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Abstract—A novel method is presented for efficiently testing
the stability of an object under contact that accommodates
empirically determined sets of admissible forces at contact points.
These admissible force volumes may exhibit a wide variety
of geometries, including anisotropy, adhesion, and even non-
convexity. The method discretizes the contact region into patches,
performs a convex decomposition of a polyhedral approximation
to each admissible force volume, and then formulates the prob-
lem as a mixed integer linear program. The model can also
accommodate articulated robot hands with joint torques, joint
frictions, and spring preloads. Predictions of our method are
evaluated experimentally in object lifting tasks using a gripper
that exploits microspines to exert strongly anisotropic forces.

I. INTRODUCTION

Contact force modeling is an essential component of grasp
planning, physics simulation, end effector design, and biome-
chanics. The general purpose of such models is to simplify
the countless microscopic interactions of a region of contact
into a finite approximate representation that can be used
for macroscopic predictions. Simple, mathematically conve-
nient models like Coulomb friction are commonly used, but
they fail to capture many phenomena including deformation,
anisotropic friction, and adhesion, which are useful to exploit
in engineering (e.g., novel surfaces [1, 11, 17] and microma-
nipulation [5]) as well as in understanding biological systems
(e.g., the hairs on insect feet, Van der Waals forces on gecko
feet, and claws on squirrels). For these complex interactions,
an alternative approach is to use empirical data to capture the
range of applicable forces during contact without slipping or
separating [13, 14]. Although such data is useful for analysis
and design, few methods use contact force data to make
computationally efficient predictions.

This paper presents a computational method for testing
static equilibrium of an object under empirical contact models.
Empirical material-material contact modeling is conducted
with a simple force measurement procedure that captures a
force limit surface describing the maximum forces exhibited
by a small contact unit in any given direction. Then, for
an object touched by a novel assembly of contact units, its
equilibrium status under an external wrench is predicted using
a constrained optimization procedure. Unlike traditional force
limit surfaces which bound conic and/or convex regions, this
paper interested in supporting calculations with non-convex

Fig. 1. The microspine unit used in this work (left) uses spring-loaded needles
to yield high effective friction on rough surfaces. Our method uses empirical
measurements of its applicable contact forces to predict the maximum loading
characteristics of a hypothetical four-fingered gripper (right).

regions. To handle non-convex admissible force volumes, a
mixed-integer linear programming (MILP) approach is pre-
sented that performs a branch-and-bound (BnB) using a hierar-
chical convex decomposition. The method is globally optimal
and significantly faster than off-the-shelf MILP solvers. The
basic method is also extended to account for constraints in
articulated robots, such as joint frictions, torques, and springs.

Experiments are conducted on a microspine unit that uses
spring-loaded needles oriented at an angle to achieve high
lateral loads on rocky surfaces [1, 21]. When pressed against a
rough surface, several needles engage with asperities (indenta-
tions) on the surface leading to very large effective friction and
slightly adhesive properties. We apply our method to design
microspine grippers that handle objects with a given geometry
and load. Our method is applied to microspine grasp analysis,
in which the goal is to evaluate the lifting capability of a
gripper at a given contact and finger configuration (Fig. 1). We
compute wrench spaces for a variety of gripper configurations,
and experiments show that even on problems of relatively
modest size, the novel algorithm outperforms standard MILP
solvers by one or more orders of magnitude.

II. RELATED WORK

The standard Coulomb friction point contact model is
mathematically convenient, and allows for adequate and fast
predictions about contact behavior between rigid objects such
as force closure, optimal forces to resist an external wrench,
static equilibrium, and dynamic simulation [2, 3, 4, 6, 18, 19].



Fig. 2. Non-convex admissible force volumes (right) can arise out of micro-
interactions. Consider a peg-in-hole setup where the peg makes frictional
contact with different sides of the hole depending on the external loading
condition. Friction leads to apparent adhesion when shear loads are applied.

Mathematically, Coulomb friction may be expressed as a
cone constraint, which leads to linear constraints in 2D or
second-order cone constraints in 3D. A variety of conic ex-
tensions to the Coulomb model have been proposed, including
a soft-finger approximation, polyhedral approximations, and
anisotropic friction with elliptical constraints [2, 3].

Limit surfaces were introduced as a description of forces
exerted on objects during planar sliding [9] and frictional
contact [15] that are amenable to empirical testing. Similar
empirical testing has been used to model soft finger contact [7,
20]. Novel devices that may be amenable to such modeling
techniques include directional adhesive materials [12] and
microspines [1]. More related to our work is Hawkes et al.
[12], who use the limit surface of one adhesion unit to predict
the feasibility of loading directions for two- and three-unit
devices. However it does not handle non-convexity in the
admissible force volume nor propose a computational method
for general equilibrium prediction.

III. EQUILIBRIUM WITH EMPIRICAL FORCE MODELS

The general framework for our method is as follows:
1) Acquire limit surfaces defined locally with respect to a

canonical surface-centric reference frame.
2) For a novel contact situation, estimate the contact region

and split it into a finite number of contact patches. This
yields a contact assembly.

3) Compute equilibrium prediction for the assembly under
the estimated external wrench.

We will focus primarily on steps 1 and 3, and assume that the
information in step 2 is provided through some other channels
such as sensors or prior knowledge.

A. Contact Model

A contact region C between bodies OA and OB is modeled
as a rigid surface with a normal direction n defined at each
point x ∈ C. To handle anisotropy of friction forces, two
orthogonal vector fields u and v are defined over C, which
defines an orthogonal frame R = (u, v, n) at all points x ∈
C. The region is discretized into a finite number of contact
patches p1, . . . , pk. Each patch i = 1, . . . , k is centered at the
point xi and is associated with frame Ri.

At each contact patch, an admissible force volume Fi ⊆ R3

describes the set of valid forces fi applied to object OB at
each point xi. This volume is defined as the interior of the
force limit surface fmax(d) : S2 → [0,∞) which describes

Fig. 3. Top: Diagram of a linearly-constrained microspine unit (left) and
microscopic view of a spine about to catch on asperities (right). Bottom: two
views of the admissible force volume for the microspine unit used in this work.
Colors indicate different components of the volume’s convex decomposition.
Axes are labeled as follows: x (red) the shear direction, y (green) the lateral
tangent direction, and z (blue) the normal direction pointing into the unit.
(Figure best viewed in color)

the maximum force in every direction in 3D. In other words
Fi = {f ∈ R3 | ‖f‖ ≤ fmax(f̂)} where f̂ = f/‖f‖ is the
unit vector in the direction of f . The world-oriented admissible
force volume is a rotation of a local limit surface rotated by
the frame Ri.

We measure a local limit surface described with respect to
a canonical 3D reference frame aligned with R = (u, v, n).
For a given pair of materials, the local limit surface value in
a given direction d can be measured using a force sensor by
applying a directional force to one object, keeping the other
fixed, until the interface slips or otherwise breaks contact. For
inward-pointing (compressive) directions, fmax(d) can either
be infinite or capped by a maximum force that does not dam-
age the object. For outward-pointing (separating) directions,
fmax(d) will be 0 in the absence of adhesion. This process is
repeated for a large number of directions. More details about
this measurement procedure will be presented in Sec. IV.

Although the limit surface is a normally-displaced sphere,
the admissible force volume may be non-convex, and we
are particularly interested in handling these situations. Non-
convexity occurs in the case of surfaces that have multiple
points of irregular micro-contact (Fig. 2), which can cause
them to exhibit exotic adhesive behavior such as the mi-
crospine units presented below (Fig. 3). There may also be
non-convex behavior in the compressive limits of buckling
internal structures, such as corrugated cardboard which are
stiffer in directions not parallel to the normal.

B. Equilibrium Testing

Equilibrium testing asks whether an external wrench wext ≡
(fext, text) ∈ R6 applied to OB can be resisted by forces at



the contact points. Assume text is the external torque about the
origin. Often, the external wrench is due only to gravity, the
center of mass of OB is taken to be the origin, and hence
fext = mg and text = 0. Three conditions must be met
for equilibrium to hold: force balance, torque balance, and
admissibility of contact forces. In other words, it seeks an
solution to the following feasibility problem:

Find f1, . . . , fk such that
k∑
i=1

fi + fext = 0

k∑
i=1

xi × fi + text = 0

fi ∈ Fi for i = 1, . . . , k

(1)

For notational convenience, define the wrench matrix

W =

[
I I · · · I

[x1] [x2] · · · [xk]

]
(2)

where [v] denotes the skew-symmetric cross product matrix,
and define f = (f1, . . . , fk) as the vector of contact forces.
Problem (1) can then be expressed more compactly as

Find f such that
W f + wext = 0

fi ∈ Fi for i = 1, . . . , k.

(3)

To solve this problem efficiently and exactly when all of the
Fi are convex polyhedral regions, a linear program (LP) can
be solved. This LP has 3n variables and 6 + nk constraints
where k is the number of faces bounding each Fi. However,
alternative techniques are needed to solve the case of non-
convex regions.

C. Joint torques

To apply this method to an articulated robot, we enforce
static equilibrium of forces and joint torques. This functional-
ity is useful for determining whether equilibrium holds in the
presence of passive joints or torque limits.

Let OA be the robot at configuration q and OB be the object.
Given the effects of gravity and a set of forces f1, . . . , fk that
yield static equilibrium with OB , the robot’s joint torques τ
must obey the following equilibrium balance equation:

G(q) = τ −
k∑
i=1

Ji(q)
T fi (4)

where G(q) is the generalized gravity vector and Ji is the
Jacobian of the i’th contact point. Note the introduction of the
negative sign because the forces act on the object, while the
equal and opposite force acts on the robot.

If sufficient torque were always available to the robot to
enact the desired equilibrium balance, the force vector f
could be solved independently from the torques, and torques
calculated from (4). However, in the presence of torque limits,
it may not be possible to enact such torques for a given

solution f , whereas contact force indeterminacy might allow
for valid torques for some other solution f ′.

As a result we incorporate torque limits τmin ≤ τ ≤ τmax
(inequalities taken element-wise) into constraints on f as
follows:

τmin ≤ G(q) +

k∑
i=1

Ji(q)
T fi ≤ τmax. (5)

For fixed q these inequalities are linear in f .

D. Wrench-space limit surface calculation

A useful procedure for design of grasps and fixtures is to
calculate the contact arrangement’s wrench space W . W is
defined as the subset of wrenches wext ∈ R6 that can be
resisted in equilibrium by admissible forces according to (3).
We note that this is not necessarily a convex set. But it is
apparent that for any point w ∈ W , we can say that cw ∈ W
for all c ∈ [0, 1]. In other words, in order to determine W it
suffices to calculate its limit surface ∂W .

To do so we employ a method to optimize the external
wrench in a given 6D direction such that equilibrium is
maintained. Specifically, given some unit direction ŵ ∈ R6, a
new variable d is introduced into (3). Rather than only finding
the contact force vector, d is maximized subject to the equality
constraint wext = dŵ, i.e., we solve

max
f ,d

d

W f + dŵ = 0

fi ∈ Fi for i = 1, . . . , k.

(6)

Then, the limit surface can be obtained by sweeping ŵ about
the unit sphere in 6D, S5. In practice, to avoid requiring
a excessive number of points, it can be more effective to
approximate the wrench space by calculating its extents along
different subspaces. Then W can be approximated as the
intersection of the cylindrical extrusion of these extents back
into 6D space.

E. Separation Direction Prediction

In the case that equilibrium does not hold, it may be valuable
to predict which contact patches will separate and how the
object will behave upon separation. Hence, we propose testing
an alternative formulation that uses the maximum dissipation
principle, which posits that frictional forces are determined to
minimize the post-contact derivative of kinetic energy of the
system. This condition seeks

minf
1

2
q̈(f)TBq̈(f)

NWT q̈(f) ≥ 0

fi ∈ Fi for i = 1, . . . , k

(7)

where q̈(f) ∈ R6 is the post-forcing acceleration and angular
acceleration (twist rate) of OB , B is the 6 × 6 mass matrix
of the object, and N is the n × 3n block matrix of normal



directions at each contact point diag(nT1 , . . . , n
T
k ). We express

q̈(f) as
q̈(f) = B−1(W f + wext). (8)

Hence, if all the Fi are convex polytopes, then (7) can be
solved exactly as a convex quadratic program.

F. Branch-and-bound equilibrium solver
We are now ready to present our primary contribution,

which is a method for handling non-convex admissible force
volumes in problem (3), with optional constraints (5). Given
that these problems can be solved via a convex program
when given convex admissible force volumes, we proceed by
computing a convex decomposition of each of the Fi, and
formulating a mixed integer linear program (MILP). First,
we present the method in the simpler context of equilibrium
testing (3), which asks for the first feasible solution.

Suppose each of the k force volumes is decomposed into c
components, Fi = Fi,1∪· · ·∪Fi,c where each Fi,j is a convex
polyhedron. With each component given by a set of halfplanes
Fi,j ≡ {f ∈ R3 |Ai,jf ≤ bi,j}, we formulate a MILP with
ck indicator variables zi,j ∈ {0, 1} as follows:

Find f , z1,1 . . . zk,c such that
Wf + wext = 0

Ai,jfi ≤ bi,j +M(1− zi,j) for i = 1, . . . , k and j = 1, . . . , c

zi,j ∈ {0, 1} for all i, j
c∑
j=1

zi,j = 1 for all i

(9)
where M is some large number (e.g., larger than the maximum
radius of any force volume). Each of the indicators, when
1, activates the constraints of the corresponding convex com-
ponent. However, solving this MILP is usually prohibitively
expensive because it is large (more than 10,000 constraints in
many of our test problems) and may require exploring up to
ck integer solutions, which is 7.9×1028 in our largest problem
with c = 4 and k = 48. As a result we use a BnB method, with
a convex bounding volume hierarchy to speed up the search.

The general idea is to maintain for each Fi a tree Ti
of convex volumes whose leaves are the components of the
convex decomposition Fi,1, . . . , Fi,c. Each parent node stores
the convex hull of all of its children, and hence the root node
of Ti stores hull(Fi). As a result, we can state the following
facts about a given set T1, . . . , Tk of trees or sub-trees. Let
S1, . . . , Sk be the root volumes of each of the given trees, and
define CP (S1, . . . , Sk) as the convex program (3) derived by
replacing each Fi with Si. Then:

1) If CP (S1, . . . , Sk) has no solution, there is no ad-
missible set of contact forces in any combination of
components amongst the leaves of T1, . . . , Tk.

2) If CP (S1, . . . , Sk) has a solution f1, . . . , fk such that
fi ∈ Fi for all i = 1, . . . , k, then it is a solution to (9).

3) If CP (S1, . . . , Sk) has a solution f1, . . . , fk but some
fi /∈ Fi for some index i, then there may or may not be
a solution amongst the leaves of T1, . . . , Tk.

The algorithm must branch only in Case 3. In order to
minimize the amount of branching the algorithm is designed
with three heuristics:
• The bounding hierarchy is constructed to minimize the

deviation between a convex volume and the volume of
Fi contained therein.

• In Case 3, only a single tree Ti selected for branching.
The index i and the order in which children of Ti are
tested are determined through heuristics described below.

• The objective function is constructed to prefer solutions
close to the centroids of each of the Si’s.
a) Bounding hierarchy construction: To construct a con-

vex hierarchy we use a bottom up approach. First, let the
convex decomposition of a polyhedral set A be given as
A1, . . . , Ac. The convex hull of pairs of leaf volumes Bi =
hull(A2i−1 ∪ A2i) is constructed, and set as the parent of
A2i−1 and A2i in the hierarchy. If c is odd, then we set
Bdc/2e = Ac. The process is repeated amongst the volumes
B1, . . . , Bdc/2e until only one volume is reached, namely the
convex hull of A. To minimize the amount of branching, it
is important to choose the parent bounding volumes to be as
close as possible to the union of the children. This increases
the chance of finding an admissible solution at inner nodes of
the tree (i.e., Case 2 above). Hence, we precompute the trees
with a heuristic ordering of A1, . . . , Ac as follows. For each
pair of components Ai and Aj the hull Bi,j = hull(Ai ∪Aj)
and its volume measure µ(Bi,j) are computed. The difference
µ(Bi,j)−µ(Ai)−µ(Aj) is used as a priority score, with lower
values having higher priority. Once a certain pair (Ai, Aj)
is chosen for merging, both components are removed from
consideration and the next best pair is chosen, and so on. This
process is repeated recursively for each stage in the hierarchy.

b) Branch ordering heuristics: When selecting a volume
Ti on which to branch, we pick the one that maximizes the
distance to Fi amongst all contact forces for which fi /∈ Fi.
The children are then tested in order of increasing distance to
the solution fi.

c) Objective function heuristics: To maximize the likeli-
hood of CP (S1, . . . , Sk) finding a solution that is admissible
(i.e., obeys Case 2 instead of Case 3), the objective function
is designed to prefer forces respectively near the centroids
of the union of the components in the leaves of T1, . . . , Tk.
Specifically, for each i = 1, . . . , k we find the union of
components in the leaves of Ti, and compute its centroid ci.
Then, the objective function is defined as the L-p norm

g(f) =

k∑
i=1

‖fi − ci‖p (10)

with p either 1, 2, or ∞. In the case of p = 2, the
problem becomes a quadratic program which is a bit more
computationally expensive than an LP, so we typically prefer
p = 1 or p =∞.

G. Branch-and-bound optimizer
In optimization problems like (7) and calculating the wrench

space of an assembly, the first valid solution may not be



optimal. To optimize, we present an alternate BnB algorithm.
Again consider the convex program result on force volume

subtrees T1, . . . , Tk with root volumes S1, . . . , Sk. We main-
tain a known upper bound ḡ to the optimal function value
g?. We know that the optimal value g to CP (S1, . . . , Sk) is
a lower bound on the optimal value of all combinations of
leaves under T1, . . . , Tk. So, in each step of the method, there
are three cases to consider.

1) If CP (S1, . . . , Sk) has no solution, there is no ad-
missible set of contact forces in any combination of
components amongst the leaves of T1, . . . , Tk.

2) If CP (S1, . . . , Sk) has a solution f1, . . . , fk with objec-
tive value g such that fi ∈ Fi for all i = 1, . . . , k, then
it at least as good as the solution in any combination of
components amongst the leaves of T1, . . . , Tk. There is
no need to branch.

3) If CP (S1, . . . , Sk) has a solution f1, . . . , fk with objec-
tive value g but some fi /∈ Fi for some index i, then it
may or may not contain an optimal solution.

In Case 2, if g < ḡ then the optimal solution is set to f1, . . . , fk
and the upper bound is set to g. In Case 3, if g ≥ ḡ then no
sub-tree will contain a better solution, and hence search can
be pruned at this point. However, if g < ḡ then an optimal
solution may or may not be contained in a sub-tree, which
case requires branching. The following heuristics are used to
speed up search.

a) Branch ordering heuristics: As above, we choose a
single tree using the maximum distance heuristic. However, we
use a priority queue maintained over all subtree sets, ordered
by increasing objective function value g.

b) Early upper bound determination: When Case 3 oc-
curs, we calculate the optimal forces at a fully-determined set
of leaf nodes in the hope that it reduces the upper bound. To
do so, for each subtree Ti we pick a leaf such that if fi ∈ Fi,
the leaf is set to the component in which fi is contained, and
if fi /∈ Fi, a random leaf is chosen.

c) (1 + ε) relaxation: Instead of pruning on the bound
g < ḡ, we relax this condition slightly to g + ε(1 + |g|) < ḡ,
where ε is a small value (set to 0.001 in our experiments). This
prunes out many more volumes in the presence of numerical
errors and when redundancy in internal forces allows many
optimal solutions amongst combinations of components. The
resulting optimized value is guaranteed to be within ε(1+|g?|)
of the true optimum.

IV. MICROSPINE EXPERIMENTAL SETUP

A two-finger gripper (Fig. 5) based on linearly-constrained
microspine units is built for the experiments. Microspines are
hooks or needles with very sharp tips to catch and jam on
micro structure of the surface, and are thus able to generate
adhesion on rough surfaces (Fig. 3). The linear-constrained
microspine unit design consists of straight needles that can
slide along channels in the substrate, slightly pressed by the
soft normal springs to maintain contact against the surface.
The unit accommodates 60 linearly-constrained spines. This

Fig. 4. Local limit surface (left): lumped contact property of the micro-spine
unit on each gripper phalanx. The coordinate frame (upper right) is consistent
with the assumed coordinate convention (lower right).

microspine unit is designed specifically for heavy-duty ap-
plications, featured with large adhesion density, low contact
compliance and good comformality to surface variation [21].
Experiments are conducted to characterize the unit’s contact
properties and test the stability of passive grasps with the grip-
per under a variety of configurations and surface conditions.

a) Microspine unit limit surface acquisition: Contact
friction of an individual spine engaged with an asperity can be
described with the Coulomb model. However, when a group
of spines interacts with terrain where the local curvature for
each spine is randomly distributed, the overall contact property
becomes complicated to model. It is inefficient to model many
individual spines in contact because this requires detailed
representation of the local contact geometry and kinematics
of each spine. A more efficient method models 1D adhesion
of a spine unit probabilistically based on empirical contact
information of a single spine, which can then be extended to
a 3D adhesion model that describes the adhesion profile over
all loading directions (limit surface) of a spine unit.

The empirical data for a single spine contact includes
maximum forces (150 data points per loading direction) that
the spine can withstand before slipping, as measured by a
force sensor. These data are described in more detail in
[21]. The 3D limit surface (4 is derived based on how the
adhesion degrades as the loading angle increases (away from
the surface) due to decreasing number of usable asperities
and increasing probability of non-spine-tip contact. With the
assumption that all asperities are IID, the overall adhesion F
at any 2D loading angle (x-z plane) can be computed with the
integral over all the usable asperity slopes ψ:

F (φ) =

∫ ψmax(φ)

ψmin(φ)
Ci(ψ, β)Cc(φ, β)dψ∫ ψmax

ψmin
Ci(ψ, β)Cc(0, β)dψ

F (0) (11)

where φ is the loading angle from surface tangential (x axis),
β is inclination angle of the spine. Ci and Cc are decay
factors due to non-spine-tip contact and spine slip along sliding
channel. The range of slopes [ψmin ψmax] and maximum
loading angle φmax can be estimated empirically. When
considering 3D cases, the only parameter changes from 2D is



Fig. 5. Experiments equip a passive gripper with microspine units, which
is lifted at the base to grasp a curved plate covered with roofing shingles.
Different gripper configurations and surface curvatures are tested.

the equivalent spine inclination angle. With polar coordinate
(φ, θ) to denote the loading direction where θ represents the
loading angle projected to the surface plane (x-y plane), the
equivalent inclination angle β′ becomes:

β′(θ) = arcsin(sinβ · cos θ) (12)

which substitutes into equation (11) to compute the 3D limit
surface for z ≤ 0 (adhesion). Friction between spine substrate
and contact surface is then included to model the other half
of the limit surface. More details and empirical validation are
available in a forthcoming paper [22].

The limit surface is shown in Fig. 4. Any possible force
vector created by the spine unit should stay within this boat-
shaped hull. This non-convex surface shows that the spine
unit adhesion degrades as the loading direction points more
towards the surface normal (away from the contact surface)
and eventually disappears. Due to the inclination of the spines,
which are not perpendicular to the contact surface, there exists
an optimal shear loading direction tangential to the surface,
which is chosen as the x axis.

b) Passive gripper experimental device: A passive two-
finger gripper is built with a spine unit per phalanx and three
phalanges per finger (Fig. 5). The phalanges are passive, being
connected with bearing-supported pin joints to reduce joint
friction, with no springs or tendons to apply torque.

A set of laser-cut acrylic objects with different curvature
are fabricated, then covered with roofing shingle to create a
rough texture. In each test, the gripper is firstly pre-shaped and
pushed against the object so several phalanges make contact.
It is then lifted up by the base to grasp the surface passively:
as the gripper moves upwards, the phalanges bend towards and
“push” against the surface due to gravity, applying shear and
adhesive forces (Fig. 5). Then, the gripper is slowly reoriented
in various directions by hand until the object falls.

V. NUMERICAL EXPERIMENTS

We test our method with three assemblies: two spring-
loaded opposed units (2OU), the passive two-finger gripper
with 3 units per finger described above (2FG), and a candi-
date four-finger hand with actuation capabilities (4FH). The
admissible contact forces for the 2FG are highly limited due

Fig. 6. 3D slices of the wrench space of the two-opposed unit (2OU) example
lifting a curved object. Left: (fx, fy , fz) slice. Right: (fx, ty , fz) slice. Color
indicates increasing x coordinate. Level sets are indicated on the y coordinate.

to low joint friction, which would cause buckling unless the
net torque about the joint axis is low. As a result, torque
constraints (5) are highly restrictive here. In contrast, 2OU
and 4FH hand can exert active joint torques via springs, joint
pulleys, and/or tendons. In these cases the primary limiting
factors are shear friction and adhesion limits.

a) Contact and wrench space modeling: Each mi-
crospine unit that touches the object is considered “enabled.”
When enabled, the entire unit is assumed to make solid contact
with the object, and is represented as a rectangular patch with
four point contacts at the vertices. At each vertex, we define a
force limit surface equal to 1/4 the empirical force limit surface
of the entire unit; this allows for a patch to resist torques,
both parallel to and perpendicular to the contact normal.
The admissible force volume is decomposed into 4 convex
polyhedra, with 101, 91, 52, and 52 vertices, respectively.

To illustrate the space of external wrenches we use the
formulation of (6). These images are generated by sampling
wrench directions from a 3D subspace of the wrench space
using a regular sampling on a sphere. Below we use one of
two 3D subspaces of the 6D wrench space: either (1) forces
through the center of mass (fx, fy, fz), or (2) forces along the
x-z plane as well as torques about the normal (fx, ty, fz).

b) Opposed Units (2OU): The 2OU device combines two
opposed units, spines pointing inward, connected via a spring-
loaded slide. When contact is made between the units and a
rough object, and the spring is loaded to apply an inward force,
the spines engage the object. This allows for each unit to apply
adhesive forces, and due to the admissibility of tangential
shear forces, it can also apply stronger effective friction during
compressive contact than would otherwise be possible.

Fig. 6 illustrates the limit surface of the assembly, which
is is boat-shaped and elongated in the shear direction. Its z
coordinate also passes below 0, which indicates the ability to
resist downward pulling forces with adhesive contact forces. It
can also resist large upward forces with large effective friction.

c) Passive Two-Finger Gripper (2FG): We compare the
predictions of our method with the physical experiments of
Fig 5. The masses of each link and the object were measured
within 1 g accuracy, while centers of mass were estimated
relatively coarsely. Joint friction is assumed to be 0.01 Nm.
For each experiment we posed the simulated gripper posed



Fig. 7. Experiments exhibiting close agreement between predicted and actual onset of slip.

Fig. 8. Two experimental runs with inaccurate predictions. Left group: the model predicted the first slip event early (middle) and did not predict the final
slip (right). Right group: the model did not predict the final slip (right).

Fig. 9. 3D slices of the wrench space of the passive two-finger gripper
(2FG) example in the distal-all phalanges (D-PMD) contact condition. Top:
(fx, fy , fz) slice. Bottom: (fx, ty , fz) slice, rear view.

manually to match the physical gripper and observed which
phalanges (P: proximal, M: medial, D: distal) made contact
with the object. Configurations are denoted by the initials of
the left and right phalanges in contact, separated by a dash,
e.g., D-D, MD-MD, D-PMD, etc.

Fig. 7 shows that the method was able to accurately predict
the angle of slip onset in 11/14 slip events. Fig. 8 shows the
failure cases. In the first two, the left distal phalanx catches the
tip of the object, and this contact is not included in our model.
In the third, the left proximal link makes partial contact, and
eventually separates. Our method fails to predict separation
at this point because it (overconfidently) determines that the
proximal and medial joints admit opposed forces that can
produce net adhesive force. Excluding the proximal link leads
to an accurate prediction of slip onset.

We also calculated wrench spaces for this device in different
configurations. In general, the gripper can resist stronger
loads in the y direction because it is parallel to the passive
joint axes and thus demands less joint friction to keep the
links stationary. Also, the wrench space grows with more
phalanges in contact. Fig. 9 and 10 illustrate two slices of the
wrench spaces for the D-PMD and MD-MD configurations,

Fig. 10. 3D slices of the wrench space of the passive two-finger gripper (2FG)
example in the medial,distal-medial,distal (MD-MD) contact condition. Left:
(fx, fy , fz) slice. Right: (fx, ty , fz) slice.

Fig. 11. 3D slices of the wrench space of the four-finger hand (4FH) example
in the parallel (Par.) finger configuration. Top: (fx, fy , fz) slice. Bottom:
(fx, ty , fz) slice, rear view.

respectively. The D-PMD configuration is able to support
diagonal loads and stronger wrenches about the y axis, since
it can recruit 3 spine units to resist rightward shear. The MD-
MD configuration is able to support stronger downward forces
because its symmetry allows shear forces to counterbalance
one another. However, it is poor at resisting torques.

d) Four Finger Hand (4FH): The 4FH device is illus-
trated in Fig. 1. We investigate the differences in applicable
wrenches when two outer fingers rotate between a parallel



TABLE I
TIMING RESULTS

Problem Config. # units # CPs Eq. (avg [min,max]) Eq. SCIP (avg [min,max]) Opt. (avg [min,max]) # CP (avg [min,max])
2OU — 2 8 25ms [21ms,72ms] 254ms [242ms,266ms] 38ms, [29ms,288ms] 1.1 [1,11]
2FG D-D 2 8 55ms [49ms,111ms] 527ms [270ms,1.2s] 294ms [29ms,6.7s] 10 [1,271]
2FG D-MD 3 12 108ms [51ms,336ms] 2.7s [792ms,9.2s] 3.6s [41ms,79.5s] 84 [1,2246]
2FG D-PMD 4 16 366ms [82ms,3.1s] 24s [536ms,5m+] 8.3s [57ms,178s] 154 [1,3392]
2FG MD-MD 4 16 461ms [73ms,23.8s] 50s [492ms,5m+] 4.1s [80ms,14.9s] 61 [1,262]
2FG MD-PMD 5 20 180ms [94ms,1.0s] 53s [640ms,5m+] 10s [87ms,267s] 159 [1,4276]
2FG PMD-PMD 6 24 185ms [136ms,288ms] 2.5s [739ms,20s] 12s [149ms,260s] 92 [1,2272]
4FH Par 12 48 321ms [298ms,396ms] 2.8s [1.8s,15s] 2.6s [226ms,28s] 10 [1,271]
4FH Opp 12 48 581ms [353ms,815ms] 1.8s [1.6s,2.5s] 5.8s [574ms,69s] 9.3 [1,116]

Fig. 12. 3D slices of the wrench space of the four-finger hand (4FH) example
in the opposed (Opp.) finger configuration. Top: (fx, fy , fz) slice. Bottom:
(fx, ty , fz) slice.

(Par.) and opposed (Opp.) configurations. Each joint is as-
sumed to be able to exert a torque of 10 Nm. The fingers
are slightly curved as through gripping a rock, and all 12
finger units are assumed to be engaged. Fig. 11 and Fig. 12
the wrench spaces for Par. and Opp., respectively. Par. can
withstand heavy forces and torques in the finger-oriented
direction because each unit is able to apply optimal shear.
Opp. can better withstand downward loads because opposed
shear forces are able to produce a net adhesion.

e) Implementation notes and running time: Our algo-
rithm is implemented in the Python language, with CVXOPT
as the convex program solver [16]. All experiments are per-
formed on a single core of an 8 core Intel i7 processor. Sparse
matrices are used for all linear inequalities. Some overhead
may be reduced by implementation in a compiled language,
but in our experiments over 80% of running time is spent
inside the compiled convex program solver.

Experiments in Table I test equilibrium for 72 gravity direc-
tions in the range [0◦, 360◦). Directional wrench optimization
experiments are conducted for 135 directions in a sphere
of forces through the object’s center of mass. The leftmost
columns give the problem, configuration, number of units, and
number of contact points. Average, minimum, and maximum
equilibrium testing time (Eq.), optimization time (Opt.), and
number of convex program solves (# CP) are given in the
remaining columns. We observe a few notable trends:

• Average running time scales modestly in the number of
contact points.

• Worst-case running time is 1–2 orders of magnitude
worse than average.

• Worst-case scenarios happen rarely.

• Optimization is approximately an order of magnitude
slower than feasibility testing.

The cases that exhibit worst-case behavior tend to be on the
border between feasibility and infeasibility, which cause the
solver to oscillate between combinations of integer solutions.

We compare against the MILP solvers in SCIP v3.2.1 [8]
and Gurobi 7.0.2 [10]. Experiments show that SCIP is approx-
imately 5-10x times slower than our algorithm when solutions
were easily found. However, SCIP becomes extraordinarily
slow in the worst case as the number of units grows. For
example, in the D-PMD problem, for some directions of
external load, SCIP was unable to find a solution after 1 hour
of computation time. Hence, when generating the SCIP timing
column (Eq. SCIP) all runs were capped at 5 minutes. In each
row where the cap was reached (D-PMD, MD-MD, and MD-
PMD), 5–10% of runs failed. Gurobi performed with similar
trends as SCIP, but was 1.5–4 times slower.

VI. CONCLUSION

We presented a method for computing the quasi-static sta-
bility of an assembly of contacts under empirically-determined
limit surfaces that supports anisotropy, adhesion, and non-
convexity. The mixed-integer linear programming (MILP)
formulation is solved efficiently using a hierarchical convex
decomposition and custom solver heuristics. Numerical tests
demonstrate that it works orders of magnitude faster than an
off-the-shelf MILP solver, and empirical tests suggest close
agreement with experiments on a 2 fingered gripper.

Several promising avenues for future work remain. First,
the solver is not yet fast enough for real-time simulation,
and perhaps warm-starting would help in the presence of
temporal consistency. Second, we only test the notion of weak
equilibrium — verifying the existence of admissible forces
in the best-case — whereas the notion of strong equilibrium
may lead to more accurate predictions [18]. We also do
not take into account hysteresis and deformation. Another
important consideration is the stochastic nature of microscopic
surface characteristics; properly handling this phenomenon
would require new methods for computing the probability of
equilibrium rather than a Boolean prediction.
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