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Abstract—This paper presents a novel unified theoretical
framework for differential kinematics and dynamics for complex
robot motion optimization. By introducing 18×18 comprehensive
motion transformation matrix (CMTM), forward differential
kinematics and dynamics including velocity and acceleration
can be written in a simple chain product like ordinary rota-
tional matrix. This formulation enables analytical computation
of derivative of various physical quantities including joint force
or torques with respect to joint coordinate variables and their
derivatives for a robot trajectory in an efficient manner (O(NJ),
where NJ is the number of the robot’s DOF), which is useful for
motion optimization.

I. INTRODUCTION

In recent robotics research, optimization has been increasing
its importance in many aspects. Classic inverse kinematics
and inverse dynamics problem [19] can be handled as an
optimization problem of joint coordinates or torques under
some constraints which are derived from physical consistency
or desired tasks. Some practical optimization frameworks are
proposed and applied to not only motion planning and control
of a humanoid robot [25, 8], but also to motion reconstruction
[26], contact estimation, and musculoskeletal analysis [7, 20]
of a digital human model. Model identification problem [13]
is also an optimization problem about model parameters with
inverse dynamics computation. In these basic problems, only
one type of physical quantities is optimized; inverse kinematics
computes joint coordinates, inverse dynamics computes joint
torques, identification computes inertial parameters, etc.

However, practical problems are usually their combinations
and different physical quantities need to be simultaneously
optimized through several time instances. Trajectory opti-
mization under physical consistent conditions is a typical
example. In locomotion planning, as violation of conditions
at a certain time instance leads to future risk of falls, several
sets of joint coordinates during certain period often need to
be optimized simultaneously in order to predict future risks.
Since this optimization usually requires huge computation
cost, the balancing problem is often simplified, for example,
by utilizing low-dimensional model [12]. Another example
is kinematic calibration of human body segments [15] from
motion capture measurement since the joint angles cannot
be measured directly by encoders unlike standard robot cal-
ibration [13]. It requires simultaneous optimization of the
geometric parameters and the generalized coordinates [2].

More recently, application of optimization has been inten-
sively investigated in the field of anthropomorphic systems:

humanoid robotics and human motion analysis. Humanoid
robots are expected to execute more complicated and practical
tasks such as disaster response [16], evaluation of human ori-
ented products as physical human simulator [18], etc. In such
applications, anthropomorphic motion optimization faces far
more complicated problems combining modeling, kinematics,
dynamics, planning, and control. For instance, inertial param-
eters identification of a humanoid robot is important to realize
precise and dynamic control [3]. However, the optimal motion
generation to maximize the total identification performance is
a complex problem of trajectory optimization with balancing
problem [6]. In the humanoid application as an active dummy
for assistive device evaluation, imitation of human-like motion
is necessary. This technique, called motion retargeting [10, 22],
usually involves inverse kinematics problem of both human
and humanoid, identification of the morphing function, and
motion control of a robot with considering physical con-
sistency. Yet another example is human simulators: recent
detailed simulators are often connected to the other simulation
systems like deformation computation such as FEM [1]. Those
simulators are often used to optimize motion of digital human
or parameters of a product to be designed with the simulator. In
such problems, we usually solve the simultaneous problem of
modeling, kinematics, and dynamics problems [4]. However,
the above issues are currently difficult to be solved, and some
of them are still open problems.

In order to establish a comprehensive optimization frame-
work that can handle critical issues required from the compu-
tational and practical point of view, the partial derivative of
any physical quantities with respect to the joint coordinates
is indispensable when evaluating various types of conditions
represented by the coordinates, derivatives, and forces of both
Cartesian and joint space. Suleiman, et al [25] developed the
fundamental framework of humanoid motion optimization. It
utilizes the works of Park, et al [21] and Sohl, et al [23]
and formulates the analytical partial derivative of Cartesian
coordinates, their derivative, and joint torques with respect
to the joint coordinates and their derivatives. In spite of its
possibility of extension to handle many types of problems
mentioned above, there are still two issues. First, as the
formulation mainly focuses on the manifold of Cartesian
spaces, it is difficult to handle a free-floating base and spherical
joints that are often used in human and humanoid kinematics
modeling. The second issue is the computational complexity;
if we compute the partial derivative of joint torque of floating-



base side, the computational complexity is proportional to the
square of the degree of freedom (DOF), i.e. O (N2

J ), where NJ

is the number of DOF. It leads to huge computational cost of
optimization when dealing with a large-DOF system.

In this paper, we reformulate the differential kinematics
and dynamics in order to perform fast computation of the
analytical partial derivative of Cartesian variables and gener-
alized forces with respect to the joint coordinates and their
derivatives. We introduce a 18-dimensional Comprehensive
Motion Transformation Matrix (CMTM) in order to formulate
the standard forward differential kinematics problem. This
formulation makes it possible to reduce the computation of
differential forward kinematics of kinematic chain to a simple
chain product of the matrices in the similar manner as standard
rotational matrix, or the 6 dimensional matrix used in adjoint
map on SE(3) [21]. The CMTM also allows formulating an
analytical form of several partial derivatives with respect to the
joint coordinates and their derivatives including different types
of joints. This partial derivative of link variables is extended
form of basic Jacobian [14], and can be derived by the same
formulation to introduce basic Jacobians. The Jacobian of
joint torque is also extended form of linear/angular momentum
Jacobian [11, 24], which is also formulated in the same manner
thanks to the CMTM. In addition, each computational cost of
new Jacobians is O(NJ).

II. MOTION OPTIMIZATION FRAMEWORK

This section presents the overview of motion optimization
problem and the flow of the computation. Let the generalized
coordinates of a robot be qqq, with their trajectories param-
eterized by aaa and time instance t: qqq(aaa, t). The trajectories
are represented by, for example, polynomial interpolation,
Fourier series, or B-splines, etc. Their derivatives q̇qq and q̈qq are
computed with aaa and t according to the implemented trajectory
parameterization.

Let us concatenate qqq, q̇qq, and q̈qq into xxx, and consider physical
quantities yyy which are represented by xxx. The candidates
of yyy are, for example, the position, orientation, linear and
angular velocity, linear and angular acceleration of each link
coordinate, the joint torques and the constraint forces acting
on the joint coordinates, etc. Let yyyi, j be i-th quantity at j-th
time instance t j, xxx j be the coordinates and their derivatives at
t j, and YYY are the whole set of the quantities to be evaluated.
In this paper, the set of time instance t j is given and constant,
and the following optimization problem to be solved.

min
aaa

c(YYY ) (1)

subject to ∀ k gk(YYY )≤ 0

where, c is the cost function to be evaluated, and gk is k-
th inequality constraint. Since equality constraints can be
represented by two inequality constraints, they are summarized
and represented by inequality form.

The above optimization problem is usually computationally
expensive. In order to accelerate the computational speed,
the efficient optimization techniques usually require analytical

gradient computation of the cost function and each constraint.
The gradient can be decomposed as follows:

∂h
∂aaa

= ∑
i

∑
j

∂h
∂yyyi, j

∂yyyi, j

∂xxx j

∂xxx j

∂aaa
(h = c or gk) (2)

The gradient ∂c/∂ yyyi, j is determined by the form of the
evaluation function. The partial derivative ∂ xxx j/∂aaa can be
computed from the implemented trajectory parameterization.
The term ∂ yyyi, j/∂ xxx j means the partial derivative of several
types of quantities of multi-body system with respect to the
joint coordinates and their derivatives. The typical example is
the partial derivative of the position and orientation of each
link with respect to the joint coordinates which are known as
the basic Jacobian [14]. In this case, the derivatives of the
velocities, the accelerations, the joint torques with respect to
qqq, q̇qq, q̈qq are required. By utilizing the analytical formulations
for manipulators [21, 23], the motion optimization framework
of Eq.(1) was applied for a humanoid robot by Suleiman,
et al [25]. Though it can have the possibility to handle many
types of motion optimization, there still remain theoretical and
practical issues in order to solve the motion optimization for
humanoid systems.

First, the formulation should be extended for spherical
joints, free-floating base or other types of joints in order to be
applied to anthropomorphic systems, because the formulations
are originally for manipulators. The second issue is the com-
putational complexity of the computation. The formulations in
[25] basically utilize the classical recursive formula of forward
kinematics and inverse dynamics [17]. The derivatives with
respect to the coordinates of one joint are computed according
to the recursive formula, and it is applied for every joint
coordinates. Therefore, when computing the partial derivative
of the variables of one link, the computational complexity is
almost O (N2

J ), where NJ is the number of DOF.
As mentioned above, one typical example of ∂ yyyi, j/∂ xxx j is the

basic Jacobian, and its computational cost of standard basic
Jacobian is O (NJ). This paper introduces 18×18 matrix which
can represent the forward kinematics computation including
velocities and accelerations by simple chain products. The
matrix has same features of 6×6 transformation matrix which
represents position and orientation as mentioned later. By
utilizing this matrix together with the formulation of deriving
basic Jacobians, the computation method of arbitrary ∂ yyyi, j/∂ xxx j

is introduced in this paper. When computing the derivatives of
joint torques, the derivation form of COM Jacobians [24] are
utilized. In the formulation, several types of joints also can be
handled, and its computational complexity is O (NJ).

III. MATHEMATICAL NOTATIONS AND COMPREHENSIVE

MOTION TRANSFORMATION MATRIX

This section presents the preliminary notation of variables in
the paper, and introduces a useful matrix in order to represent
the forward kinematics computation including velocity and
acceleration of multi-body system.



A. Definitions of basic geometric and mechanical variables

• OOOn and EEEn are n×n zero and identity matrix respectively
• Skew operator is represented as follows:

[xxx×] �
[

0 −x(3) x(2)
x(3) 0 −x(1)
−x(2) x(1) 0

]
(3)

• The position and orientation matrix of the coordinate
system of a rigid body are ppp and RRR respectively.

• Let ωωω and ννν be the linear and angular velocity rep-
resented by the local coordinate respectively, and the
following relationship holds.

ṘRR = RRR [ωωω×] (4)

ννν = RRRT ṗpp (5)

• The 6×6 transformation matrix of position ppp and orien-
tation RRR is defined as follows:

AAA(ppp,RRR)�
[

RRR [ppp×]RRR
OOO3 RRR

]
(6)

• Linear and angular velocities are concatenated and de-
fined as the following vector:

υυυ �
[
νννT ωωωT

]T
(7)

• Let us define the operator for linear and angular velocities
as follows:

[υυυ • ]�
[
[ωωω×] [ννν×]
OOO3 [ωωω×]

]
, υυυ1 • υυυ2 � [υυυ1 • ]υυυ2 (8)

• The above operator satisfies the binary operation axioms
in Appendix A. The followings also hold:

ȦAA = AAA[υυυ • ] (9)

AAA[υυυ • ]AAA
−1 = [(AAAυυυ) • ] (10)

• Inertial properties of a rigid body consist of mass m,
center of mass ccc, and inertia tensor IIIc. They can be
summarized as the following 6×6 matrix:

MMM �
[

mEEE3 m [ccc×]T

m [ccc×] IIIc +m [ccc×] [ccc×]T

]
(11)

• Let the inertial forces of a rigid body be f̂ff and the
moment around its coordinate be nnn. They are represented
by global frame. Then, let us define 6-axis force fff
represented by the local coordinate as follows:

fff �
[
RRR f̂ff

T
RRRnnnT

]T
(12)

• The equations of motion of a rigid body are:

fff = MMMυ̇υυ − [υυυ • ]
T MMMυυυ (13)

• The variation of the equation of motion of a rigid body
is written as follows by using matrix DDD.

δ fff = MMMδ υ̇υυ −DDDδυυυ (14)

DDD � −[(MMMυυυ) •̂ ]− [υυυ • ]
T MMM (15)

• Operation [ •̂ ] is defined as follows:

[ fff •̂ ]�
[

OOO3

[
f̂ff×
][

f̂ff×
]

[nnn×]

]
, [ f̂ff 1 • ]

T f̂ff 2 = [ f̂ff 2 •̂ ] f̂ff 1 (16)

B. Comprehensive motion transformation matrix (CMTM)

Let us define the following new 18×18 matrix XXX and call
it comprehensive motion transformation matrix (CMTM).

XXX(AAA,υυυ , υ̇υυ) �
[

XXX1 OOO6 OOO6
XXX2 XXX1 OOO6
XXX3 XXX2 XXX1

]

�
[

AAA OOO6 OOO6
AAA[υυυ • ] AAA OOO6

1
2 AAA
(
[υ̇υυ • ]+ [υυυ • ]

2
)

AAA[υυυ • ] AAA

]
(17)

The following variation of 18 dimensional vector is defined
as follows:

δxxx �
[
δαααT δυυυT δ υ̇υυT ]T (18)

where variation δααα has the following relationship.

[(δααα) • ]� AAA−1(δAAA) (19)

Vector δxxx is the concatenated vector of the variation of stan-
dard 6 dimensional coordinates, velocities, and accelerations.

In order to handle the differential operation of matrix XXX , the
following variation of 18 dimensional vector is newly defined
as follows:

δξξξ �
[
δαααT δζζζ T δηηηT

]T
(20)

where,

δζζζ � δννν +[(δααα) • ννν ] (21)

δηηη � 1
2
(δ ν̇νν +[(δααα) • ν̇νν ]+ [(δζζζ ) • ννν ]) (22)

For the convenience of explanation, let us summarize the above
equations as follows:

δξξξ = SSSδxxx (23)

Matrix SSS transforms variation δxxx into that of that of new vector
δξξξ , and is written as follows:

SSS(υυυ , υ̇υυ)�

⎡⎣ EEE6 OOO6 OOO6

−[υυυ • ] EEE6 OOO6

− 1
2

(
[υ̇υυ • ]− [υυυ • ]

2
) − 1

2 [υυυ • ]
1
2EEE6

⎤⎦ (24)

The inverse matrix of SSS always exists, and is computed as
follows:

SSS−1 =

⎡⎣ EEE6 OOO6 OOO6

[υυυ • ] EEE6 OOO6

[υ̇υυ • ] [υυυ • ] 2EEE6

⎤⎦ (25)

Although the variation δxxx is what we are familiar with
in robotic analysis, its usage makes the forthcoming analysis
of Jacobian matrices intractable. By using the newly defined
variation δξξξ , the analysis becomes easier and clearer as shown
later on, and once the Jacobian is derived it can be always
transformed back to δxxx by the matrix SSS.



Let us now define the following matrix and operator:

[δξξξ • ] �
[
[δααα • ] OOO6 OOO6
[δζζζ • ] [δααα • ] OOO6
[δηηη • ] [δζζζ • ] [δααα • ]

]
(26)

δξξξ 1
• δξξξ 2 � [δξξξ 1

• ]δξξξ 2 (27)

By utilizing the above operator, the following relationship
holds:

δXXX = XXX [(δξξξ ) • ] (28)

It can be check by computing each block matrix of δXXXi:

δXXX1 = δAAA = AAA[δααα •] = XXX1[δααα •] (29)

δXXX2 = δAAA[ννν •]+AAA[δννν •] = XXX1[δζζζ •]+XXX2[δααα •] (30)

δXXX3 =
1
2

δAAA
(
[ν̇νν •]+ [ννν •]

2)
+

1
2

AAA([δ ν̇νν •]+ [δννν •][ννν •]+ [ννν •][δννν •])

= XXX1[δηηη •]+XXX2[δζζζ •]+XXX3[δααα •] (31)

Eq.(28) has the same form as Eq.(9). Actually, operator
[δζζζ 1

• δζζζ 2] can satisfy from the binary operation axioms in
Appendix A, which can be easily checked. In addition, the
following equation also holds.

XXX [δζζζ • ]XXX−1 = [(XXXδζζζ ) • ] (32)

The set of matrix XXX and operator ( • ) has the similar
mathematical features as matrix AAA and ( • ) (i.e. the set
of Adjoint map and Lie bracket operator). It means that
many formulas of kinematics operations about position and
orientation can be replaced with those including velocities
and accelerations. Therefore, matrix XXX can comprehensively
handle the kinematics transformation about motion.

C. Definition and formulas of kinematics chain

This sub-section shows the notation of open kinematic
chain, and important formulas about kinematics and dynamics.

• The kinematic chain is tree-structured, and the indices are
chosen from the base link to the end of branches.

• p(i) is the index of a root-side link connected to link i.
• C(i) is the set of indices of leaves-side links connected

to link i.
• C (i) is the set of all leaves-side links recursively con-

nected to link i.
• P(i) is the set of all root-side links recursively connected

to link i.
• Let us define the following sets P̂(i)� {i,P(i)}, Ĉ (i)�
{i,C (i)}

• s( j,i) is the following selection function:

s( j,i) =

{
1 (i ∈ P̂( j))
0 (others)

(33)

• Let us represent quantity yyy of link i such as yyyi,
• Let us denote yyyi

j as the relative variable of yyy from link i
to j,

• qqqi is nJi set of joint variables (angles), where n j is the
number of DOF of joint i, and the followings relation-
ship holds between the joint variables and the relative
velocities between link i and p(i):

AAAp(i)
i = e[(KKKiqqqi) • ] (34)

• Matrix KKKi is 6× nJi constant matrix defined according
to the type of joint i. For example, if joint i1 has z-
axis rotational joint and joint i2 has a spherical joint, the
corresponding matrices are followings:

KKKi1 =
[
0 0 0 0 0 1

]T
, KKKi2 =

[
OOO3 EEE3

]T
, (35)

• δθθθ i is a variance defined in the tangent vector space of
AAAp(i)

i , which has the following differential relationship.

δAAAp(i)
i = AAAp(i)

i [δααα p(i)
i • ] = AAAp(i)

i [(KKKiδθθθ i) • ] (36)

As a note, in the case of spherical joints or free floating
joints, δθθθ i is not equal to δqqqi because of Eq.(36).

• ψψψ i means the joint velocity variables, and the following
equations hold between ψψψ i and the relative coordinates:

υυυ p(i)
i = KKKiψψψ i (37)

• fff p( j)
j means the constraint force of joint j, which has the

following relationship with inertial force fff j of link j and
its links connected in leaves-side.

fff p( j)
j = fff j + ∑

k∈C( j)

AAAj
k

−T
fff j

k (38)

where j = p(k) holds due to k ∈C( j).
• τττ j represents nJi dimensional vector of joint torque, and

can be extracted from 6 dimensional vector of joint
constraint forces fff p( j)

j as follows:

τττ j = KKK j
T fff p( j)

j (39)

D. CMTMs in kinematic chain

Let us consider the following chain product among
CMTMs:

XXX j = XXXiXXX
i
j (40)

The component of XXXi is written down into the followings:

XXX1 j = XXX1iXXX1
i
j (41)

XXX2 j = XXX1iXXX2
i
j +XXX2iXXX1

i
j (42)

XXX3 j = XXX3iXXX1
i
j +XXX2iXXX2

i
j +XXX1iXXX3

i
j (43)

Now let us see Eq.(41), Eq.(42), and Eq.(43) respectively.
From Eq.(17), Eq.(41) can be transformed into:

AAAi = AAAiAAA
i
j (44)

Therefore, Eq.(41) means the standard forward kinematics
operation.

Next, Eq.(42) can be converted into:

AAAj[υυυ j • ] = AAAiAAA
i
j[υυυ i

j • ]+AAAi[υυυ i • ]AAA
i
j

= AAAj[(υυυ i
j +AAAi

j
−1υυυ i) • ] (45)



From the above equation, the followings holds identically.

υυυ j = υυυ i
j +AAAi

j
−1υυυ i (46)

where, Eq.(46) indicates that Eq.(42) means the differential
forward kinematics operation about linear and angular veloc-
ities.

Finally, Eq.(43) can be written down as follows:

1
2

AAAj
(
[υ̇υυ j • ]+ [υυυ j • ]

2)
=

1
2

AAAi
(
[υ̇υυ i • ]+ [υυυ i • ]

2)AAAi
j +AAAi[υυυ i • ]AAA

i
j[υυυ i

j • ]

+
1
2

AAAiAAA
i
j

(
[υ̇υυ i

j • ]+ [υυυ i
j • ]

2)
=

1
2

AAAj
(
[(υ̇υυ i

j +AAAi
j
−1υ̇υυ i +(AAAi

j
−1υυυ i) • υυυ i

j) • ]+ [υυυ j • ]
2)
(47)

Therefore, the followings holds identically.

υ̇υυ j = υ̇υυ i
j +AAAi

j
−1υ̇υυ i +(AAAi

j
−1υυυ i) • υυυ i

j (48)

where, Eq.(48) implies that Eq.(43) is equivalent with the
differential forward kinematics operation about linear and
angular accelerations.

As can be seen from all the above, the chain products of
CMTMs in Eq.(40) represent the standard and differential
kinematics computation of a kinematic chain. The formulation
using CMTM can therefore handle the kinematics operations
in a comprehensive manner. This feature becomes a strong
advantage when introducing arbitrary Jacobian matrices in the
next section.

Now let us define the following variation of 3nJi dimen-
sional vector consisting of the variations of joint variable,
velocity, and its derivative:

δ χχχ �
[
δθθθ T δψψψT δψ̇ψψT

]T
(49)

According to Eq.(20), Eq.(36), and Eq.(37), the relationship
between δxxxp(i)

i and δ χχχ i is summarized as follows:

δxxxp(i)
i = GGGiδ χχχ i �

⎡⎣KKKi OOO6 OOO6

OOO6 KKKi OOO6

OOO6 OOO6 KKKi

⎤⎦δ χχχ i (50)

The relationship among the variables of link and joint
coordinates and their variations is summarized in Fig.1.

IV. COMPUTATION OF ARBITRARY JACOBIANS

This section shows the different types of arbitrary partial
derivatives ∂ yyyi, j/∂ xxx j used in Eq.(2) by utilizing CMTM.
Though ∂ yyyi, j/∂ xxx j are strictly speaking not true Jacobian
matrices as in the case of basic Jacobians, however, in this
paper, let us call them Jacobians for descriptive purposes.

Link Space Joint Space 

jA

jυ

jυ&
jxδ

jξδ )( jp
jξδ

)( jp
jxδ

jχδ

jq

jψ

jψ&

S1−S

G
TG

Link variables

Joint variables

CMTM  
tangent spacejX

)( jp
jX

tangent 
space

tangent
 space

jA

jυ

jυ&

Relative variables
between

connected links
)( jp

)( jp

)( jp

Fig. 1. Overview of the relationship among the varables used in the paper

A. Jacobians of link posture, velocity and acceleration

Let us compute matrix JJJ j that converts variation δ χχχall of
all joints to variation δxxx j of link j as follows:

δxxx j = JJJ jδ χχχ all = ∑
k

JJJ( j,k)δ χχχk (51)

As mentioned in the previous section, matrix XXX has the same
features as AAA, and matrix JJJ j can be computed in a similar
manner when computing standard basic Jacobian matrix.

Now let us consider XXX j of link j. The following chain
products hold among CMTMs:

XXX j = XXX p(k)XXX
p(k)
k XXXk

j (52)

The variation of XXX j can be computed according to chain
products Eq.(52):

δXXX j = ∑
k∈P̂( j)

XXX p(k)δXXX p(k)
k XXXk

j (53)

By utilizing Eq.(28) and Eq.(32), the above equation can be
transformed into:

XXX j[(δξξξ j)
• ] = ∑

k∈P̂( j)

XXX p(k)XXX
p(k)
k [(δξξξ p(k)

k ) • ]XXXk
j

= XXX j ∑
k∈P̂( j)

[(XXX j
k δξξξ p(k)

k ) • ] (54)

According to the above equation, the following equation holds
identically.

δξξξ j = ∑
k∈P̂( j)

XXX j
k δξξξ p(k)

k (55)

The coefficient matrix of Eq.(55) means the Jacobian matrix
with respect to δξξξ , and each block matrix is equal to relative
CMTM ξξξ p(k)

k .

Since the desired Jacobian matrix is the one with respect to
δxxx j, let us compute it by transforming variations of Eq.(55)
from δξξξ to δxxx and from δxxx to δ χχχ .

First, by utilizing Eq.(23), the following equation is ob-
tained.

δxxx j = ∑
k∈P̂( j)

X̂XX
j
kδxxxp(k)

k (56)

X̂XX
j
k � SSS j

−1XXX j
kSSS

p(k)
k (57)



The next transformation can be performed with Eq.(50) as
follows:

δxxx j = ∑
k

JJJ( j,k)δ χχχ p(k)
k (58)

JJJ( j,k) � s( j,k)X̂XX
j
kGGGk (59)

From the above, the Jacobian matrix shown in Eq.(51) was
finally derived as Eq.(59). Since the direct computation of
18× 18 matrix products in Eq.(57) is computationally inef-
ficient, the solution of 6× 6 block matrices in X̂XX

i
j is written

down in Appendix B.

B. Jacobians of link inertial forces

This subsection derives matrix LLLj which converts variation
δ χχχall of all joints to force variation fff j of link j as follows:

δ fff j = LLLjδ χχχ all = ∑
k

LLL( j,k)δ χχχk (60)

Let us first consider the variation of equations of motion
of link j. According to Eq.(14), the following equations are
obtained:

δ fff j = HHH jδxxx j (61)

HHH j �
[
OOO6 DDDj MMM j

]
(62)

From Eq.(61) and Eq.(51), variation δxxx j can be transformed
into JJJ( j,k). The above equation can be also transformed into
the followings:

δ fff j = HHH j ∑
i

JJJ( j,k)δ χχχk (63)

Therefore, the Jacobian matrix shown in Eq.(60) could be
derived as followings:

LLL( j,k) = HHH jJJJ( j,k) (64)

For the sake of forthcoming discussions, let us transform
Eq.(61) to the linear form with respect to δξξξ j by using
Eq.(23).

δ fff j = HHH jSSS j
−1δξξξ j (65)

C. Jacobians of joint constraint forces

In this subsection, we compute matrix NNN j which converts
variation δ χχχall of all joints to force variation fff p( j)

j of link j
as follows:

δ fff p( j)
j = NNN jδ χχχ all = ∑

k

LLL( j,k)δ χχχk (66)

From Eq.(38), the following equation about joint constraint
force fff p( j)

j can be obtained.

δ fff p( j)
j = δ fff j + ∑

k∈C( j)

(AAAp(k)
k

−T
δ fff p(k)

k +δAAAp(k)
k

−T
fff p(k)

k ) (67)

According to Eq.(65), the above equation can be trans-
formed into:

δ fff p( j)
j =

(
HHH jSSS j

−1)δξξξ j

+ ∑
k∈C( j)

(AAAp(k)
k

−T
δ fff p(k)

k +δAAAp(k)
k

−T
fff p(k)

k ) (68)

On the other hand, the following equation holds from
Eq.(55).

δξξξ j = XXX j
p( j)

⎛⎝ ∑
l∈P̂(p( j))

XXX p( j)
l δξξξ p(l)

l

⎞⎠+δξξξ p( j)
j

= XXX j
p( j)δξξξ p( j) +δξξξ p( j)

j (69)

Since AAA−T and XXX are transformation matrices, Eq.(69)
and Eq.(68) have the same form of Eq.(90) and Eq.(90) in
Appendix C respectively. According to the similar derivations
of Eq.(92), Eq.(94), Eq.(95) in Appendix C, the following
recursive formula can be obtained.

δ fff p( j)
j = ĤHH jδxxx j + ĥhh j(= ĤHH jSSS j

−1δξξξ j + ĥhh j) (70)

where,

ĤHH j = HHH j + ∑
k∈C( j)

AAAj
k

−T
ĤHHkSSSk

−1XXXk
jSSS j (71)

ĥhh j = ∑
k∈C( j)

(
AAAj

k

−T
ĤHHkSSSk

−1δξξξ p(k)
k

+δAAAp(k)
k

−T fff p(k)
k +AAAj

k

−T
ĥhhk

)
(72)

It should be noted that, if the set of AAA−T and XXX is replaced with
AAA−T and AAA, and if there exists no bias terms like δξξξ p( j)

j , the
transformation based on Appendix C shows the same formula
when introducing linear and angular momentum Jacobian.

Let us expand the term of AAAj
k

−T
ĥhhk in Eq.(72) by its

recursive computation toward leaves-link side. In addition, by
the transformation from δξξξ to δxxx with Eq.(23), Eq.(72) can
be transformed into:

ĥhh j = ∑
k∈C ( j)

(
AAAj

k

−T
ĤHHkSSSk

−1SSSp(k)
k δxxxp(k)

k

+AAAj
p(k)

−T
δAAAp(k)

k

−T
fff p(k)

k

)
(73)

There also exists the following conversion of variation
δAAAp(k)

k
−T as follows:

δAAAp(k)
k

−T
fff p(k)

k = −AAAp(k)
k

−T
[δααα p(k)

k • ]
T fff p(k)

k

= −AAAp(k)
k

−T
[ fff p(k)

k •̂ ]δααα p(k)
k (74)

According to Eq.(74) and equation X̂XX (k,k) = SSSk
−1SSSp(k)

k (which
is from Eq.(57)), Eq.(73) can be converted to:

ĥhh j = ∑
k∈C ( j)

(
AAAj

k

−T
ĤHHkX̂XX (k,k)−AAAj

k

−T
[ fff p(k)

k •̂ ]TTT
)

δxxxp(k)
k (75)

where,

TTT �
[
EEE6 OOO6 OOO6

]
(76)

By substituting Eq.(71) and Eq.(75) for Eq.(70), and with
converting the variations from δxxxp(k)

k to δ χχχ p(k)
k , the following
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Fig. 2. Comparison of computation time of joint torque Jacobian matrix.

equation holds.

δ fff p( j)
j = ∑

k∈P̂( j)

ĤHH jJJJ( j,k)δ χχχ p(k)
k

+ ∑
k∈C ( j)

AAAj
k

−T
(

ĤHHkJJJ(k,k)− [ fff p(k)
k •̂ ]TTTGGGk

)
δ χχχ p(k)

k (77)

Given all the above, the Jacobian matrix shown in Eq.(66)
could be finally shown as followings:

NNN( j,k) =

⎧⎪⎨⎪⎩
ĤHH jJJJ( j,k) (k ∈ P̂( j))

AAAj
k

−T
(

ĤHHkJJJ(k,k)− [ fff p(k)
k •̂ ]TTTGGGk

)
(k ∈ C ( j))

OOO6×18 (others)

(78)

The computation of Eq.(78) requires matrix ĤHH j. It means
that ĤHH j for all link j needs to be computed in advance
according to recursive formula Eq.(71). After updating ĤHH j,
matrix NNN( j,k) for any j and k can be directly computed by
Eq.(78). The direct computation of Eq.(71) with 18 × 18
matrices is computationally inefficient. The final form of ĤHH j

derived from Eq.(71) is written down in Appendix D.

V. NUMERICAL EXAMPLES

This section shows the comparison of computation time of
Jacobian matrices between the two approaches: the proposed
method and the traditional method in [25]. Since the formu-
lations in [25] only handle 1-DOF joints, it was tested by
using the serial manipulator which has N rotational joints.
The Jacobian matrix of the joint torque of the first rotational
joint was computed by changing the number of joints. It
was tested by the computer with Intel(R) Xeon(R) CPU E3-
1535M v5. The proposed method, of course, could generate
the same Jacobian matrices as those from the classical method.
Fig.2 shows the results of the computational time of the two
methods. The computational complexity of the conventional
method was O(N2); on the other hand, the proposed method
showed O(N), and the computational time was significantly
improved in the large-DOF cases.

This section also validates the Jacobian in the case of spher-
ical joints; we tested a simple example of motion optimization
by using a serial manipulator with 5 spherical joints, as shown
in Fig.3. This test assumes no gravity. Each segmented link

has save physical quantities: pppp(i)
i = [0 0 0.2] [m], mi = 3.0

[kg], ccci = [0 0 0.1] [kgm], IIIi = diag([11.2 11.2 2.4]) ∗ 10−3

[kgm2]. Let ppp(t)e be the position of the end-effector at time
instance t, and τ j,k(1 ≤ j ≤ 5,1 ≤ k ≤ 3) be k-th component
of torques of j-th spherical joint.

In this planning, the total time length of the trajectory is
assumed to be 2 [s], and its sampling rate is 1 [ms]. The
variables of the spherical joints are represented by angle-axis
vector, and their trajectories was modeled by using B-splines
as shown in [25]. The number of B-spline basis is 24 and the
timespan between two bases is 0.1 [s]. The position of the end-
effector starts from ppp0

e = [0 0 1] with zero joint velocities and
accelerations, then passes through ppp1

e = [0 1 0] at t = 1.0 [s],
and stops at ppp2

e = [1 0 0] with zero joint velocities and accel-
erations. During the movement, the joint torque limitations are
considered; |τ1,k|< 0.1 [N] and |τ j,k|< 20.0 [N] (2 ≤ j ≤ 5).
In order to avoid self-collision, the distance constraints are also
assumed; ||pppk− pppl || ≥ 0.1(k �= l). All the constraint conditions
were converted to the penalty cost functions according to
penalty function method. The optimization itself was solved
by quasi-Newton method [9] by utilizing the proposed method.
The generated trajectory is shown in Fig.3. The end-effector
successfully passed through the targeted positions without self
collision. The result of joint torque trajectories of first joint is
shown in Fig.4, which all satisfy the joint torque limitations.
The other joint torques also satisfied the limitations.

Motion optimization framework is useful to solve several
practical applications as mentioned in the introduction. More
complicated cases as shown in [5] will be investigated in future
works.

VI. CONCLUSION

This paper presents the comprehensive theory of differential
kinematics and dynamics in order to derive the analytical
partial derivative of both link/joint quantities with respect
to joint coordinates and their derivatives. First, the 18×18
comprehensive motion transformation matrix (CMTM) and
18 dimensional product operation is introduced for com-
prehensive kinematics formulation, which allows a simple
chain product of the matrices to represent the standard and
differential forward kinematics of a kinematics chain. They
also have the same features as the rotation matrix and the 6×6
transformation matrix of screws, and their product operations.
By utilizing CMTM, the partial derivative of link coordinates
and their derivatives were derived in the same manner as when
introducing the basic Jacobians by just replacing the 6×6
transformation matrices with CMTM in their formulations.

This novel theoretical framework brought the following con-
tributions with respect to related work. The partial derivatives
of each generalized force with respect to joint coordinates and
their derivatives were also demonstrated. The procedure of
derivation also has similarity with that of linear and angular
momentum Jacobians. By utilizing the CMTM, each new
Jacobians could be computed by O(NJ). The formulation can
also handle different types of joints like spherical joints or
free-floating base.
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APPENDIX

A. Binary operation axioms

The bilinearity, alternativity, Jacobi identity axioms and
anticommutativity with a binary operation [, ] are introduced:

[(axxx1 +bxxx2),xxx3] = a[xxx1,xxx3]+b[xxx2,xxx3] (79)

[xxx3,(axxx1 +bxxx2)] = a[xxx3,xxx1]+b[xxx3,xxx2] (80)

[xxx1,xxx1] = 000 (81)

[xxx1, [xxx2,xxx3]]+ [xxx1, [xxx2,xxx3]]+ [xxx1, [xxx2,xxx3]] = 000 (82)

[xxx1,xxx2] =−[xxx2,xxx1] (83)

(In this paper, [, ] corresponds with [×], [ • ], or [ • ].)

B. Structure of 18×18 matrix X̂
j
k in Eq.(57)

Here are 6 × 6 block matrices in X̂XX
j
k of Eq.(57), when

writing down with the notation of X̂XX
i
j.

X̂XX
j
k �

⎡⎢⎣AAAk
j
−1

OOO6 OOO6

X̂XX
(2)
( j,k) AAAk

j
−1

OOO6

X̂XX
(4)
( j,k) X̂XX

(3̂)
( j,k) AAAk

j
−1

⎤⎥⎦ (84)

X̂XX
(2)
( j,k) = AAAk

j
−1
[υ̂υυ p(k)

k • ] (85)

X̂XX
(3)
( j,k) = AAAk

j
−1
[(υ̂υυ p(k)

k −AAAk
jυυυk

j) • ] (86)

X̂XX
(4)
( j,k) = AAAk

j
−1
([̂̇υυυ p(k)

k • ]− [(υυυ p(k)
k +AAAk

jυυυk
j) • ][υ̂υυ

p(k)
k • ])

(87)

υ̂υυk
j � υυυ j −υυυk

j (88)̂̇υυυk
j � υ̇υυ j − υ̇υυk

j − [υ̂υυk
j • υυυk

j] (89)

C. Recursive formulas of kinematic chain

Let SSSi
j an arbitrary transformation matrix, which is non-

singular and satisfies SSSi
k = SSSi

jSSS
j
k. In regards to SSSi

j, physical
quantity aaa j ∈ R

m has the following recursive formulas:

aaa j = SSS j
i aaai + ccc j (90)

where, ccc j is a bias term. Similarly, let us consider another
transformation matrix UUUi

j and physical quantity bbbi ∈R
n, there

also exists the following recursive formulas.

bbbi = PPPiVVV iaaai +dddi + ∑
j∈C(i)

UUU j
i bbbi (91)

where, ddd j is bias terms, VVV i ∈R
m×m is an arbitrary non-singular

matrix, and PPPi ∈ R
n×m maps the space of dddi into ccci.

Then, let us assume that Eq.(91) has the following form:

bbbi = P̂PPiVVV iaaai + d̂ddi (92)

By substituting Eq.(90) and Eq.(92), Eq.(91) is to be:

bbbi =

(
PPPi + ∑

j∈C(i)

UUUi
jP̂PPjVVV jSSS

j
i VVV i

−1

)
VVV iaaai

+dddi + ∑
j∈C(i)

UUUi
j(P̂PPjVVV iccc j + d̂dd j) (93)

From the comparison between the terms of Eq.(92) and
those of Eq.(93), the followings formulas are finally obtained.

P̂PPi = PPPi + ∑
j∈C(i)

UUUi
jP̂PPjVVV iSSS

j
i VVV i

−1 (94)

d̂ddi = dddi + ∑
j∈C(i)

UUUi
j(P̂PPjVVV iccc j + d̂ddi) (95)

D. Structure of 6×18 matrix Ĥ j in Eq.(71)

Let us writhe down 6×18 matrix ĤHH j into three 6×6 block
matrices K̂KK j, D̂DDj and M̂MM j as follows:

ĤHH j =
[
K̂KK j D̂DDj M̂MM j

]
= ∑

k∈Ĉ ( j)

AAAj
k

−T
[OOO6 DDDk MMMk]SSSk

−1XXX p(k)
k

−1SSSp(k) (96)

By substituting the each component of XXX and SSS according
to Eq.(17) and Eq.(24), we can have:

M̂MM j = MMM j + ∑
k∈C( j)

AAAj
k

−T
M̂MMkAAA

j
k

−1
(97)

D̂DDj = DDDj + ∑
k∈C( j)

AAAj
k

−T
(

D̂DDk − M̂MMk[ννν
j
k • ]
)

AAAj
k

−1
(98)

K̂KK j = OOO6 (99)
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