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Abstract— For co-manipulation involving humans and robots,
robot controllers that are based on human-human behavior
should allow more comfortable and coordinated movement
between the human-robot dyad. In this paper, we describe an
experiment between human-human dyads where we recorded
the force and motion data as leader-follower dyads moved
in translation and rotation. The force/motion data was then
analyzed for patterns found during lateral translation only. For
extended objects, lateral translation and in-place rotation are
ambiguous, but this paper determines a way to characterize
lateral translation triggers for future use in human-robot
interaction. The study has 4 main results. First, interaction
forces are non-negligible and are necessary for co-manipulation.
Second, minimum-jerk trajectories are found in the lateral
direction only for lateral movement. Third, the beginning of
a lateral movement is characterized by distinct force triggers
by the leader. Fourth, there are different metrics that can be
calculated to determine which dyads moved most effectively in
the lateral direction.

I. INTRODUCTION

The concept of humans and robots collaboratively work-
ing to accomplish useful tasks is currently motivating a
large amount of robotics research. Physical Human-Robot
Interaction (pHRI) is an area of robotics that can especially
benefit from the combined strengths of a human-robot team:
strength and execution from the robot and intelligence and
planning from the human. This is particularly true of co-
manipulation tasks where a human and a robot physically
manipulate the same object simultaneously. Co-manipulation
can include complex translational and rotational tasks, such
as moving a table, couch, or other extended, rigid objects.
These objects are heavy or unwieldy, and necessitate two or
more people to carry them. A robot capable of replacing a
human in these teams would help greatly in situations like
search and rescue where current high-payload robots are too
heavy and dangerous to relocate and operate. Robots that can
physically interact with a human could help lift and remove
rubble from disaster areas or take a victim on a stretcher to
safety. These robots would allow fewer people to complete
the same amount of work, or for more teams to operate
and reach more people in need of help. Other applications
include using robots to help load and unload moving vans,
using robots to help move objects around warehouses, and
any other co-manipulation applications where human-human
teams are currently used (see Fig. 1).

An important characteristic of these situations is uncer-
tainty in the task. Often a task is poorly defined for one or
both partners of a dyad, and a controller needs to be able
to adapt to disturbances and trajectory changes. We have
found that ambiguity can exist when tasks include manip-

Fig. 1: A dyad, one blind follower and one sighted leader,
performs a co-manipulation task

ulating an extended object that may need to be translated,
rotated, or both. When an extended object is included in
co-manipulation tasks, forces applied in a lateral direction
could indicate either intent to translate laterally, or intent to
rotate the object in the plane, which will be referred to as the
rotation-translation problem. In order to be effective, a pHRI
controller for co-manipulation of extended objects must be
able to distinguish between rotation and translation intent.

While the past work on co-manipulation outlined in Sec-
tion II shows that collaboration through force is applicable
to some tasks, it is not clear that the algorithms and intent-
estimators developed will work in less-defined scenarios. In
order for a robot to work with humans for co-manipulation,
it needs to be able to respond in complex situations involving
movement of the object in 6 dimensions, 3 translational and
3 rotational. Six degrees of freedom is for a rigid object only
and manipulation of any non-rigid object will only increase
complexity. These types of movement involve whole-body
motion and bi-manual manipulation by the participants,
rather than planar arm movements only. Our eventual goal is
to create a controller that can be used in a human-robot dyad
that is able to move in 6 DOF based on intent provided by the
human. To understand how to design control methods for a
robot in a human-robot co-manipulation team, our approach
is to characterize the movements and forces produced by
human-human dyads for a variety of tasks in order to later
apply similar principles to a generalized robot controller for
co-manipulation. We also expect that the principles presented
in this paper on human-human co-manipulation could inform
controller design for robot-robot co-manipulation in terms of
stability and force control principles for efficient operation
between two autonomous agents.



The main contributions of this paper are as follows
1) Unique co-manipulation data from trials where human-

human dyads moved a rigid table together (described
in full in Section III)

2) Observations on lateral movements from co-
manipulation study, which include the following:

• Interaction forces are not minimized
• Lateral trajectories resemble minimum-jerk trajec-

tories
• Lateral movements are triggered by a specific

interaction force sequence
• Dyads that performed well for lateral-translation

movements minimized angular velocity about the
superior axis and minimized deviation from a
minimum-jerk trajectory

The paper is organized as follows. Section II explores rel-
evant literature on human-robot co-manipulation tasks. The
experiment described in our contributions is explained in full-
depth in Section III, including describing the equipment used,
describing each task in detail, and describing the participants
of the study. Section IV explores the main observations from
the study. Lastly, Section V is the conclusion and describes
future work.

II. RELATED WORK

A. State-of-the-Art Controllers

Researchers have been studying pHRI co-manipulation for
many years. While a majority of the research done has been
for Cartesian motion, some people have studied the rotation-
translation problem. Thobbi et al. implemented a version of
a controller for rotation-translation, although human intent
was captured using motion capture, limiting its applicability
[1]. Bussy et al. developed a proactive controller for a two-
armed mobile robot [2] [3]. Their model was based on an
experiment with human-human dyad that manipulated an ex-
tended object data in 1 DOF (anterior/posterior movement).
Their model was a finite state machine, where each state
was triggered by a force applied, and then passed through
a trajectory-referenced admittance controller to determine
the desired state. While this approach was successful in
the translation aspect, it did not address the rotational part
of the problem. Karayiannidis et al. developed a model to
switch between rotational and translational movement for
a one-armed stationary robot [4]. In their experiments, a
human partner was able to move the robot in translation
and rotation as desired. However, their experiments were
done for single-arm manipulation and they approached the
rotation-translation problem by manually setting values for
parameters.

Many other experiments have been performed which show
considerable promise for point-to-point, 1 DOF motion.
However, many real-world tasks require more DOF and less
constrained motion. In a leader-follower dyad, the follower
often does not know the end goal when motion begins, or
the end goal may change while in motion. In tasks such
as these, where the end goal is not definite, point-to-point

controllers are not as applicable. Kosuge [5] and Ikeura et
al. [6], [7] developed similar strategies for situations that
required more flexibility, involving using direction of force
and change in magnitude of force. These works sparked work
in what is now known as variable-impedance control [8],
[9]. This control method offers Cartesian control based on
how much the magnitude of the force is changing, and in
which direction the force is being applied on the follower.
While this model has been shown to be useful for Cartesian
movements, [10], [11], it does not generalize to extended
objects due to the rotation-translation problem, nor does it
address rotational movements alone. Other proposed models
for co-manipulation include programming by demonstration
(PBD) [12], [13], finite state machines (FSM) [3], [2],
uncertainty control [14], and movement coordination [15].
PBD involves some pre-programmed information, and does
not easily generalize to a case where a new, unlearned motion
is required. Using FSM is promising, but it is necessary to
determine how to switch into various states when looking
at a 6 DOF controller. Uncertainty control uses uncertainty
within a cost function subject to robot dynamics to allow
a robot controller to effectively navigate. These techniques
have been used in [14], but they are limited to a 2 DOF
approach. Movement coordination is another possibility, in-
volving coordinating the movement of a robot with its human
partners based on high-level group dynamics, although this
method does not take low-level force inputs into account.

B. Intent and Haptic Information

Human intent is another topic in pHRI. Many papers have
suggested that haptic channels are an appropriate method
of communication for human intent [16], [17], [18], [19].
This makes sense, as human teams can move objects by
interacting only through forces applied to the objects, rather
than by communicating verbally or otherwise. Many studies
have been done to conclude that robots can be controlled by
human force input in this manner, but these studies often
involve the human acting directly on the robot, and not
through any extended object [20], [21], [7], [22].

Some research involved shared virtual-environment loads
[23], [24], and others involved upper arm movements of
individuals and dyads [25], [18]. These experiments clarify
many aspects of pHRI, including verifying that haptic infor-
mation aids in co-manipulation tasks, noting some interaction
patterns, and combining planning and learning to complete
goal-oriented tasks. The virtual-environment loads, however,
do not fully capture the details of a human-human dyad
physically interacting with one another in a real environment,
and using only upper arm movements limits the applications
available for a controller based on these movements.

C. Co-Manipulation Metrics

Another issue is determining what constitutes a successful
controller in co-manipulation. Since haptic information is
used as a communication method [26], some researchers
have suggested that haptic information is used to minimize
a certain criterion. Flash and Hogan [27], for example,



described human motion as following minimum-jerk tra-
jectories for reaching movements, which has been used to
describe motion objectives in many experiments [17], [20].
The theory behind these studies is that robots should move
following minimum-jerk trajectories. However, there are also
tasks that do not fit well with the minimum-jerk trajectory
[28], [1]. Some researchers, like Groten et al. [19], have
suggested that the focus should be minimizing the energy
of the motion by eliminating interaction forces, or forces
that do not contribute to motion. Other examples of metrics
include, position error [1], [8], task completion time [10],
[28], and wasted effort [17]. It is not clear, however, which
of these metrics characterizes the performance of a dyad.
For example, a dyad might move slower, giving a higher
completion time, but have lower position error. Determining
what behavior successful dyads display is essential not only
for comparing one dyad to another, but also for comparing
one co-manipulation controller to another.

We plan on developing an intuitive controller for co-
manipulation of extended objects and our approach is to first
focus on characterizing human dyad force and motion data
through complex co-manipulation tasks. We developed an
experiment to this end. The purposes of this study were two-
fold: first, to provide a baseline for how humans perform a
general collaboration task on extended objects, and second,
to provide useful haptic information to use for creation
of a human intent estimator. Our study provides insights
for collaborative motion of dyads not seen in other work,
and forms the basis for developing a controller capable of
handling complex tasks.

III. HUMAN DYAD EXPERIMENT

As a preliminary step in producing a 6-dimensional co-
manipulation controller between a human and a robot, we
performed a study involving human-human teams. If robots
are to one day work alongside humans as partners, the robots
need to perform tasks in a way that humans intuitively
understand the interaction. Our approach is to develop an
pHRI controller based on concrete human behavior in order
to get performance that humans will understand and find
acceptable.

A. Experimental Setup

After attaining IRB approval, we set up trials involving 2-
person teams or dyads. These teams were to work together
to perform a series of 6 object-manipulation tasks.

1) Table: The object the teams moved was a 59x122x2 cm
wooden board – meant to simulate an object (like a table) that
is difficult for one person to maneuver. Attached to the leader
end of the board were a pair of ABS 3D-printed handles, to
which two ATI Mini45 force/torque sensors were fastened.
The sensors transmitted data via ATI NET F/T Net Boxes,
which passed data over Ethernet to the computer at a rate of
100 Hz.

The position of the board was tracked via Cortex Motion
Capture software with a Motion Analysis Kestrel Digital
Realtime System. A total of 8 Kestrel cameras were used to

Fig. 2: Setup for table and during trials

Fig. 3: Anatomical direction reference with corresponding
table axis. X is anterior, Y is Lateral, and Z is Superior.

track 8 infrared markers placed on the board. Using a static
global frame established by the motion capture system, the
position and orientation of the board could be tracked over
time, and the force and torque data could be transformed
into the board’s frame, located at the geometric center of the
table (see Fig. 3), as well as the static frame. The motion
capture data was collected at a rate of 200 Hz.

Along with the infrared markers and force/torque sensors,
the board also held an Ethernet switch, a power strip, and
all cables necessary for power and communication. One ex-
perimenter was tasked with making sure no obstacles would
trip the subjects, including moving these cables as necessary
without exerting forces on the table. During the trials, a
tablet was mounted on the board to display instructions to
the participants. In total, the board weighed 10.3 kg. An
annotated visual of the board can be seen in Fig. 2.

2) Subjects: The trial participants were outfitted with
polyester arm sleeves for both arms. Two groups of four
infrared markers were placed on rigid plates, and then
attached to the sleeve, one on the upper arm and one on the
lower arm. A blindfold was also used for the tasks where no
verbal or visual communication was allowed.

3) Arena: The test arena was a volume measuring
490x510x250 cm. A series of colored tape lines (see Fig. 4)
were placed on the floor of the volume, indicating key
positions for each of the 6 object-manipulation tasks. On 3 of
the walls surrounding the arena, we placed green, orange, and
purple poster boards to help orient the leader when looking at
the tablet. As seen in Fig. 5 and Fig. 6, there are colored bars



on the edges of each task figure representing the walls with
the corresponding color. This way, the leader could more
easily determine the frame of reference for the instructions
on the tablet mounted to the table.

Fig. 4: Colored tape used for task delineation.

The arena was also equipped with a video capturing
device. The device we used was a Microsoft Kinect 2, which
allowed us to capture 3D point cloud data, as well as color
video of each trial. Although we did not need the point cloud
data for analysis in this paper, the data may be useful in
future work.

B. Experimental Procedure
First, the participants were oriented on the purpose of the

research and signed release forms. Second, a leader was
chosen at random (by coin flip). Third, each participant
put on the sleeves and the participant designated as the
follower placed the blindfold on their head, but not covering
their eyes until they were about to perform a blindfolded
task. Fourth, two preliminary test runs were performed by
the participants with the researchers supervising. These test
runs walked the participants through each motion required
by the tests – that is translation in x,y, and z axes and
rotation in x,y, and z axes (see Fig. 3 for directions). The
first run was done without the follower blindfolded, and
the second was with the follower blindfolded. Fifth, the
leader then was oriented on following the task instructions
via the tablet on the table (see Fig. 5 and Fig. 6). The
researchers displayed the task with visual instructions on the
tablet, which corresponded to the colored tape on the ground.
The leader then followed the instructions as outlined. Sixth,
each group ran through the tasks for 1 hour, which allowed
each group to run all 6 tasks approximately 6 times each.
The tasks were split evenly between blindfolded and non-
blindfolded, and were randomized in order for each group of
participants. For instance, a group might perform task 1 non-
blindfolded, followed by task 4 blindfolded, followed by 3
blindfolded, and so on. We recognized that learning of tasks
would occur, but decided the randomization of task order
would help to reduce the amount of guessing of the follower,
and would encourage a reactive, rather than anticipatory,
response. A researcher changed the setup between tasks,
and two other researchers ran data collection for motion
capture, force/torque, and video. Finally, the participants
were debriefed, they filled out a questionnaire about the
trials, and were paid.

Fig. 5: Starting position for all tasks – Tablet views

Fig. 6: Ending position for all tasks – Tablet views

The tasks were designed in order to mimic standard
motions that humans use when collaborating on moving an
object (see Fig. 5 and Fig. 6 for reference), and are outlined
as follows:

1) Pick and Place
• Translation and rotation, but emphasizing the lo-

cation and orientation of object placement
2) Rotation and Translation – Leader facing backwards

• Rotation and translation as needed to navigate
trial, meant to simulate a narrow hallway

3) Pure Translation
• Translation in the lateral direction

4) Pure Rotation
• Rotation about the superior axis

5) 3D Complex Task – Translation and Rotation in mul-
tiple axes

• Moving object with translation in all three axes
while avoiding certain 3D obstacles

6) Rotation and Translation – Leader facing forwards
• Rotation and translation as needed to navigate

trial, meant to simulate a narrow hallway
The physical execution of the task started with each

participant grasping an end of the board, the leader by the
end with sensors and the follower by the end without sensors.
They would then lift the table. After which the follower tried
to follow the leader as the leader performed the task indicated
on the tablet. Once they reached the position, they set the
board back on the ground and released. This constituted
a single trial. During sighted trials the participants were
allowed any method of communication desired. Whereas



during blind trials the participants were only allowed to
communicate via forces applied to the board. A sample of
task 5 being performed blindfolded and not blindfolded can
be seen at https://youtu.be/i-s1pIs17oY. This
task is shown as it encapsulates a majority of the motions
seen in all the tasks as they were performed.

C. Data Collection

A total of 21 groups participated, and subjects for the
trials were recruited using fliers, social media, and word-of-
mouth. Trials occurred during February and March of 2016.
The participants were comprised of 26 men and 16 women
of ages 18-38, and the average age was 22. There were 38
right-handed and 4 left-handed. A scheduling website was
used to facilitate trial sessions, and participants signed up
for an available hour-long slot.

If, during a task, any error occurred – such as participants
performing a task incorrectly or a failure in data collection
– the task was be stopped and repeated.

D. Data Analysis

As previously stated, the data acquired for each trial was
the force and torque data from the sensors on each handle,
the position and orientation of the table, the position and ori-
entation of the participant’s arms, as well as the point cloud
data from the Kinect 2. The data we were most interested
in initially was the force and torque data in relation to the
position and orientation of the table. Data from when the
blind trials was captured with the objective of characterizing
force patterns in human-human dyads that could be used 1)
as a baseline for when human-human dyads only use haptic
information for co-manipulation and 2) to eventually create
a co-manipulation controller that incorporates the force pat-
terns discovered in analysis. Sighted data was captured with
the objective of comparing the performance of future co-
manipulation controllers with an unrestricted human-human
dyad.

IV. OBSERVATIONS

Although the experiment involved 6 different tasks, and
our future goals include incorporating controller for 6 DOF
translational and rotational movements, this paper focuses
on characterizing a subset of the tasks. We focus on the
blind versions of task 3, the pure translation task, as well as
some portions of analysis done on task 4, the pure rotation
task. The emphasis was placed on these tasks for a few
of reasons. First, as discussed in Section II, most research
done in this area of pHRI for co-manipulation involved either
lateral movement with no extended object, or only anterior
direction movements (see Fig. 3 for directions reference).
When co-manipulating an extended object, the intent of the
leader is complicated by the rotation-translation problem
described in Section I. Therefore, characterizing how humans
are able to recognize a desired lateral movement with an
extended object and distinguish it from a desired rotational
movement is key for successful co-manipulation of extended

objects. Second, other tasks–such as task 4 and task 5–
include components of lateral translation. Therefore knowing
the defining characteristics of only lateral motion helps to
recognize it in more complex tasks. In this paper, we examine
only the blind tasks to simplify the analysis, since these tasks
involved only haptic communication.

A. Interaction Forces

Interaction forces are the forces that do not directly relate
to motion, i.e. the forces applied by each participant that
do not accelerate the object. As suggested by Noohi et
al. [17], interaction forces could be used as a source of
communication. In our study, the force/torque sensors could
not discern between external forces – forces that accelerate
the object – and interaction forces, but rather measured the
total force applied, so we calculated the interaction force
after the experiment ended.

Eq. 1 shows the combined forces that contribute to the total
force, or the force measured by the sensors. Ft is the total
force on the object, Fi is the interaction force, and Fe is the
external force. The motion capture data described the pose of
the table over time, and was differentiated twice to acquire
the acceleration data. With a known mass of the table and
acceleration, the external force was estimated (Eq. 2), and
removed from the total force to give us the interaction force
for the task.

Ft = Fi + Fe (1)

Fe = ma (2)

For the anterior, X , and lateral, Y , directions, the only
external force being applied is the force applied from the
participants, whereas in the vertical Z direction, gravity was
also applied. For all calculations and analysis in this paper,
the forces were low-pass filtered near 20 Hz to represent
human response ranges. The muscle response of humans can
reach up to 100 Hz for brief, forceful efforts, but often lies
within the 10-30 Hz range [29].

Fig. 7: Histogram of lateral movement average force along
anterior-lateral plane

https://youtu.be/i-s1pIs17oY


Fig. 8: Histogram of lateral movement average interaction
torque about superior axis

As mentioned in Section II, some prior work in pHRI has
presented an objective of pHRI controllers as minimizing
interaction forces by driving them to zero magnitude [19].
In fact, this is also a characteristic of variable-impedance
control [10], [8]. Our study, however, showed that this may
not always be the case. For both lateral and rotational
movements, we calculated the average interaction force in
the anterior direction and the average interaction torque
about the superior direction. We considered both task 3 and
task 4 in order to determine if the interaction forces were
minimized for one task but not for another, as well as to
identify unique characteristics between the two similar tasks.
Histograms showing the distribution of average force and
torque over the duration of the trial are shown in Fig. 7
and 8. As can be seen, the interaction force was almost
always non-zero for both lateral and rotational movements
in the anterior direction (see Fig. 3 for clarity on directions).
Additionally, we considered the ratio of average interaction
to external forces,Fi,avg/Fe,avg ,which–when averaged over
all the trials–gave a magnitude of 20, indicating the forces
used for acceleration of the object were 20 times smaller
than those not used for acceleration. It is not clear why
the average interaction force was so substantial, but our
hypotheses include:

1) These forces were used for object and human stability
2) These forces were used to communicate intent

We will conduct future studies with respect to the stability
hypothesis, but the intent hypothesis is discussed further in
Section IV-C. This result is significant because it implies that
lateral collaborative movements rely on interaction forces
along the anterior direction, which is not seen in many
state-of-the-art pHRI controllers. Another takeaway is that
minimizing interaction forces may not yield results easily
understood by human partners in co-manipulation tasks,
since it is now evident that humans are not necessarily
minimizing these forces. We also notice from Fig. 8 that the
average torque about the superior axis is generally greater
in magnitude for translation tasks than it is for rotation task,

which may be one indicator of how human-human dyads
solve the rotation-translation ambiguity problem.

B. Minimum-Jerk

The minimum-jerk (MJ) movement is well-documented
as a basis for human arm movements, especially in point-
to-point movements. However, we did not expect to see
MJ trajectories in these trials, since one participant was
blindfolded and unaware of the task specifications, and the
dyads used whole-body motion rather than arm-only motion.
However, another interesting finding from our study was that
the lateral movement tasks resembled a MJ movement in
the lateral direction, especially for the dyads that completed
the task more quickly. Fig. 9 shows the correlation between
deviation from MJ trajectories and an increase in time to
complete the task. The slower dyads often had a larger error
between their position, and the ideal MJ position, whereas
the quicker dyads generally had a smaller error with respect
to a MJ trajectory.

Fig. 9: Comparing completion time to deviation from MJ
trajectory

Overall, the lateral movement stayed close to the MJ
trajectory, and adhering to a similar trajectory over all trials
corroborates the results of similar 1-dimensional study [3].
Fig. 10 shows the lateral position of the lateral tasks over
time. The gray dotted lines show each individual task, the
black dotted line is the average of all the tasks, and the blue
line is the ideal MJ trajectory given an average start and stop
position. As we can see, even though the follower did not
know the end position, they stayed fairly close to the MJ
trajectory in the lateral direction. Although, there were some
trials that did not adhere closely to a MJ trajectory due to
disturbances, or disagreement in intent.



Fig. 10: Lateral trial trajectory with ideal MJ and average
trajectories

Fig. 11: Rotational trial trajectory with ideal MJ and average
trajectories

However, comparing the translation task with the rotation
task, see Fig. 11, shows that achieving MJ trajectories may
not always be the goal of the dyads during coordinated
motion. As we see, the average trajectory in Fig. 11 was
significantly distinct from the MJ trajectory, and looking
at each individual trial shows that there were a variety of
dissimilar paths taken in the rotation.

Our conclusion to this point agrees with previous research
that suggests MJ trajectories are not useful as a basis for
control as it is too restrictive [1] and does not extend to
rotation tasks. We also conclude that MJ trajectories can be
useful for describing translation task metrics (discussed more
in Section IV-D)

C. Lateral Movement Start Characteristics

In the case of lateral movements, we recognized some
patterns in how the dyads behaved. Studying the videos
of the lateral motion task, we saw that the follower often
guessed the leader’s intent wrong, and began to rotate when
the leader started their movement. When this happened, the
leader would flex their arm on one side of the table, causing
a torque on the table, and the follower would then commence

moving in the correct manner. Upon seeing this, we started
to look for a pattern of applied torques that would indicate
the start of a lateral movement.

Fig. 13 illustrates the pattern we found for lateral motion
with an extended object. The leader applied opposing forces
with each arm, which caused an increase in magnitude
of the interaction torque about the Z axis. The increasing
magnitude of the slope, or time derivative of torque, signaled
to the follower that the leader wanted to move laterally. After
the torque threshold was met, the follower moved and the
desired lateral movement began. We then searched through
each trial for the first instance of meeting the torque threshold
and noted the trigger time. We then determined whether
the pattern held based on whether the table’s Y velocity
at the trigger time matched the first instance of movement
in the lateral direction for the trial, as shown in Fig. 12.
This method was capable of correctly predicting the start
time for 75% (35 of 46) of all blind, translation trials with
useable data. It is not clear how the velocity is affected by the
forces after this point, but this is an important open research
question that we are still exploring in order to make a robot
effective for co-manipulation.

Fig. 12: Velocity (lateral direction) with line delineating start
point

Characterizing the force pattern causing a lateral move-
ment is an important development in human-robot co-
manipulation. Distinguishing between rotation and trans-
lation was difficult even for some of the participants of
our trials. By determining what humans do to cause these
movements, we can develop methods of communicating to
the robot human intent more accurately than with previous
methods.

D. Metric Observations

Our objective for future work is to develop control al-
gorithms for robots to successfully co-manipulate extended
objects in a human-robot dyad. We have begun some initial
work on human intention estimation from force data and a
demonstration of simple pHRI [30]. However, to classify the
performance of such a controller in comparison with human-
human dyads, we need to first quantify the performance of



Fig. 13: Trigger pattern (anterior direction) for time deriva-
tive of torque about Z axis with line delineating start point

the human-human dyads. Therefore, we needed to define
which metrics would indicate how well a certain dyad
performed a certain trial. This is difficult since all subjects
were able to complete the trials, and were given no specific
directions other than for the leader to complete the on-
screen objectives, and the follower to follow the leader.
However, from observing the trials, it was clear that some
dyads performed the tasks in a smooth, coordinated, and
timely manner, and we sought to discover what metrics
characterized the performance of the best dyads. Possible
metrics considered were:

• Task Completion Time
• Distance Covered by Table
• Average/Max Force on Table
• Average/Max Velocity of Table
• Average/Max Power of Table
• Average/Max Angular Velocity of Table
• Deviation from MJ Trajectory of Table

We expected there to be some correlation between some
of these measurements since most of the metrics were
proposed in previous research [1] [28] [31]. The metrics
were compared using the Pearson correlation coefficient, and
surprisingly offered very little correlation. For the lateral
task, the metrics that were most applicable were average/max
angular velocity and deviation from the MJ trajectory. We
expected a good task to be one where the table minimized
the average angular velocity about the z axis, and stayed
relatively close to the MJ trajectory, but the correlation
coefficient between these two metrics was 0.05. In fact, there
was a much stronger correlation between deviation from MJ
trajectory and completion time, average lateral velocity, and
distance covered – being 0.63,-0.42, and 0.38 respectively.
Intuitively, minimizing angular velocity would be an ideal
metric for this task, but the fact that deviation from MJ
trajectory corresponds so well with the other metrics means it
should be a point of emphasis in future research. Although
these observations provide some insight to this topic, our
work on determining metrics is still an open question that

is necessary to quantify performance of human-robot co-
manipulation.

V. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the problems and limita-
tions of many current co-manipulation pHRI controllers. We
discussed the advantages of creating control methods based
on human-human dyad behavior to increase the ability of
human-robot dyads to adapt to less-defined situations. We
also described our experiment gathering the force and motion
data for several simple and complex tasks involving human
dyads. The main takeaways from this data are that interac-
tion forces play an important role in communicating intent
between dyads in co-manipulation and that they are likely
not minimized as previously supposed. Lateral movements
display characteristics of minimum-jerk movements in the
lateral direction.

Our future work includes characterizing the rotation-
translation problem more fully by determining start and stop
triggers for both cases. We will then create a co-manipulation
controller for general planar motion of an extended object.
The controller will be compared with the performance of
both the blind and sighted dyads from our study, providing a
lower and upper bound, respectively, for the performance of
our controller. After completing the planar controller, we will
extend our work to include the other tasks and creating a 6
DOF controller for co-manipulation of an extended object. To
our knowledge, no 6 DOF pHRI co-manipulation controller
based on human-human dyad behavior exists. Although
future work may also require including additional sensory
cues and information (e.g. auditory or visual), we expect
that the data and observations presented in this paper are a
solid foundation to allowing humans and robots to intuitively
interact for general co-manipulation tasks.
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