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Abstract—In the adaptive information gathering problem, a
policy is required to select an informative sensing location using
the history of measurements acquired thus far. While there is an
extensive amount of prior work investigating effective practical
approximations using variants of Shannon’s entropy, the efficacy
of such policies heavily depends on the geometric distribution of
objects in the world. On the other hand, the principled approach
of employing online POMDP solvers is rendered impractical by
the need to explicitly sample online from a posterior distribution
of world maps.

We present a novel data-driven imitation learning framework
to efficiently train information gathering policies. The policy
imitates a clairvoyant oracle - an oracle that at train time
has full knowledge about the world map and can compute
maximally informative sensing locations. We analyze the learnt
policy by showing that offline imitation of a clairvoyant oracle
is implicitly equivalent to online oracle execution in conjunction
with posterior sampling. This observation allows us to obtain
powerful near-optimality guarantees for information gathering
problems possessing an adaptive sub-modularity property. As
demonstrated on a spectrum of 2D and 3D exploration problems,
the trained policies enjoy the best of both worlds - they adapt
to different world map distributions while being computationally
inexpensive to evaluate.

I. INTRODUCTION

This paper examines the following information gathering
problem - given a hidden world map, sampled from a prior
distribution, the goal is to successively visit sensing locations
such that the amount of relevant information uncovered is
maximized while not exceeding a specified fuel budget. This
problem fundamentally recurs in mobile robot applications
such as autonomous mapping of environments using ground
and aerial robots [2, 12], monitoring of water bodies [13] and
inspecting models for 3D reconstruction [16, 15].

The nature of “interesting” objects in an environment and
their spatial distribution influence the optimal trajectory a
robot might take to explore the environment. As a result, it
is important that a robot learns about the type of environment
it is exploring as it acquires more information and adapts its
exploration trajectories accordingly. This adaptation must be
done online, and we provide such algorithms in this paper.

Consider a robot equipped with a sensor (RGBD camera)
that needs to generate a map of an unknown environment. It
is given a prior distribution about the geometry of the world
- such as a distribution over narrow corridors, or bridges or
power-lines. At every time step, the robot visits a sensing
location and receives a sensor measurement (e.g. depth image)

that has some amount of information utility (e.g. surface cov-
erage of objects with point cloud). If the robot employs a non-
adaptive lawnmower-coverage pattern, it can potentially waste
time and fuel visiting ineffective locations. On the other hand,
if it uses the history of measurements to infer the geometry
of unexplored space, it can plan efficient information-rich
trajectories. This incentivizes training policies to optimally
gather information on the distribution of worlds the robot
expects to encounter.

Even though its is natural to think of this problem setting
as a POMDP, we frame this problem as a novel data-driven
imitation learning problem [33]. We propose a framework that
trains a policy on a dataset of worlds by imitating a clairvoy-
ant oracle. During the training process, the oracle has full
knowledge about the world map (hence clairvoyant) and visits
sensing locations that would maximize information. The policy
is then trained to imitate these movements as best as it can
using partial knowledge from the current history of movements
and measurements. As a result of our novel formulation, we
are able to sidestep a number of challenging issues in POMDPs
like explicitly computing posterior distribution over worlds and
planning in belief space.

Our contributions are as follows:
1) We map the information gathering problem to a POMDP

and present an approach to solve it using imitation
learning of a clairvoyant oracle.

2) We present a framework to train such a policy on the non
i.i.d distribution of states induced by the policy itself.

3) We analyze the learnt policy by showing that offline
imitation of a clairvoyant oracle is equivalent to online
oracle execution in conjunction with posterior sampling.

4) We present results on a variety of datasets to demonstrate
the efficacy of the approach.

The remainder of this paper is organized as follows. Section
II presents the formal problem and Section III maps it to the
imitation learning framework. The algorithms and analysis
is presented in Section IV. Section V presents experimental
results with conclusions in Section VI.

II. BACKGROUND

A. Notation

Let V be a set of nodes corresponding to all sensing
locations. The robot starts at node vs. Let ξ = (v1, v2, . . . , vp)
be a sequence of nodes (a path) such that v1 = vs. Let Ξ be the
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Fig. 1: The adaptive information gathering problem. Given a world map φ,
the robot plans a path ξ which visits a node vi ∈ V and receives measurement
yi, such that information gathered (utility) F (ξ, φ) is maximized.

set of all such paths. Let φ ∈M be the world map. Let y ∈ Y
be a measurement received by the robot. Let H : V×M→ Y
be a measurement function. When the robot is at node v in
a world map φ, the measurement y received by the robot is
y = H (v, φ).

Let F : 2V ×M → R≥0 be a utility function. For a path
ξ and a world map φ, F (ξ, φ) assigns a utility to executing
the path on the world. We assume the utility function is a set
function, i.e. invariant to the sequence of nodes in the path.
We further assume the utility function satisfies the property
of adaptive submodularity - a natural diminishing returns
property which we will leverage in the approach we propose.
This property is true for several functions such as set coverage
function [9]. We assume that the measurement and utility
function is deterministic. 1

Given a node v ∈ V , a set of nodes V ⊆ V and world φ, the
discrete derivative of the utility function F is ∆F (v | V, φ) =
F (V ∪ {v}, φ)−F (V, φ) Let T : Ξ×M→ R≥0 be a travel
cost function. For a path ξ and a world map φ, T (ξ, φ) assigns
a travel cost for executing the path on the world. Fig. 1 shows
an illustration.

B. Problems with Known World Maps

We define four variants of the information gathering prob-
lem. For the first two variants, the world map φ is known and
can be evaluated while computing a path ξ.
Problem 1 (KNOWN-UNC: Known World Map; Uncon-
strained Travel Cost). Given a world map φ and a time horizon
T , find a path ξ that maximizes utility

arg max
ξ∈Ξ

F (ξ, φ)

s.t. |ξ| ≤ T + 1
(1)

Problem 2 (KNOWN-CON: Known World Map; Constrained
Travel Cost). Problem 1 with a travel cost budget B

arg max
ξ∈Ξ

F (ξ, φ)

s.t. T (ξ, φ) ≤ B
|ξ| ≤ T + 1

(2)

1The deterministic assumption implies that there is no utility in visiting a
node twice which simplifies computation. We also see that this assumption is
applied in practice [16].

Problem 1 is a set function maximization problem which in
general can be NP-Hard (Krause and Golovin [23]). However,
the utility function F is a monotone submodular function.
For such functions, it has been shown that greedy strate-
gies achieve near-optimality (Krause et al. [25], Krause and
Guestrin [24]).

Problem 2 introduces a routing constraint (due to T )
for which greedy approaches can perform arbitrarily poorly.
Chekuri and Pal [3], Singh et al. [35] propose a quasi-
polynomial time recursive greedy approach to solving this
problem. Iyer and Bilmes [17] solve a related problem
(submodular knapsack constraints) using an iterative greedy
approach which is generalized by Zhang and Vorobeychik
[41]. Yu et al. [40] propose a mixed integer approach to
solve a related correlated orienteering problem. Hollinger and
Sukhatme [13] propose a sampling based approach. Arora
and Scherer [1] use an efficient TSP with random sampling
approach.

C. Problems with Hidden World Maps

We now consider the setting where the world map φ is
hidden. Given a prior distribution P (φ), it can be inferred only
via the measurements yi received as the robot visits nodes vi.
Hence, instead of solving for a fixed path, we compute a policy
that maps history of measurements received and nodes visited
to decide which node to visit.
Problem 3 (HIDDEN-UNC: Hidden World Map; Uncon-
strained Travel Cost). Given a distribution of world maps,
P (φ), a time horizon T , find a policy that at time t, maps the
history of nodes visited {vi}t−1

i=1 and measurements received
{yi}t−1

i=1 to compute node vt to visit at time t, such that the
expected utility is maximized.
Problem 4 (HIDDEN-CON: Hidden World Map; Constrained
Travel Cost). Problem 3 with a travel cost budget B

Due to the hidden world map φ, it is not straight forward
to apply the approaches discussed in Section II-B - methods
have to reason about how P (φ | {vi}t−1

i=1, {yi}t−1
i=1) will

evolve. However, we assume the utility function F has an
additional property of adaptive submodularity [9]. Hence,
applying greedy strategies to Problem 3 has near-optimality
guarantees (Golovin et al. [10], Javdani et al. [18, 19], Chen
et al. [5, 6] ). However, these strategies require explicitly
sampling from the posterior distribution of φ which make it
intractable to apply in this problem.

Problem 4 does not enjoy the adaptive submodularity
property. Hollinger et al. [15, 14] propose a heuristic based
approach to select a subset of informative nodes and perform
minimum cost tours. Singh et al. [36] replan every step using
a non-adaptive information path planning algorithm. Inspired
by adaptive TSP approaches by Gupta et al. [11], Lim et
al. [28, 27] propose recursive coverage algorithms to learn
policy trees. However such methods cannot scale well to large
state and observation spaces. Heng et al. [12] make a modular
approximation of the objective function. Isler et al. [16] survey
a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.



III. POMDPS AND IMITATION LEARNING

A. Mapping Problems to a POMDP
We now map Problems HIDDEN-UNC and HIDDEN-CON

to a Partially Observable Markov Decision Process (POMDP).
The POMDP is a tuple (S,M,A,Ω, R,O, Z, T ) defined upto
a fixed finite horizon T . It is defined over an augmented state
space comprising of the ego-motion state space S (which we
will refer to as simply the state space) and the space of world
maps M. The first component, S, is fully observable while
the second component, M, is partially observable through
observations received.

Let the state, st ∈ S , be the set of nodes visited, st =
(v1, v2, . . . , vt). 2 Let the action, at ∈ A be the node visited
at = vt+1. Given a world map φ, at state s, the utility of a is
F (s ∪ a, φ). For Problem HIDDEN-CON, let Afeas (s, φ) ⊂ A
be the set of feasible actions defined as

Afeas (s, φ) = {a | a ∈ A, T (s ∪ a, φ) ≤ B} (3)

The state transition function, Ω (s, a, s′) = P (s′|s, a), is
the deterministic function s′ = s ∪ a. The one-step-reward
function, R (s, φ, a) ∈ [0, 1], is defined as the normalized
marginal gain of the utility function, R (s, φ, a) = ∆F (a|s,φ)

F(A,φ) .
Let the observation, ot ∈ O be the measurement ot = yt.
The observation model, Z (s, a, φ, o) = P (o|s, a, φ) is the
deterministic function o = H (a, φ).

We define the belief, ψt, to be the history of state, obser-
vation tuple received so far, i.e. {(si, oi)}ti=1. 3 The belief
transition function P (ψ′|ψ, a) can be computed from Ω and
Z. Let π̃(s, ψ) ∈ Π̃ be a policy that maps state s and belief ψ
to a feasible action a ∈ Afeas (s, φ). The value of executing a
policy π̃ for t time steps starting at state s and belief ψ is the
expected cumulative reward obtained by π̃:

Ṽ π̃t (s, ψ) =

t∑
i=1

Esi,ψi∼P (s′,ψ′|s,ψ,π̃,i),
φ∼P (φ|ψi)

[R (si, φ, π̃(si, ψi))]

(4)
where P (ψ′|ψ, π̃, i) is the distribution of beliefs at time i start-
ing from ψ and following policy π̃. Similarly P (s′|s, π̃, i) is
the distribution of states. P (φ|ψi) is the posterior distribution
on worlds given the belief ψi.

The state-action value function Q̃π̃t is defined as the ex-
pected sum of one-step-reward and value-to-go

Q̃π̃t (s, ψ, a) =Eφ∼P (φ|ψ) [R (s, φ, a)] +

Es′,ψ′∼P (s′,ψ′|s,ψ,a)

[
Ṽ π̃t−1(s′, ψ′)

] (5)

The optimal POMDP policy is obtained by minimization of
the expected state-action value function

π∗ = arg max
π̃∈Π̃

E t∼U(1:T ),
s,ψ∼P (s,ψ|π̃,t)

[
Q̃π̃T−t+1(s, ψ, π̃(s, ψ))

]
(6)

2We define state st to contain all nodes given the utility function is a set
function. Refer to [7]

3There is a redundancy between state and belief, i.e, state is implicitly
captured in belief. This is purely to aid in defining a clairvoyant oracle later
on (which needs only the state and disregards the belief). We define belief
in a manner such that the posterior distribution of worlds can be computed
using ψt. In practice, belief can be encoded efficiently by noting st−1 ⊂ st.

where U(1 : T ) is a uniform distribution over the discrete
interval {1, . . . , T}, P (s | π̃, t) and P (ψ | π̃, t) are the
posterior distribution over states and beliefs following policy
π̃ for t steps. The value of a policy π̃ ∈ Π̃ for T steps
on a distribution of worlds P (φ), starting states P (s) and
starting belief P (ψ|s) is the expected value function for the
full horizon

J (π̃) = Es1∼P (s),ψ1∼P (ψ|s1)

[
Ṽ π̃T (s1, ψ1)

]
(7)

Just as Problems HIDDEN-UNC and HIDDEN-CON map
to a POMDP, Problems KNOWN-UNC and KNOWN-CON
map to the corresponding MDP. While we omit the details
for brevity (refer to [7]), the MDP defines a corresponding
policy π(s, φ) ∈ Π, value function V πt (s, φ), state-action value
function Qπt (s, φ, a) and optimal policy πMDP.

Online POMDP planning also has a large body of work
(see Ross et al. [32]). Although there exists fast solvers such
as POMCP (Silver and Veness [34]) and DESPOT (Somani
et al. [37]), the product space of world maps and observation
space is too large for online planning. An alternative class of
approaches is model-free policy improvement ([30]) which has
also been applied to POMDPs ([29, 26]). While these methods
make very little assumptions about the problem, they are local
and require careful initialization.

B. Imitation Learning

An alternative to policy improvement approaches is to train
policies to imitate reference policies (or oracle policies). This
is a suitable choice for scenarios where the problem objective
is to imitate a user-defined policy. This is also a useful
approach in scenarios where there exist good oracle policies
for the original problem, however these policies cannot be
executed online (e.g due to computational complexity) hence
requiring imitation via an offline training phase.

We now formally define imitation learning as applied to
our setting. Given a policy π̃, we define the distribution of
states P (s|π̃) and beliefs P (ψ|π̃) induced by it (termed as
roll-in). Let L (s, ψ, π̃) be a loss function that captures how
well policy π̃ imitates an oracle. Our goal is to find a policy
π̂ which minimizes the expected loss as follows.

π̂ = arg min
π̃∈Π̃

Es∼P (s|π̃),ψ∼P (ψ|π̃) [L (s, ψ, π̃)] (8)

This is a non-i.i.d supervised learning problem. Ross and
Bagnell [33] propose FORWARDTRAINING to train a non-
stationary policy (one policy π̂t for each timestep), where
each policy π̂t can be trained on distributions induced by
previous policies (π̂1, . . . , π̂t−1). While this has guarantees,
it is impractical given a different policy is needed for each
timestep. For training a single policy, Ross and Bagnell [33]
show how such problems can be reduced to no-regret online
learning using dataset aggregation (DAGGER). The loss func-
tion they consider L is a mis-classification loss with respect to
what the expert demonstrated. Ross and Bagnell [31] extend
the approach to the reinforcement learning setting where L is



the reward-to-go of an oracle reference policy by aggregating
values to imitate (AGGREVATE).

C. Solving POMDP via Imitation of a Clairvoyant Oracle

To examine the suitability of imitation learning in the
POMDP framework, we compare the training rules (6) and
(8). We see that a good candidate loss function L (s, ψ, π̃)
should incentivize maximization of Q̃π̃T−t+1(s, ψ, π̃(s, ψ)). A
suitable approximation of the optimal value function Q̃π

∗

T−t+1

that can be computed at train time would suffice. In this work
we define cumulative reward gathered by a clairvoyant oracle
as the value function to imitate4. This has been shown to be
effective by Kahn et al. [20], Sun et al. [39], Karkus et al.
[21].
Definition 1 (Clairvoyant Oracle). Given a distribution of
world map P (φ), a clairvoyant oracle πOR(s, φ) is a policy
that maps state s and world map φ to a feasible action
a ∈ Afeas (s, φ) such that it approximates the optimal MDP
policy, πOR ≈ πMDP = arg max

π∈Π
J (π).

The term clairvoyant is used because the oracle has full
access to the world map φ at train time. The oracle can be
used to compute state-action value as follows

QπOR
t (s, φ, a) = R (s, φ, a)+Es′∼P (s′|s,a)

[
V πOR
t−1 (s′, φ)

]
(9)

Our approach is to imitate the oracle during training. This
implies that we train a policy π̂ by solving the following
optimization problem

π̂ = arg max
π̃∈Π̃

E φ∼P (φ),
t∼U(1:T ),

s,ψ∼P (s,ψ|φ,π̃,t)

[
QπOR

T−t+1(s, φ, π̃(s, ψ))
]

(10)

While we will define training procedures to concretely
realize (10) later in Section IV, we offer some intuition behind
this approach. Since the oracle πOR knows the world map
φ, it has appropriate information to assign a value to an
action a. The policy π̂ attempts to imitate this action from
the partial information content present in its belief ψ. Due
to this realization error, the policy π̂ visits a different state,
updates its belief, gains more information, and queries the
oracle for the best action. Hence while the learnt policy can
make mistakes in the beginning of an episode, with time it
gets better at imitating the oracle.

D. Analysis using a Hallucinating Oracle

The learnt policy imitates a clairvoyant oracle that has
access to more information (world map φ compared to belief
ψ). Hence, the realizability error of the policy is due to two
terms - firstly the information mismatch and secondly the
expressiveness of feature space. This realizability error can be

4Imitation of a clairvoyant oracle in information gathering has been
explored by Choudhury et al. [7]. We subsume the presented algorithm,
EXPLORE, in our framework (as Algorithm QVALAGG) and instead focus
on the theoretical insight on what it means to imitate a clairvoyant oracle.
Additionally, we provide analysis highlighting when such an approach is
effective (in Section III-D)

hard to bound making it difficult to bound the performance of
the learnt policy. This motivates us to introduce a hypothetical
construct, a hallucinating oracle, to alleviate the information
mismatch.
Definition 2 (Hallucinating Oracle). Given a prior distribution
of world map P (φ) and roll-outs by a policy π̃, a hallucinating
oracle π̃OR computes the instantaneous posterior distribution
over world maps and takes the action with the highest expected
state-action value as computed by the clairvoyant oracle.

π̃OR(s, ψ) = arg max
a∈A

Eφ′∼P (φ′|ψ,π̃,t)
[
QπOR

T−t+1(s, φ′, a)
]
(11)

We will now show that by imitating a clairvoyant oracle we
effectively imitate the corresponding hallucinating oracle
Lemma 1. The offline imitation of clairvoyant oracle (10)
is equivalent to sampling online a world from the posterior
distribution and executing a hallucinating oracle as shown5

π̂ = arg max
π̃∈Π̃

E φ∼P (φ),
t∼U(1:T ),

s,ψ∼P (s,ψ|φ,π̃,t)

[
Qπ̃OR

T−t+1(s, φ, π̃(s, ψ))
]

Note that a hallucinating oracle uses the same information
content as the learnt policy. Hence the realization error is
purely due to the expressiveness of the feature space. However,
we now have to analyze the performance of the hallucinating
oracle which chooses the best action at a time step given
its current belief. We will see in Section IV-C that this pol-
icy is near-optimal for Problem HIDDEN-UNC. For Problem
HIDDEN-CON, while this does not have any such guarantees,
there is evidence to show this is an effective policy as alluded
to in Koval et al. [22].

IV. APPROACH

A. Overview

We introduced imitation learning and its applicability to
POMDPs in Section III. We now present a set of algorithms to
concretely realize the process. The overall idea is as follows -
we are training a policy π̂(s, ψ) that maps features extracted
from state s and belief ψ to an action a. The training objective
is to imitate a clairvoyant oracle that has access to the
corresponding world map φ. Fig. 2 shows an abstract overview.
In order to define concrete algorithms, there are two degrees
of freedom that need to be specified

1) Clairvoyant oracle to imitate: The choice of the clair-
voyant oracle defines QπOR

t (s, φ, a) in (9). Depending
on whether we are solving Problem HIDDEN-UNC or
HIDDEN-CON, we explore two different kinds of oracles

(a) Clairvoyant one-step-reward: For Problem HIDDEN-
UNC, we use the one-step-reward R (s, φ, a) in place of
QπOR
t (s, φ, a). This corresponds to greedily imitating

the immediate reward. We will see in Section IV-C that
this has powerful near-optimality guarantees.

(b) Clairvoyant reward-to-go: For Problem HIDDEN-CON,
we define an oracle policy πOR that approximately

5Refer to [8] for all proofs
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Fig. 2: An abstract overview of the imitation learning architecture where a learner π̂ is trained to imitate a clairvoyant oracle πOR. There are 4 key steps. Step
1: A world map φ is sampled from database representing P (φ). Step 2: A policy is used to roll-in on φ to a timestep t to get state st and belief ψt. Step 3:
A random action at is chosen and a clairvoyant oracle πOR is given full access to world map φ to compute the cumulative reward to go QπOR

T−t+1 (st, φ, at)
Step 4: The learnt policy π̂ is updated to map (st, ψt, at) to QπOR .

solves the underlying MDP and use its cumulative
reward-to-go to compute QπOR

t (s, φ, a) (refer (9)).
2) Stationary / Non-stationary policy: As mentioned in Sec-

tion. III-B, imitation learning deals with non i.i.d distri-
butions induced by the policy themselves. Depending on
the choice of policy type (non-stationary / stationary), a
corresponding training algorithm exists that offers guar-
antees

(a) Non-stationary policy: For the non-stationary case, we
have a policy for each timestep π̂1, . . . , π̂T . While
this can be trained using the FORWARDTRAINING
algorithm [33], there are several drawbacks. Firstly, it
is impractical to have a different policy for each time-
step as it scales with T . Secondly, the training has to
proceed sequentially. Thirdly, each policy operates on
data for only that time-step, thus preventing general-
izations across timesteps. However, the procedure is
presented for completeness.

(b) Stationary policy: A single stationary policy π̂ can be
trained using the AGGREVATE algorithm [31] that re-
duces the problem to no-regret online learning setting.
The training procedure is an interactive process where
data is aggregated to refine the policy. The advantages
are that the policy uses data across all timesteps, only
one policy needs to be tracked and the training process
can be stopped arbitrarily.

B. Algorithm

We now present concrete algorithms to realize the training
procedure. Given the two axes of variation - problem and
policy type - we have four possible algorithms

1) REWARDFT: Imitate one-step-reward using non-
stationary policy by FORWARDTRAINING (Alg. 1)

2) QVALFT: Imitate reward-to-go using non-stationary pol-
icy by FORWARDTRAINING (Alg. 1)

3) REWARDAGG: Imitate one-step-reward using stationary
policy by DAGGER (Alg. 2)

4) QVALAGG: Imitate reward-to-go using stationary policy
by AGGREVATE (Alg. 2)

Table. I shows the algorithm mapping.
Alg. 1 describes the FORWARDTRAINING procedure to train

the non-stationary policy. Previous policies π̂1, . . . , π̂t−1 are

TABLE I: Mapping from Problem and Policy type to Algorithm

Policy
Problem HIDDEN-UNC HIDDEN-CON

Non-stationary policy REWARDFT QVALFT
Stationary policy REWARDAGG QVALAGG

Algorithm 1 Non-stationary policy (REWARDFT, QVALFT)

1: for t = 1 to T do
2: Initialize D ← ∅.
3: for j = 1 to m do
4: Sample world map φ from dataset P (φ)
5: Execute policy π̂1, . . . , π̂t−1 to reach (st, ψt).
6: Execute any action at ∈ Afeas (st, φ).
7: Execute oracle πOR from t+ 1 to T on φ
8: Collect value to go QπOR

i = QπOR

T−t+1(st, φ, at)
9: D ← D ∪ {st, ψt, at, t, QπOR

i }
10: Train cost-sensitive classifier π̂t on D
11: Return Set of policies for each time step π̂1, . . . , π̂T .

Algorithm 2 Stationary policy (REWARDAGG, QVALAGG)

1: Initialize D ← ∅, π̂1 to any policy in Π̃
2: for i = 1 to N do
3: Initialize sub dataset Di ← ∅
4: Let roll-in policy be πmix = βiπOR + (1− βi)π̂i
5: Collect m data points as follows:
6: for j = 1 to m do
7: Sample world map φ from dataset P (φ)
8: Sample uniformly t ∈ {1, 2, . . . , T}
9: Assign initial state s1 = vs

10: Execute πmix up to time t− 1 to reach (st, ψt)
11: Execute any action at ∈ Afeas (st, φ)
12: Execute oracle πOR from t+ 1 to T on φ
13: Collect value-to-go QπOR

i = QπOR

T−t+1(st, φ, at)
14: Di ← Di ∪ {st, ψt, at, t, QπOR

i }
15: Aggregate datasets: D ← D⋃Di
16: Train cost-sensitive classifier π̂i+1 on D
17: (Alternately: use any online learner π̂i+1 on Di)
18: Return best π̂i on validation



used to create a dataset (Lines 1–5). The oracle provides the
value to imitate (Line 7) - if the one-step-reward is used the
algorithm is referred to REWARDFT else if an oracle is used
QVALFT.

Alg. 2 describes the AGGREVATE procedure to train the
stationary policy. The algorithm iteratively trains a sequence
of learnt policies (π̂1, π̂2, . . . , π̂N ) by aggregating data for
an online cost-sensitive classification problem. At any given
iteration, data is collected by roll-in 6 with a mixture of learnt
and oracle policy (Lines 1–10). The oracle provides the value
to imitate (Lines 12–13) - if the one-step-reward is used the
algorithm is referred to REWARDAGG else if an oracle is used
QVALAGG. Data is appended to the original dataset and used
to train an updated learner π̂i+1 (Lines 15–17).

C. Imitation of Clairvoyant One-Step-Reward

The strategy to imitate the clairvoyant one-step-reward is
employed in Problem HIDDEN-UNC. This is motivated by
the observation that the utility function satisfies a property
of adaptive submodularity (as mentioned in Section II-C).
For such problems, greedily selecting actions with highest
expected reward has near-optimality guarantees. This implies
the following Lemma
Lemma 2. The performance of the hallucinating oracle π̃OR

is near-optimal w.r.t the optimal policy π∗.

J (π̃OR) ≥
(

1− 1

e

)
J (π∗)

This property can then be used to obtain a near-optimality
bound for the learnt policy
Theorem 1. N iterations of REWARDAGG, collecting m
regression examples per iteration guarantees that with proba-
bility at least 1− δ

J (π̂) ≥
(

1− 1

e

)
J (π∗)

− 2
√
|A|T

√
εclass + εreg +O

(√
log ((1/δ)/Nm)

)
−O

(
T 2 log T

αN

)
where εreg is the empirical average online learning regret on
the training regression examples collected over the iterations
and εclass is the empirical regression regret of the best regres-
sor in the policy class.

D. Imitation of Clairvoyant Reward-To-Go

Problem HIDDEN-CON does not posses the adaptive sub-
modularity property. However there is empirical evidence to
suggest that the hallucinating oracle performance J (π̃OR) is
sufficiently high [22]. Hence the learnt policy has a perfor-
mance guarantee with respect to the hallucinating oracle

6We sample t instead of using the entire trajectory to minimize the calls
to oracle

Theorem 2. N iterations of QVALAGG, collecting m regres-
sion examples per iteration guarantees that with probability
at least 1− δ
J (π̂) ≥J (π̃OR)

− 2
√
|A|T

√
εclass + εreg +O

(√
log ((1/δ)/Nm)

)
−O

(
T 2 log T

αN

)
where εreg is the empirical average online learning regret on
the training regression examples collected over the iterations
and εclass is the empirical regression regret of the best regres-
sor in the policy class.

V. EXPERIMENTAL RESULTS

A. Implementation Details

Our implementation is open sourced for both MATLAB
and C++ (https://bitbucket.org/sanjiban/matlab learning info
gain). For further details regarding implementation, refer [7].

1) Problem Details: The utility function F is selected to
be a fractional coverage function (similar to [16]) which is
defined as follows. The world map φ is represented as a
voxel grid representing the surface of a 3D model. The sensor
measurement H (v, φ) at node v is obtained by ray-casting on
this 3D model. A voxel of the model is said to be ‘covered’ by
a measurement received at a node if a point lies in that voxel.
The coverage of a path ξ is the fraction of covered voxels by
the union of measurements received when visiting each node
of the path. The travel cost function T is chosen to be the
euclidean distance. The values of total time step T and travel
budget B vary with problem instances and are specified along
with the results.

2) Learning Details: The tuple (s, a, ψ) is mapped to a
vector of features f =

[
fTIG fTmot

]T
. The feature vector f IG

is a vector of information gain metrics as described in [16].
fmot encodes the relative rotation and translation required to
visit a node. Random forest regression is used as a function
approximator. The oracle used is the generalized cost benefit
algorithm (GCB) [41].

3) Baseline: The baseline policies are a class of infor-
mation gain heuristics discussed in [16] augmented with a
motion penalization term when applied to Problem HIDDEN-
CON. The heuristics are remarkably effective, however, their
performance depends on the distribution of objections in a
world map.

B. Adaptation to Different Distributions

We created a set of 2D exploration problems to gain a better
understanding of the learnt policies and baseline heuristics.
The problem was HIDDEN-UNC, the dataset comprises of 2D
binary world maps, uniformly distributed nodes and a simu-
lated laser. The problem details are T = 30 and |A| = 300.
The train size is 100, test size is 100. REWARDAGG is executed
for 10 iterations.

The overall conclusion is that on changing the datasets the
performance of the heuristics vary widely while the learnt

https://bitbucket.org/sanjiban/matlab_learning_info_gain
https://bitbucket.org/sanjiban/matlab_learning_info_gain
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Fig. 3: Case study of Problem HIDDEN-UNC using REWARDAGG, REWARDFT and baseline heuristics. Two different datasets of 2D exploration are considered
- (a) dataset 1 (parallel lines) and (b) dataset 2 (distributed blocks). Problem details are: T = 30, |A| = 300, 100 train and 100 test maps. A sample test
instance is shown along with a plot of cumulative reward with time steps for different policies is shown in (c) and (d). The error bars show 95% confidence
intervals. (e) and (f) show snapshots of the execution at time steps 7, 15 and 30.

policies outperform both heuristics. Interstingly, REWARDAGG
outperforms REWARDFT- this is probably due to the general-
ization across time-steps. 7 We now analyze each dataset.

1) Dataset 1: Parallel Lines: Fig. 3a shows a dataset
created by applying random affine transformations to a pair
of parallel lines. This dataset is representative of information
being concentrated in a particular fashion. Fig. 3c shows
a comparison of REWARDAGG, REWARDFT with baseline
heuristics. While Rear Side Voxel outperforms Average En-
tropy, REWARDAGG outperforms both. Fig. 3e shows progress
of each. Average Entropy explores the whole world without
focusing, Rear Side Voxel exploits early while QVALAGG
trades off exploration and exploitation.

2) Dataset 2: Distributed Blocks: Fig. 3b shows a dataset
created by randomly distributing rectangular blocks around the

7However, we believe given enough data, the non-stationary policy would
eventually outperform the stationary policy.

periphery of the map. This dataset is representative of infor-
mation being distributed around. Fig. 3c shows that Rear Side
Voxel saturates early, Average Entropy eventually overtaking
it while REWARDAGG outperforms all. Fig. 3e shows that
Rear Side Voxel gets stuck exploiting an island of information.
Average Entropy takes broader sweeps of the area thus gaining
more information about the world. QVALAGG shows a non-
trivial behavior exploiting one island before moving to another.

C. Train on Synthetic, Test on Real

To show the practical usage of our pipeline, we show a
scenario where a policy is trained on synthetic data and tested
on a real dataset. Fig. 4a shows some sample worlds created
in Gazebo to represent an office desk environment on which
QVALAGG is trained. Fig. 4b shows a dataset of an office
desk collected by TUM Computer Vision Group [38]. The
dataset is parsed to create a pair of pose and registered point
cloud which can then be used to evaluate different algorithms.



(a) (b) (c)
Fig. 4: Comparison of QVALAGG with baseline heuristics on a 3D exploration problem where training is done on simulated world maps and testing is done
on a real dataset of an office workspace. The problem details are: T = 10, B = 12, |A| = 50. (a) Samples from 100 simulated worlds resembling an office
workspace created in Gazebo. (b) Real dataset collected by [38] using a RGBD camera. (c) Snapshots of execution of QVALAGG heuristic at time steps
1, 3, 5, 9.

Dataset Sample World Maps Problem RewardAgg 
/ QvalAgg

Average  
Entropy

Occlusion 
Aware

Unobserved 
Voxels

Rear Side 
Voxels

Rear Side 
Entropy

Poisson Forest of 
Circular Discs 

(2D)

HIDDEN-UNC 

HIDDEN-CON

(0.58, 0.61) 
(0.54, 0.59)

(0.59, 0.62) 
(0.54, 0.59)

(0.49, 0.53) 
(0.42, 0.46)

(0.39, 0.45) 
(0.34, 0.41)

(0.53, 0.55) 
(0/37, 0.43)

(0.42, 0.47) 
(0.39, 0.44)

Tabular World of 
Rectilinear 
Blocks (2D)

HIDDEN-UNC 

HIDDEN-CON

(0.43, 0.53) 
(0.27, 0.33)

(0.31, 0.35) 
(0.26, 0.29)

(0.20, 0.26) 
(0.18, 0.23)

(0.28, 0.35) 
(0.21, 0.28)

(0.35, 0.44) 
(0.18, 0.24)

(0.25, 0.31) 
(0.21, 0.27)

Bookshelves and 
Tables (3D)

HIDDEN-UNC 

HIDDEN-CON

(0.14, 0.31) 
(0.05, 0.24)

(0.01, 0.04) 
(0.01, 0.04)

(0.01, 0.04) 
(0.01, 0.04)

(0.01, 0.04) 
(0.01, 0.04)

(0.01, 0.22) 
(0.01, 0.22)

(0.01, 0.19) 
(0.01, 0.19)

Cluttered 
Construction Site 

(3D)

HIDDEN-UNC 

HIDDEN-CON

(0.14, 0.20) 
(0.08, 0.12)

(0.01, 0.12) 
(0.01, 0.12)

(0.01, 0.09) 
(0.01, 0.09)

(0.01, 0.09) 
(0.01, 0.09)

(0.01, 0.11) 
(0.01, 0.11)

(0.01, 0.10) 
(0.01, 0.10)

Office Desk and 
Chairs (3D)

HIDDEN-UNC 

HIDDEN-CON

(0.69, 0.80) 
(0.55, 0.72)

(0.46, 0.59) 
(0.46, 0.59)

(0.51, 0.63) 
(0.48, 0.63)

(0.51, 0.63) 
(0.48, 0.63)

(0.59, 0.67) 
(0.43, 0.52)

(0.61, 0.72) 
(0.41, 0.53)

Fig. 5: Results for Problems HIDDEN-UNC and HIDDEN-CON on a spectrum of 2D and 3D exploration problems. The train size is 100 and test size is 10.
Numbers are the confidence bounds (for 95% CI) of cumulative reward at the final time step. Algorithm with the highest median performance is emphasized
in bold.

Fig. 4c shows QVALAGG learns a desk exploring policy by
circumnavigating around the desk. This shows the powerful
generalization capabilities of the approach.

D. Spectrum of 2D / 3D exploration problems

We evaluate the framework on a spectrum of 2D /
3D exploration problems on synthetic worlds as shown in
Fig. 5. For Problem HIDDEN-UNC, REWARDAGG is employed
along with baseline heuristics. For Problem HIDDEN-CON,
QVALAGG is employed with baseline heuristic augmented
with motion penalization. The train size is 100 and test size is
10. We see that the learnt policies outperform all heuristics on
most datasets by exploiting the distribution of objects in the
world particularly in Problem HIDDEN-UNC. This is indicative
of the power of the hallucinating oracle. However, the Poisson
forest datasets stand out - where given the ergodic distribution,
the Average Entropy heuristic performs best.

VI. CONCLUSION

We present a novel framework for learning information
gathering policies via imitation learning of clairvoyant ora-
cles. We presented analysis that establishes an equivalence to
online imitation of hallucinating oracles thereby explaining
the success of such policies. The framework is validated on a
spectrum of 2D and 3D exploration problems.

There are several key directions for future research. Firstly,
analysis from Chen et al. [4], where the authors show that
under mild assumptions POMDPs can be reduced to sequence
of MDPs, is promising for obtaining better regret guarantees.
[27] also offer alternatives to adaptive submodularity that
could improve guarantees for HIDDEN-CON. Secondly, instead
of learning a policy, learning a surrogate utility function that is
solved online with a routing TSP might lead to improved per-
formance. Finally, we are looking to apply our framework to
POMDP problems where hindsight optimization have shown
success (e.g learning to grasp Koval et al. [22]).
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