1, we know that the shape of this intersection will be the
ordinary shape of reachability but contracted by circles of
r(ς2i+1) densely packed around the border. These contracted
regions are illustrated in Fig. 5c. The cylinder also has a height,
∆θ2i+1, which is chosen in conjuncture with r2i+1 such that
the cylinder fits inside of Σ2i+1.

Now for i = 1, ..., dM−12 e choose the largest cylinder
available within the intersection {∩R(ς2i−1)}∩{∩R(ς2i+1)}}
and call it ς2i. Note that σ0 and σM+1 are the start and
goal (respectively) single-support modes which are given by
the problem query. It is sufficient to have ς0 ≡ {σ0} and
ςM+1 ≡ {σM+1}, because both of those modes are provided
without any sampling.

We now have a sequence of cylinders ςi, i = 1, ...,M where
as long as at least one foot placement from each cylinder is
sampled, the set of samples will be sufficient for finding a valid
solution that connects the start and goal states. Each cylinder
is defined by its radius, ri and height, ∆θi. These parameters
would ideally be chosen such that they maximize the volume
of the smallest cylinder in the set. Choose rm and ∆θm to
be the radius and height of the cylinder with minimal volume.
The volume of this minimal cylinder is then πr2m∆θm.

Suppose we are given a planar region to sample from, Fσ .
Yaw values can simply be sampled from the range [0, 2π]. This
gives us a sampling volume of 2π|Fσ|. If the x/y translations
of the foot placements within each ςi all lie in Fσ , and we
take Nσ independent samples of left-support modes and Nσ
samples of right-support modes from Fσ , then we get

Pr[FAILURE] ≤ Pr[Some cylinder ςi is not sampled]

≤
M∑
i=1

Pr[Cylinder ςi is not sampled]

=

M∑
i=1

(
1− πr2i∆θi

2π|Fσ|

)Nσ
≤M

(
1− πr2m∆θm

2π|Fσ|

)Nσ
which gives us

Pr[FAILURE] ≤M
(

1− r2m∆θm
2|Fσ|

)Nσ
(3)

If we then take

βm =
r2m∆θm
2|Fσ|

Fig. 6: Illustration for the proof of Lemma 2. The white area
represents CN while gray is E \ CN . R is the minimum
distance between the path γP and the edge of CN .

we know that 0 < βm ≤ 1 because rm and ∆θm are non-zero
(except in pathological cases), and the volume of the sampling
space must be at least as large as the volume of the smallest
cylinder in order to satisfy the assumption that Fσ covers all
foot placements in each set ςi. Therefore, substituting βm into
equation 3 gives us the expression in equation 2.

B. Completeness of Possibility Exploration

Now we consider the Possibility Exploration stage, where
we find samples that exist in the necessary condition manifold,
CN , and connect them in a graph using geodesics (Kuffner
[13] provides useful implementation details for sampling
points in SE(3) and connecting them). We derive an upper
bound for the probability that NP samples will fail to provide
a route that can be used by the Mode Sampling stage to
find adequate mode samples for a solution. This proof is
largely derived from the proofs of probabilistic completeness
presented by Kavraki et al. [12] and Svestka [17], but we also
account for the need to obtain an adequate sampling of foot
placements, which was not a requirement for prior proofs.

As before, assume a solution exists in the form:

γS : [0, tf ] 7−→ RNC × Σ

We can transform this function into

γP (s(t)) = ProjE (γS(t))

where ProjE (x) is a function that projects a state x into the
Possibility Exploration Space by truncating all the state except
for the root transform, and s(t) parameterizes γP by arclength
instead of time.

Definitions: We denote dγP (s, r) to compute the arclength
distance between points γP (s) and γP (r) along the curve γP .
We define Br(s) to be the set of all points in E within a ball
of radius r centered at γP (s). Recall that E is the “Exploration
Space” from which we randomly sample points to see if they
satisfy the necessary conditions. In the context of this paper,
E is equal to SE(3) where the translational dimensions are
bounded by a box.



Lemma 2: Let γP : [0, L] −→ E be a path that connects
pstart = ProjE (xstart) and pgoal = ProjE (xgoal). Let R =
inf0≤s≤L r(γP (s)) be the minimum distance of the path to
the edge of the necessary condition manifold CN .

Then the probability that NP uniform samples of CN will
fail to yield a path that can connect from pstart to pgoal is no
greater than

L

ε

(
1− π3ε6

6|CN |

)NP
(4)

where 0 < ε ≤ R/2, and |CN | is the volume of the necessary
condition manifold.

Proof: Let n = dL/εe. We can then find a set of points
{p0 = pstart, p1, ..., pn = pgoal ∈ γP | ∀i, dγP (pi, pi+1) ≤ ε}.
Note that

BR/2(pi+1) ⊆ BR(pi), for i = 0, ..., n− 1. (5)

This follows from the triangle inequality and the inequality
|γP (s)− γP (r)| ≤ dγP (s, r). Assume we have the points a ∈
Bε(pi) and b ∈ Bε(pi+1)). If we enforce ε ≤ R/2, then
Bε(pi) ⊆ BR/2(pi), and equation 5 guarantees that both a, b ∈
BR(pi). Therefore, there is guaranteed to be a geodesic line
segment ab that lies entirely within CN and connects the points
a and b, because every point in BR(pi) lies within CN due to
the definition of R. This property is illustrated in Fig. 6.

This observation tells us that it is sufficient to have at least
one sample point in each ball Bε(pi), i = 1, ..., n − 1 for
the Possibility Exploration stage to find a path that connects
the start point to the goal point, as long as ε ≤ R/2. We
can sample SE(3) from R6 without loss of generality using an
Euler angle representation of orientation. Therefore the volume
of the balls to be sampled can be computed based on a 6-ball:
π3ε6/6. Taking NP independent samples from CN , we find

Pr[FAILURE] ≤ Pr[Some ball is not sampled]

≤
n−1∑
i=1

Pr[Ball Bε(pi) is not sampled]

≤ L

ε

(
1− π3ε6

6|CN |

)NP (6)

Definition: dxy(σ, p) computes the distance across the xy-
plane between the foot location corresponding to the mode σ
and the point p.

Lemma 3: As in Lemma 2, γP : [0, L] −→ E is a path that
connects pstart and pgoal. Let hm represent the greatest distance
of any foot placement in the union ∪ςi, i = 1, ...,M from the
point on the path γP which is closest to that mode:

hm = sup
σ∈∪iςi

inf
s∈[0,L]

dxy(σ, γP (s)) (7)

Given a value of ρ ≥ 2hm (see Fig. 7), the probability that
NP uniform samples of CN will not be adequate to sample
the modes needed for a solution is no greater than

L

ε

(
1− π3ε6

6|CN |

)NP
(8)

Fig. 7: Illustration of the parameter hm. Teal and magenta balls
represent the cylindrical regions of acceptable foot placements,
ςi, from Sec. III-A, and gray dots represent the foot placements
that are used by the hypothetical solution of γS . Small black
dots are points in the Possibility Exploration Space E .

where 0 < ε ≤ ρ/4 and |CN | is the volume of the necessary
condition manifold.

Proof: As in the proof for Lemma 2, let us define a set
of n = dL/εe points p0 = pstart, p1, ..., pn = pgoal along γP
such that dγP (pi, pi+1) ≤ ε for each i = 0, ..., n− 1.

Suppose we choose ρ such that ρ ≥ 2hm. This condition is
easily enforced using known information by setting ρ to be at
least double the furthest distance that the robot can step, which
we will refer to as Rmax. Additionally, suppose we enforce
ε ≤ ρ/4. Define sm to be the minimizer for s in equation 7.
Define pm to be the point from the set {p0, ..., pn−1} that is
closest to the value sm. We know that pm cannot be further
than ρ/4 from sm, or else another ball would have been placed
in the sequence, and that new ball would be closer to sm than
pm, which would contradict the definition of pm. Therefore,
no point in Bρ/4(pm) can be further from γP (sm) than ρ/2.

Define σm to be the maximizer for σ in equation 7. If xm
is the translational location of the foot placement for σm, then
xm has a distance hm from γP (sm). Therefore, the triangle
inequality tells us that the furthest distance that xm could
possibly have from pm is δm ≤ ρ/2+hm ≤ ρ. Since xm is the
furthest possible foot placement, all other foot placements in
the union of ς1, ..., ςM must be within a distance δj ≤ δm ≤ ρ
of every point within some ball Bε(pi), i = 0, ..., n − 1, as
long as ε ≤ ρ/4. Figure 7 illustrates this property.

Therefore, as long as ρ ≥ 2hm and ε ≤ ρ/4, it is sufficient
to have at least one sample point in each ball Bε(pi), i =
1, ..., n − 1 for Fσ in the Mode Sampling stage (see Sec.
III-A) to cover all the modes of ς1, ..., ςM . The probability of
failing to sample each ball at least once is no greater than

L

ε

(
1− π3ε6

6|CN |

)NP

Theorem 2: Let γP : [0, L] −→ E be a path that connects
pstart and pgoal. Given R as defined by Lemma 2, hm as defined



by equation 7, and ρ ≥ 2hm, the probability that NP uniform
samples of CN will fail to yield a path that can lead to a
solution is no greater than

L

ε

(
1− π3ε6

6|CN |

)NP
(9)

where ε = min(R/2, ρ/4), and |CN | is the volume of the
necessary condition manifold.

Proof: Using Lemmas 2 and 3, we have established that
if we have the conditions ε ≤ R/2 and ε ≤ ρ/4 where
ρ ≥ 2hm, it is sufficient to have at least one sample in each
ball Bε(pi), i = 0, ..., n − 1 in order to produce a graph that
achieves two properties:

1) The graph contains at least one path from pstart to pgoal
which passes entirely through CN ,

2) The region covered by circles of radius ρ, centered at
each vertex along one of the paths from pstart to pgoal
will cover the entirety of {ς1, ..., ςM}.

Therefore, we choose ε = min(R/2, ρ/4), and then the
probability that one of the balls Bε(pi) will fail to be sampled
is no greater than the expression given by equation 9.

C. Overall Completeness
The success of the Mode Sampling stage requires the

Possibility Exploration stage to succeed in finding a viable
candidate path. Similarly, the success of the Multi-modal PRM
stage requires the Mode Sampling stage to succeed in finding
a set of modes that can reach from the start to the goal. Here
we prove that the combination of these dependent processes is
probabilistically complete given that the individual processes
are each probabilistically complete.

Lemma 4: Consider the randomized processes A and B.
Suppose B depends on A such that B can only succeed after
A has succeeded. Given Pr[Ā] ≤ aF and Pr[B̄|A] ≤ bF ,
then the probability of both processes failing, Pr[Ā ∪ B̄], is
no greater than aF + bF .

Proof: Define the probability of process A succeeding as
Pr[A] and the probability of it failing as Pr[Ā]. If process
B cannot succeed unless process A succeeds, then we know
Pr[B̄|Ā] ≡ 1.0 and Pr[A|B] ≡ 1.0. If we are also given
Pr[Ā] ≤ aF and Pr[B̄|A] ≤ bF , we can derive the following:

Pr[Ā ∪ B̄] = Pr[Ā] +
(
1− Pr[Ā]

)
Pr[B̄|A]

≤ aF + bF
(10)

Theorem 3: The probability of the overall process of the
w-RPG failing to find a solution will asymptotically converge
to zero as the number of samples used for each stage in the
process goes to infinity.

Proof: Consider the Possibility Exploration stage to be
process A and the Mode Sampling stage to be process B.
From Theorems 1 and 2, we get the following expressions:

aF ≤
L

ε

(
1− π3ε6

6|CN |

)NP
bF ≤M

(
1− r2m∆θm

2|Fσ|

)Nσ (11)

We can use the inequality (1 − x) ≤ e−x, for x ≥ 0 to
change these expressions to:

aF ≤
L

ε
exp

(
− π3ε6

6|CN |
NP

)
bF ≤M exp

(
−r

2
m∆θm
2|Fσ|

Nσ

) (12)

Observing that α1 exp (−β1)+α2 exp (−β2) ≤ α exp(−β)
where α = α1 + α2 and β = min(β1, β2) and combining
Lemma 4 with the expressions in equation 12, we can get

Pr[Ā ∪ B̄] ≤
(
L

ε
+M

)
exp (−β)

β = min

(
π3ε6

6|CN |
NP ,

r2m∆θm
2|Fσ|

Nσ

) (13)

Therefore, as both NP and Nσ go to infinity, the probability
of their combined process failing asymptotically approaches
zero, making the combined process probabilistically complete.

This argument can be repeated recursively by viewing
the combined process of Possibility Exploration and Mode
Sampling as a single process upon which the Multi-modal
PRM stage depends. Since Multi-modal PRM is known to be
probabilistically complete, adding it as a dependent process
onto another probabilistically complete process allows the
overall process to still be probabilistically complete.

IV. ANALYSIS

The expressions which have been derived to prove the
probabilistic completeness of the w-RPG also reveal that the
multi-stage procedure can offer a better rate of convergence for
success than a single-stage procedure would. The parameter
ρ is used to restrict the region from which foot placements
are sampled during the Mode Sampling stage. This focuses
the mode sampling around the candidate route found in the
Possibility Exploration stage, ensuring that the samples are
conducive toward finding a solution as illustrated in Fig.
1. As ρ approaches infinity, the behavior is analogous to
eliminating the Possibility Exploration stage altogether and
instead merely sampling foot placements uniformly throughout
the environment. In this section, we show how the earlier
proofs predict an improvement in convergence. We also show
simulation results which empirically reinforce this prediction.

A. Theoretical Analysis

Recall that Fσ is the union of circles with radius ρ, centered
around the dL/εe− 1 vertices of the projected route from the
Possibility Exploration stage. This gives us an upper bound
on the area covered by Fσ:

|Fσ| ≤
L

ε
πρ2 ≤ 4Lπρ

Substituting this into equation 3 for Fσ , we get an upper bound
on the likelihood of failure for Mode Sampling in terms of ρ:

Pr[Mode Sampling Failure] ≤M
(

1− r2m∆θm
8Lπρ

)Nσ
(14)



(a) Stepping Stones
Scenario

(b) Checkers
Scenario

(c) Pass Under
Scenario

Fig. 8: Three scenarios used for simulation tests. In (a) and
(b), the robot must get across a gap by taking advantage of
narrow stepping stones. In (c), the robot must pass underneath
a sequence of bars.

which implies that minimizing ρ will maximize the rate of
convergence for the Mode Sampling stage.

However, there are limits to how small ρ can be shrunk
for the formula to hold. In particular, the proof for Theorem
1 depends on the assumption that Fσ covers the cylinders
associated with the parameters ri and ∆θi. If Fσ is shrunk to
no longer cover those cylinders, then the formula will not hold
and we can no longer guarantee probabilistic completeness
or asymptotic convergence. To ensure the formulae hold, the
proof for Theorem 2 suggests ρ ≥ 2Rmax as a lower bound.

It is worth noticing that the formula also predicts the
existence of pathological cases which cannot be reliably solved
by the w-RPG. Specifically, if rm or ∆θm have a value close to
zero, then it implies that the solution requires a sample from a
manifold with nearly zero volume in SE(2). The probability of
randomly sampling a point on such a manifold is close to zero,
so we could not expect this approach to reliably work, much
like the well-known “narrow passage problem” [16]. There
would need to be some additional information provided to the
planner that would allow it to find samples on that smaller
manifold. For example, Chestnutt et al. [5] used evaluations
of the terrain data to adjust infeasible footstep locations.

B. Test Results

To empirically test the effects of ρ, we constructed three
simple scenarios and ran simulated tests while varying the
value of ρ. Screenshots of the scenarios can be seen in
Fig. 8. A plot of the results is shown in Fig. 9. For the
“Stepping Stones” and “Checkers” scenarios, the robot needs
to find a sequence of foot placements that can get it across
a wide gap. In such cases, Mode Sampling is the primary
bottleneck, and equation 14 plays the dominant role. This gives
us performance results which reflect the theoretical predictions
of the lower bound.

In contrast, the “Pass Under” scenario requires the robot
to pass underneath a sequence of three bars. The floor is
clear of holes or obstructions, leaving it wide open for the
robot to place its feet anywhere. Furthermore, the overall floor
space of the environment is relatively small. These factors
result in a scenario where Mode Sampling is a less demanding
stage. Instead, the physical obstacle of the overhanging bars
results in a narrow passage, making R the deciding variable
for ε in equation 9. Smaller values for ρ may still offer some
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Fig. 9: Average performance results from three scenarios, illus-
trating the relationship between ρ and the rate of convergence.
The y-axis shows the average time for each scenario, scaled
by the data point with the smallest value. The x-axis shows
how ρ was varied, scaled by Rmax, the furthest distance that
the robot is able to step.

marginal performance improvements, but it does not appear to
be exponential as it is for the other two scenarios.

While the theoretical analysis proposes a value of ρ =
2Rmax to optimize performance while guaranteeing probabilis-
tic completeness, the empirical data suggests that a value in
the range 1

2Rmax ≤ ρ ≤ Rmax might be best for performance
in practice. A potential strategy could be to schedule the value
of ρ so that it begins with a high-performance value and then
grows up to the theoretical lower bound over time. It is also
plausible that a different proof for Lemma 2 may be able to
use a less strict condition than ρ ≥ 2Rmax.

V. CONCLUSION

In this paper we have provided a proof for the probabilistic
completeness of w-RPG which represents a worst-case perfor-
mance of the Randomized Possibility Graph (RPG) algorithm
applied to bipedal locomotion planning. We also demonstrated,
both theoretically and empirically, how the Possibility Explo-
ration stage of the algorithm allows the overall process to
converge more quickly by focusing the effort of the lower-
level stages into regions of the environment that are relevant
for finding a solution.

There are two crucial limitations to the existing implemen-
tation of the RPG algorithm. The first limitation is that it
currently only samples foot placements from SE(2), making
it unable to handle uneven terrain. We aim to address this
in later work by leveraging reachable space representations
similar to Tonneau et al. [18]. That should allow the algorithm
to handle arbitrary obstacles and arbitrary terrain. Second, this
implementation currently only extends to quasi-static motion.
The work of Dellin and Srinivasa [7] may provide a natural
complementary low-level planner for the RPG, allowing it to
plan highly dynamic motions in addition to quasi-static.
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