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Abstract—This paper derives nonlinear feedback control syn-
thesis for general control affine systems using second-order
actions—the needle variations of optimal control—as the basis
for choosing each control response to the current state. A second
result of the paper is that the method provably exploits the
nonlinear controllability of a system by virtue of an explicit
dependence of the second-order needle variation on the Lie
bracket between vector fields. As a result, each control decision
necessarily decreases the objective when the system is nonlinearly
controllable using first-order Lie brackets. Simulation results
using a differential drive cart, an underactuated kinematic vehicle
in three dimensions, and an underactuated dynamic model of an
underwater vehicle demonstrate that the method finds control
solutions when the first-order analysis is singular. Moreover,
the simulated examples demonstrate superior convergence when
compared to synthesis based on first-order needle variations.
Lastly, the underactuated dynamic underwater vehicle model
demonstrates the convergence even in the presence of a velocity
field.

I. INTRODUCTION

With many important applications in aerial or underwater
missions, systems are underactuated either by design—in order
to reduce actuator weight, expenses or energy consumption—
or as a result of technical failures. In both cases, it is important
to develop control policies that can exploit the nonlinearities
of the dynamics, are general enough for this broad class
of systems, and easily computable. Various approaches to
nonlinear control range from steering methods using sinusoid
controls [1], sequential actions of Lie bracket sequences [2]
and backstepping [3], [4] to perturbation methods [5], sliding
mode control (SMC) [6]–[8], intelligent [9], [10] or hybrid
[11] control and nonlinear model predictive control (NMPC)
methods [12]. These schemes have been successful on well-
studied examples including, but not limited to, the rolling disk,
the kinematic car, wheeling mobile robots, the Snakeboard,
surface vessels, quadrotors, and cranes [13]–[28].

The aforementioned methods are not ideal in dealing with
controllable systems. In the case of perturbations, the applied
controls assume a future of control decisions that did not
take the disturbance history into account; backstepping is
generally ineffective in the presence of control limits and
NMPC methods are typically computationally expensive. SMC
methods suffer from chattering, which results in high en-
ergy consumption and instability risks by virtue of exciting
unmodeled high-frequency dynamics [29], intelligent control
methods are subject to data uncertainties [30], while other
methods are often case-specific and will not hold for the
level of generality encountered in robotics. We address this

limitation by using needle variations to compute feedback laws
for general nonlinear systems affine in control, discussed next.

A. Needle Variations Advantages to Optimal Control

In this paper, we investigate using needle variation methods
to find optimal control for nonlinear controllable systems.
Needle variations consider the sensitivity of the cost func-
tion to infinitesimal application of controls and synthesize
actions that reduce the objective [31], [32]. Such control
synthesis methods have the advantage of efficiency in terms
of computational effort, making them appropriate for online
feedback (similar to other model predictive control methods,
such as iLQG [33], but with the advantage—as shown here—
of having provable formal properties over the entire state
space). For time evolving objectives, as in the case of trajectory
tracking tasks, controls calculated from other methods (such as
sinusoids or Lie brackets for nonholonomic integrators) may
be rendered ineffective as the target continuously moves to
different states. In such cases, needle variation controls have
the advantage of computing actions that directly reduce the
cost, without depending on future control decisions. However,
needle variation methods, to the best of our knowledge, have
not yet considered higher than first-order sensitivities of the
cost function.

We demonstrate analytically later in Section II that, by con-
sidering second-order needle variations, we obtain variations
that explicitly depend on the Lie brackets between vector
fields and, as a consequence, the higher-order nonlinearities
in the system. Later, in Section III, we show that, for classi-
cally studied systems, such as the differential drive cart, this
amounts to being able to guarantee that the control approach
is globally certain to provide descent at every state, despite
the conditions of Brockett’s theorem [34] on nonexistence of
smooth feedback laws for such systems.

B. Paper Contribution and Structure

This paper derives the second-order sensitivity of the cost
function with respect to infinitesimal duration of inserted
control, which we will refer to interchangeably as the second-
order mode insertion gradient or mode insertion Hessian
(MIH). We relate the MIH expression to controllability analy-
sis by revealing its underlying Lie bracket structure and present
a method of using second-order needle variation actions to
expand the set of states for which individual actions that
guarantee descent of an objective function can be computed.
Finally, we compute an analytical solution of controls that



uses the first two orders of needle variations. Due to length
constraints, the details of some proofs are shortened to an
acceptable length, allowing us to include examples demon-
strating the method.

The content is structured as follows. In Section II, we prove
that second-order needle variations guarantee control solutions
for systems that are nonlinearly controllable using first-order
Lie brackets. In Section III, we present an analytical control
synthesis method that uses second-order needle actions. In
Section IV, we implement the proposed synthesis method and
present simulation results on a controllable, underactuated
model of a 2D differential drive vehicle, a 3D controllable,
underactuated kinematic rigid body and a 3D underactuated
dynamic model of an underwater vehicle.

II. NEEDLE VARIATION CONTROLS BASED ON
NON-LINEAR CONTROLLABILITY

In this section, we relate the controllability of systems to
first- and second-order needle variation actions. After present-
ing the MIH expression, we reveal its dependence on Lie
bracket terms between vector fields. Using this connection,
we tie the descent property of needle variation actions to the
controllability of a system and prove that second-order needle
variation controls can produce control solutions for a wider
set of the configuration state space than first-order needle
variation methods. As a result, we are able to constructively
compute, via an analytic solution, control formulas that are
guaranteed to provide descent, provided that the system is
controllable with first-order Lie brackets. Generalization to
higher-order Lie brackets appears to have the same structure,
but that analysis is postponed to future work.

A. Second-Order Mode Insertion Gradient

Consider a system with state x : R 7→ RN×1 and control
u : R 7→ RM×1 with control-affine dynamics of the form

f(t, x(t), u(t)) = g(t, x(t)) + h(t, x(t))u(t), (1)

where g(t, x(t)) is the drift vector field. Further consider a
time period [to, tf ] and control modes described by

ẋ(t) =


f1(x(t), v), t0 ≤ t < τ

f2(x(t), u), τ − λ
2 ≤ t < τ + λ

2

f1(x(t), v), τ + λ
2 ≤ t ≤ tf ,

(2)

where f1 and f2 are the dynamics associated with default and
inserted control v and u, respectively. Parameters λ and τ are
the duration of the inserted dynamics f2 and the switching
time between the two modes. Dynamics of the form (2) are
typically used in optimal control of hybrid systems to optimize
the time scheduling of a-priori known modes [35]. Here, we
use such dynamics to obtain a new control mode u that will
optimally perturb the trajectory of any type of system with a
needle action [36]. Given a cost function J of the form

J(x(t)) =

∫ tf

to

l1(x(t))dt+m(x(tf )), (3)

where l1(x(t)) is the running cost and m(x(t)) the terminal
cost, the mode insertion gradient (MIG) is

dJ

dλ+
= ρT (f2−f1). (4)

For brevity, the dependencies of variables are dropped. Al-
though not presented here because of the length of the deriva-
tion and its similarity to [37], a similar analysis shows that, for
dynamics that do not directly depend on the control duration,
the mode insertion Hessian (MIH) is given by

d2J

dλ2+
=(f2−f1)TΩ(f2−f1)+ρT (Dxf2·f2+Dxf1·f1

−2Dxf1·f2)−Dxl1·(f2−f1), (5)

where ρ : R 7→ RN×1 and Ω : R 7→ RN×N are the first-
and second-order adjoint states (costates). These quantities are
calculated from the default trajectory and are given by

ρ̇ = −Dxl1
T−Dxf

T
1 ρ

Ω̇ = −Dxf1
TΩ−ΩDxf1−D2

xl1−
N∑
i=1

ρiD
2
xf

i,

that are subject to ρ(tf ) = Dxm(x(tf ))T and Ω(tf ) =
D2
xm(x(tf ))T . The superscript i in the dynamics f refers to

the ith element of the vector and is used to avoid confusion
against default and inserted dynamics f1 and f2, respectively.

B. Dependence of Second Order Needle Variations on Lie
Bracket Structure

The Lie bracket of two vectors f(x), and g(x) is

[f, g](x) =
∂g

∂x
f(x)−∂f

∂x
g(x),

which generates a control vector that points in the direction of
the net infinitesimal change in state x created by infinitesimal
noncommutative flow φfε ◦ φgε ◦ φ−fε ◦ φ−gε ◦ x0, where φfε is
the flow along a vector field f for time ε [2], [38]. Lie
brackets are most commonly used for their connection to
controllability [39], [40], but here they will show up in the
expression describing the second-order needle variation.

We relate second-order needle variation actions to Lie
brackets in order to provide controls that are conditional on the
nonlinear controllability of a system. Let hi : R 7→ RN×1 de-
note the column control vectors that compose h : R 7→ RN×M
in (1) and ui ∈ R be the individual control inputs. Then, we
can express dynamics as

f = g+

M∑
i

hiui.

and, for default control v = 0, we can re-write the MIH as

d2J

dλ2+
=
( M∑
i=1

hiui
)T

Ω

M∑
j=1

hjuj+ρ
T
( M∑
i=1

(Dxhiui)· g

−Dxg·(hiui)+
M∑
i=1

Dxhiui

M∑
i=1

hiui

)
−Dxl1

M∑
i=1

hiui.



Splitting the sum expression into diagonal (i = j) and off-
diagonal (i 6= j) elements, and by adding and subtracting
2
∑M
i

∑i−1
j=1(Dxhiui)(hjuj), we can write

M∑
i=1

Dxhiui

M∑
i=1

hiui =

M∑
i

i−1∑
j=1

[hi, hj ]uiuj

+2

M∑
i

i−1∑
j=1

(Dxhiui)(hjuj)

+

M∑
i=j=1

(Dxhiui)(hiui).

Then, we can express the MIH as

d2J

dλ2+
=

M∑
i=1

M∑
j=1

uiujh
T
i Ωhj+ρ

T
( M∑
i=2

i−1∑
j=1

[hi, hj ]uiuj

+2

M∑
i=2

i−1∑
j=1

(Dxhi)hjuiuj+

M∑
i=1

(Dxhi)hiuiui

+

M∑
i=1

[g, hi]ui

)
−Dxl(

M∑
i=1

hiui).

The expression contains Lie bracket terms of the control
vectors that appear in the system dynamics, indicating that
second-order needle variations consider higher-order nonlin-
earities. By associating the MIH to Lie brackets, we next
prove that second-order needle variation actions can guarantee
decrease of the objective for certain types of controllable
systems.

C. Existence of Control Solutions with First- and Second-
Order Mode Insertion Gradients

In this section, we prove that the first two orders of the mode
insertion gradient can be used to guarantee controls that reduce
objectives of the form (3) for systems that are controllable
with first-order Lie brackets. The analysis is applicable to
optimization problems that satisfy the following assumptions.

Assumption 1. The vector elements of dynamics f1 and f2
are real, bounded, C2 in x, and C0 in u and t.

Assumption 2. The incremental cost l1(x) is real, bounded,
and C2 in x. The terminal cost m(x(tf )) is real and twice
differentiable with respect to x(tf ).

Assumption 3. Default and inserted controls v and u are real,
bounded, and C0 in t.

Under Assumptions 1-3, the MIG and MIH expressions are
well-defined. Then, as we show next, there are control actions
that can improve any objective that is not a local optimizer.

Definition 1. A local optimizer of the cost function (3) is given
by a set (x∗, u∗) if and only if the set describes a trajectory
that corresponds to an objective function J(x∗(t)) for which
DxJ(x∗(t)) = 0.

Proposition 1. Consider a set (x, v) that describes the state
and default control of (2). If (x, v) 6= (x∗, v∗), then the first-
order adjoint ρ is a non-zero vector.

Proof: Using (3),

x 6= x∗ ⇒ DxJ(x(t)) 6= 0

⇒
∫ tf

t0

Dxl1(x(t))dt+Dxm(x(tf )) 6= 0

⇒
∫ tf

t0

Dxl1(x(t))dt 6= 0 OR Dxm(x(tf )) 6= 0

⇒ Dxl1(x(t)) 6= 0 OR Dxm(x(tf )) 6= 0

⇒ ρ̇ 6= 0∨ρ(tf ) 6= 0.

Therefore, if x 6= x∗, then ∃ t ∈ [t0, tf ] such that ρ 6= 0.

Proposition 2. Consider dynamics given by (2) and a pair of
state and control (x, v) 6= (x∗, v∗) such that dJ

dλ+
= 0 ∀ u ∈

RM and ∀ t ∈ [to, tf ]. Then, the first-order adjoint ρ is
orthogonal to all control vectors hi.

Proof: The linear combination of the elements of a vector
x is always zero if and only if x is the zero vector. Given that,
rewrite (4) as

dJ

dλ+
= 0⇒ ρT

M∑
i

hi(ui−vi) = 0

⇒
M∑
i

kiwi = 0 ∀ wi,

where wi = (ui−vi) and ki = ρThi ∈ R. The linear
combination of the elements of k is zero for any wi, which
means k must be the zero vector. By Proposition 1, ρ 6= 0
for a non-optimizer pair of state and control and, as a result,
ρThi = 0 ∀ i ∈ [1,M ].

Proposition 3. Consider dynamics given by (2) and a pair of
state and control (x, v) 6= (x∗, v∗) such that dJ

dλ+
= 0 ∀ u ∈

RM and ∀ t ∈ [to, tf ]. Further assume that the control vectors
hi and their Lie Bracket terms [hi, hj ] span the state space
RN . Then, there exist i and j such that ρT [hi, hj ] 6= 0.

Proof: A set of vectors S = (v1, . . . , vM ) is linearly
independent if and only if every vector r ∈ span(S) can be
uniquely written as a linear combination of (v1, . . . , vM ). The
control vectors and their Lie Brackets span the RN space.
On that assumption, it follows that any N-dimensional vector
can be expressed in terms of the control vectors and their
Lie Brackets. The first-order adjoint is an N -dimensional
vector, which is non-zero for a non-optimizer pair of x, v by
Preposition 1. Therefore, it can be expressed as

ρ = c1h1+· · ·+cMhM+

M∑
i 6=j

[hi, hj ] 6= 0. (6)

Given that dJ
dλ+

= 0, and by Proposition 2, ρ is orthogonal
to all control vectors hi (which also implies that the control



vectors hi do not span RN ). Then, left-multiplying (6) by ρT

yields

ρT ρ =

M∑
i6=j

ρT [hi, hj ] 6= 0.

It follows that there is at least one Lie bracket term [hi, hj ]
that is not orthogonal to the costate ρ.

Proposition 4. Consider dynamics given by (2) and a trajec-
tory described by state and control (x, v). If (x, v) 6= (x∗, v∗),
then there are always control solutions u ∈ RM such that
dJ
dλ+
≤ 0 for some t ∈ [to, tf ].

Proof: Using dynamics of the form in (1), the expression
of the mode insertion gradient can be written as

dJ

dλ+
= ρT (f2−f1) = ρT

(
h(u−v)

)
.

By Proposition 1, ρ 6= 0 for a non-optimizer trajectory. Given
controls u and v that generate a positive mode insertion
gradient, there always exist control u′ such that the mode
insertion gradient is negative, i.e. u′−v = −(u−v). The mode
insertion gradient is zero for all u ∈ RM if and only if the
costate vector is orthogonal to each control vector hi1.

First-order needle variation methods are singular when the
mode insertion gradient is zero. When that is true, the second-
order mode insertion gradient is guaranteed to be negative
for systems that are controllable with first-order Lie Brackets,
which in turn implies that a control solution can be found with
second-order needle variation methods.

Proposition 5. Consider dynamics given by (2) and a trajec-
tory described by state and control (x, v) 6= (x∗, v∗) such that
dJ
dλ+

= 0 for all u ∈ RM and t ∈ [to, tf ]. If the control vectors
hi and the Lie brackets [hi, hj ] and [g, hi] span the state space
(RN ), then there always exist control solutions u ∈ RM such
that d2J

dλ2
+
< 0.

Proof: Let k ∈ [1,M ] be an index chosen such that
[hi, hk] for some i ∈ [1,M ]\{k}2 is a vector that is linearly
independent of all control vectors hi ∀ i ∈ [1,M ]. The proof
then considers controls such that uj = vi ∀ j = 1 6= k and
vk = 0 and expresses the MIH expression (5) as

d2J

dλ2+
= uTGu−uk((Dxl1)hk−ρT [g, hk]),

where Gij = 0 ∀ i, j ∈ [1,M ]\{k}, Gik = Gki = 1
2 [hi, hk],

and Gkk = hTk Ωhk+ρTDxhk ·hk. The matrix G is shown to
be either indefinite or negative semidefinite if there exists a
Lie bracket term [hi, hk] such that ρT [hi, hk] 6= 0. If, on the
other hand, ρT [hi, hk] = 0, by reasoning that is similar to

1If the control vectors span the state space RN , the costate vector ρ ∈ RN

cannot be orthogonal to each of them. Therefore, for first-order controllable
(fully actuated) systems, there always exist controls for which the cost can
be reduced to first order.

2The notation \ indicates that the element k is subtracted from the set
[1,M ].

Proposition 3, there is at least a Lie bracket [g, hk] 6= 0 and
the MIH expression reduces to a quadratic in uk. In either
case, it then becomes straightforward to show that there exist
controls for which the MIH expression is negative.

Theorem 1. Consider dynamics given by (2) and a trajectory
described by state and control (x, v) 6= (x∗, v∗). If the control
vectors hi and the Lie brackets [hi, hj ] and [g, hi] span the
state space (RN ), then there always exists a control vector
u ∈ RM and a duration λ such that the cost function (3) can
be reduced.

Proof: The local change of the cost function (3) due to
inserted control u of duration λ can be approximated with a
Taylor series expansion

J(λ)−J(0) ≈ λ dJ

dλ+
+
λ2

2

d2J

dλ2+
.

By Propositions 4 and 5, either 1) dJ
dλ+

< 0 or 2) dJ
dλ+

= 0 and
d2J
dλ2

+
< 0. Therefore, there always exist controls that reduce

the cost function (3) to first or second order.

III. CONTROL SYNTHESIS

In this section, we present an analytical solution of first-
and second-order needle variation controls that reduce the cost
function (3) to second order. We then describe the algorithmic
steps of the feedback scheme used in the simulation results of
this paper.

A. Analytical Solution for Second Order Actions

For underactuated systems, there are states at which ρ is or-
thogonal to the control vectors hi (see Proposition 4). At these
states, control calculations based only on first-order sensitivi-
ties fail, while controls based on second-order information still
decrease the objective provided that the control vectors and
their Lie brackets span the state space (see Theorem 1). We
use this property to compute an analytical synthesis method
that expands the set of states for which individual actions that
guarantee descent of an objective function can be computed.

Consider the Taylor series expansion of the cost around
control duration λ. Given the expressions of the first- and
second-order mode insertion gradients, we can write the cost
function (3) as a Taylor series expansion around the infinites-
imal duration λ of inserted control u:

J(λ) ≈ J(0)+λ
dJ

dλ+
+
λ2

2

d2J

dλ2+
.

The first- and second-order mode insertion gradients used in
the expression are functions of the inserted control u(t) in (2).
For a fixed λ, we can minimize the function using Newton’s
Method to update the control actions. Control solutions that
minimize the Taylor expansion of the cost will have the form

u∗(t) =argmin
u

J(0)+λ
dJ

dλ+
+
λ2

2

d2J

dλ2+
+

1

2
‖u‖2R, (7)

where the MIH has both linear and quadratic terms in u(t).
The time dependence of the control u is purposefully used



here to emphasize that control solutions are functions of time
t. Using the Gâteaux derivative, we computed the minimizer
of (7) to be

u∗(t) =[
λ2

2
Γ+R]−1 [

λ2

2
∆+λ(−hT ρ)], (8)

where ∆ : R 7→ RM×1 and Γ : R 7→ RM×M are respectively
the first- and second-order derivatives of d2J/dλ2+ with respect
to the control u and are given by

∆ ,
[[
hT
(
ΩT+Ω

)
h+2hT ·(

n∑
k=1

(D1hk)ρk)T
]
v

+(D1g·h)
T
ρ−(

n∑
k=1

(D1hk)ρk)·g+hTD1l
T
]

Γ ,[hT
(
ΩT+Ω

)
h+hT ·(

n∑
k=1

(D1hk)ρk)T+

n∑
k=1

(D1hk)ρk ·h]T .

The parameter R denotes a metric on control effort.
The existence of control solutions in (8) depend on the

inversion of the Hessian H = λ2

2 Γ+R. To ensure H is pos-
itive definite, we implement a spectral decomposition on the
Hessian H = V DV −1, where matrices V and D contain the
eigenvectors and eigenvalues of H , respectively. We replace
all elements of the diagonal matrix D that are smaller than
ε with ε to obtain D̄ and replace H with H̄ = V D̄V −1

in (8). We prefer the spectral decomposition approach to the
Levenberg-Marquardt method (H̄ = H+κI � 0), because
the latter affects all eigenvalues of the Hessian and further
distorts the second-order information. At saddle points, we
set the control equal to the eigenvector of H that corresponds
to the most negative eigenvalue in order to descend along the
direction of most negative curvature [41]–[44].

This synthesis technique provides controls at time t that
guarantee to reduce the cost function (3) for systems that are
controllable using first-order Lie brackets. Control solutions
are computed solely by forward simulating the state over a
time horizon T and backward simulating the first- and second-
order costates ρ and Ω. As we see next, this leads to a very
natural, and easily implementable, algorithm for applying cost-
based feedback.

B. Algorithmic Description of Control Synthesis Method

The proposed second-order analytical controls presented in
(8) are implemented in a series of steps shown in Algorithm 1.
We compare first- and second-order needle variation actions by
implementing different controls in Step 2 of Algorithm 1. For
the first-order case, we implement controls that are the solution
to a minimization problem of the first-order sensitivity of the
cost function (3) and the control effort

u∗(t) = min
u

1

2
(
dJ1

dλ+i
−αd)2+

1

2
‖u‖2R

= (Λ+RT )−1(Λv+hT ραd), (9)

where Λ , hT ρρTh and αd ∈ R− expresses the desired
value of the mode insertion gradient term (see, for example,

Algorithm 1
1. Simulate states and costates with default dynamics f1 over

a time horizon T
2. Compute optimal needle variation controls
3. Saturate controls
4. Find the insertion time that corresponds to the most nega-

tive mode insertion gradient
5. Use a line search to find control duration that ensures

reduction of the cost function (3)

[45]). Typically, αd = γJo, where Jo is the cost function (3)
computed using default dynamics f1. For second-order needle
variation actions, we compute controls using (8).

C. Comparison to Alternative Optimization Approaches

Algorithm 1 differs from controllers that compute control
sequences over the entire time horizon in order to locally min-
imize the cost function. Rather, the proposed scheme utilizes
the time-evolving sensitivity of the objective to infinitesimal
switched dynamics and searches in a one-dimensional space
for a finite duration of a single action that will optimally
improve the cost. It does so using a closed-form expression
and, as a result, it avoids the expensive iterative computational
search in high-dimensional spaces, while it may still get closer
to the optimizer with one iterate.

First-order needle variation solution are shown in (9) to
exist globally, demonstrate a larger region of attraction and
have a less complicated representation on Lie Groups [46].
These traits naturally transfer to second-order needle controls
(8) that also contain the first-order information that is present
in (9). In addition, as this paper demonstrates, the suggested
second-order needle variation controller has formal guarantees
of descent for systems that are controllable with first-order
Lie brackets, which—to the best of our knowledge—is not
provided by any alternative method. Given these benefits, the
authors propose second-order needle variation actions as a
complement to existing approaches for time-sensitive robotic
applications that may be subject to large initial error, Euler
angle singularities, or fast-evolving (and uncertain) objectives.

Next, we implement Algorithm 1 using first or second-order
needle variation controls (shown in (9) and (8), respectively)
to compare them in terms of convergence success on various
underactuated systems.

IV. SIMULATION RESULTS

The proposed synthesis method is implemented on three
underactuated examples, the differential drive cart, a 3D
kinematic rigid body and a dynamic model of an underwater
vehicle. The kinematic systems of a 2D differential drive and a
3D rigid body are controllable using first-order Lie brackets of
the vector fields and help verify Theorem 1. The underactuated
dynamic model of a 3D rigid body serves to compare controls
in (8) and (9) in a more sophisticated environment. In all
simulation results, we start with default control v = 0 and



an objective function of the form

J(x(t)) =
1

2

∫ tf

to

‖~x(t)−~xd(t)‖2Qdt+
1

2
‖~x(tf )−~xd(tf )‖2P1

,

where ~xd is the desired state-trajectory, and Q = QT ≥ 0,
P1 = PT1 ≥ 0 are metrics on state error.

A. 2D Kinematic Differential Drive

The differential drive system demonstrates that controls
shown in (9) that are based only on the first-order sensitivity
of the cost function (3) can be insufficient for controllable
systems, contrary to controls shown in (8) that guarantee
decrease of the objective for systems that are controllable using
first-order Lie brackets (see Theorem 1). The system states are
its coordinates and orientation, given by s = [x, y, θ]T , with
kinematic (g = 0) dynamics

f = r

cos(θ) cos(θ)
sin(θ) sin(θ)

1
L − 1

L

[uRuL
]
,

where r = 3.6 cm, L = 25.8 cm denote the wheel radius and
the distance between them, and uR, uL are the right and left
wheel control angular velocities, respectively (these parameter
values match the specifications of the iRobot Roomba).

The control vectors h1, h2 and their Lie bracket term
[h1, h2] = 2 r

2

L

[
−sin(θ),−cos(θ)

]T
span the state space (R3).

Therefore, from Theorem 1, there always exist controls that
reduce the cost to first or second order.

Fig. 1 demonstrates how different first- and second-order
needle variation actions perform on reaching a nearby target.
Actions based on first-order needle variations (9) do not gen-
erate solutions that turn the vehicle, but rather drive it straight
until the orthogonal displacement between the system and the
target location is minimized. Actions based on second-order
needle variations (8), on the other hand, converge successfully.

We also present a Monte Carlo simulation that compares
convergence success using first- and second-order needle vari-
ations controls shown in (9) and (8), respectively. We sampled
over initial coordinates x0, y0 ∈ [−1500, 1500] mm using
a uniform distribution and keeping only samples for which
the initial distance from the origin exceeded L/5; θ0 = 0
for all samples. Successful samples were within L/5 from
the origin with an angle θ < π/12 within 60 seconds using
feedback sampling rate of 4 Hz. Results were generated using
Q = diag(10, 10, 1000), P1 = diag(0, 0, 0), T = 0.5 s,
R = diag(100, 100) for (9), R = diag(0.1, 0.1) for (8),
γ = −15, λ = 0.1 and saturation limits on the angular
velocities of each wheel ±150/36 mm/s 3. As shown in Fig. 2,
the system always converges to the target using second-order
needle variation actions, matching the theory.

3The metric on control effort is necessarily smaller for (8), due to parameter
λ. The parameter was chosen carefully to ensure that control solutions from
(8) and (9) were comparable in magnitude.
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Fig. 1: Differential drive using first- (top) and second-order (bottom)
needle variation actions. Snapshots of the system are shown at
t = 0, 2.5, 5, 7.5, 10, and 12.5 sec. The target state is [xd, yd, θd] =
[1000 mm, 1000 mm, 0].
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Fig. 2: Convergence success rates of first- (9) and second-order (8)
needle variation controls for the kinematic differential drive model.
Simulation runs: 1000.

B. 3D Kinematic Rigid Body

The underactuated kinematic rigid body is a three dimen-
sional example of a system that is controllable with first-order
Lie brackets. To avoid singularities in the state space, the
orientation of the system is expressed in quaternions [47], [48].
The states are s = [x, y, z, q0, q1, q2, q3], where b = [x, y, z]
are the world-frame coordinates and q = [q0, q1, q2, q3] are
unit quaternions. Dynamics f = [ḃ, q̇]T are given by

ḃ = Rqv, (10)

q̇ =
1

2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

ω, (11)
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Fig. 3: Convergence success rates of second-order needle variation
controls (8) for the underactuated kinematic vehicle. First-order
actions (9) do not affect the y-coordinate of the rigid body and
therefore never converge. Simulation runs: 280.

where v and ω are the body frame linear and angular velocities,
respectively [49]. The rotation matrix for quaternions is

Rq =

q20+q21−q22−q23 2(q1q2−q0q3) 2(q1q3+q0q2)
2(q1q2+q0q3) q20−q21+q22−q23 2(q2q3−q0q1)
2(q1q3−q0q2) 2(q2q3+q0q1) q20−q12−q22+q23

 .
The system is kinematic: v = F and ω = T , where F =

(F1, F2, F3) and T = (T1, T2, T3) describe respectively the
surge, sway, and heave input forces, and the roll, pitch, and
yaw input torques. We render the rigid body underactuated by
removing the sway and yaw control authorities (F2 = T3 = 0).

The four control vectors span a four dimensional space. First
order Lie bracket terms add two more dimensions to span the
state space (R6) (the fact that there are seven states in the
model of the system is an artifact that is inherent in quater-
nion representation; it does not affect controllability, given
that there is also a constraint that the norms of quaternions
must sum up to one). The vectors h1, h2, [h2, h3] span R3

associated with the world frame coordinate dynamics ẋ, ẏ,
and ż. Similarly, vectors h3, h4, and [h4, h3] also span R3.
Thereby, control vectors and their first-order Lie brackets span
the state space and, from Theorem 1, optimal actions shown
in (8) will always reduce the cost function (3).

To verify the theory, we present the convergence success
of the system on 3D motion (see Fig. 3). Using Monte
Carlo sampling with uniform distribution, initial locations
were randomly generated such that x0, y0, z0 ∈ [−50, 50] cm
keeping only samples for which the initial distance from the
origin exceeded 6 cm. We regarded as a convergence success
each trial in which the rigid body was within 6 cm to the
origin by the end of 60 seconds at any orientation. Results
were generated at a sampling rate of 20 Hz using Q = 0,
P1 = diag(100, 200, 100, 0, 0, 0, 0), T = 1.0 s, γ = −50000,
λ = 10−3, R = 10−6 diag(1, 1, 100, 100) for (8), and
R = diag(10, 10, 1000, 1000) for controls in (9). Controls
were saturated at ±10 cm/s for the linear velocities and
±10 rad/s for the angular ones. As shown in Fig. 3, and as
expected, all locomotion trials were successful.

C. Underactuated Dynamic 3D Fish
We represent the three dimensional rigid body with states

s = [b, q, v, ω]T , where b = [x, y, z] are the world-
frame coordinates, q = [q0, q1, q2, q3] are the quaternions that
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Fig. 4: Convergence success rates of first- and second-order needle
variation controls ((9) and (8), respectively) for the underactuated
dynamic vehicle model. Simulation runs: 280

describe the world-frame orientation, and v = [vx, vy, vz]
and ω = [ωx, ωy, ωz] are the body-frame linear and angular
velocities. The rigid body dynamics are given by ḃ and q̇
shown in (10) and (11) and

Mv̇ = Mv×ω+F,

Jω̇ = Jω×ω+T,

where the effective mass and moment of inertia of the rigid
body are given by M = diag(6.04, 17.31, 8.39) g and
J = diag(1.57, 27.78, 54.11)g·cm2, respectively. This ex-
ample is inspired by work in [45], [50] and the parameters
used for the effective mass and moment of inertia of a rigid
body correspond to measurements of a fish. The control inputs
are F2 = T3 = 0 and F3 ≥ 0.

The control vectors only span a four dimensional space and,
since they are state-independent, their Lie brackets are zero
vectors. However, the Lie brackets containing the drift vector
field g (that also appear in the MIH expression) add from one
to four (depending on the states) independent vectors such that
control solutions in (8) guarantee decrease of the cost function
(3) for a wider set of states than controls in (9).

Simulation results based on Monte Carlo sampling are
shown in Fig. 4. Initial coordinates x0, y0, z0 were gener-
ated using a uniform distribution in [−100, 100] cm, dis-
carding samples for which the initial distance to the ori-
gin was less than 15 cm. Successful trials where the
ones for which, within a simulation window of 60 sec-
onds, the system approached within 5 cm to the origin
(at any orientation) and whose magnitude of the linear
velocities was, at the same time, less than 5 cm/s. Re-
sults were generated at a sampling rate of 20 Hz using
T=1.5 s, P1=0, Q = 1

200diag(103,103,103,0,0,0,0,1,1,1,2·
103,103,103), γ=−5, R=diag(103,103,106,106) for (9), R=
1
2diag(10−6,10−6,10−3,10−3) for (8), and λ=10−4. The same
control saturations (F1 ∈ [−1, 1] mN, F3 ∈ [0, 1] mN, T1 ∈
[−0.1, 0.1]µN·m, and T2 ∈ [−0.1, 0.1]µN·m) were used for
all simulations of the dynamic 3D fish. As shown in Fig. 4,
controls computed using second-order needle variations con-
verge faster than those based on first-order needle variations,
and 97% of trials converge within 60 seconds.

Both methods converge over time to the desired location;
as the dynamic model of the rigid body tumbles around and
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Fig. 5: Figure 5a shows snapshots of a parallel displacement maneuver using an underactuated dynamic vehicle model with second-order
controls give n by (8); first-order solutions (9) are singular throughout the simulation. Figure 5b shows tracking performance of the same
system in the presence of +10 cm/s ŷ fluid drift. The yellow system corresponds to first-order needle variation actions; the red one to second
order. The target trajectory (red ball) is indicated with white traces over a 10-second simulation. Animation of these results is available at
https://vimeo.com/219628387.

its orientation changes, possible descent directions of the cost
function (3) change and the control is able to push the system
to the target. Controls for the first-order needle variation case
(9) are singular for a wider set of states than second-order
needle variation controls (8) and, for this reason, they benefit
more from tumbling. In a 3D parallel locomotion task, only
second-order variation controls (8) manage to provide control
solutions through successive heave and roll inputs, whereas
controls based on first-order sensitivities (9) fail (see Fig. 5a).

As controls in (8) are non-singular for a wider subset of the
configuration state space than the first-order solutions in (9),
they will provide more actions over a period of time and keep
the system closer to a time-varying target. Fig. 5b demonstrates
the superior trajectory tracking behavior of controls based on
(8) in the presence of +10 cm/s ŷ fluid drift. The trajec-
tory of the target is given by [x, y, z]=[20 +10 cos( t

5 ) cos( 3t
10 ),

20 + 10 cos( t
5 ) sin( 3t

10 ), 10 sin( 2t
5 )], with T=2 s, λ=0.01,

Q = diag(10,10,10,0,0,0,0,0,0,0,1,1,0.1), γ=−50000, P1=
diag(10,10,10,0,0,0,0,0,0,0,0,0,0), R=diag(103,103,106,106)
for (9), and R=diag(10,10,104,104) for (8). The simulation
runs in real time using a C++ implementation on a laptop with
Intelr CoreTM i5-6300HQ CPU @2.30GHz and 8GB RAM.
The drift is known for both first- and second-order systems and
accounted for in their dynamics in the form of ḃ = ḃ+ ḃdrift,
where ḃdrift is a vector that points in the direction of the
fluid flow. Simulation results demonstrate superior tracking
of second-order needle variation controls that manage to stay
with the target, whereas, in the meantime, the system that
corresponds to first-order needle variation controls is being
drifted away by the flow.

We also tested convergence success of the +10 cm/s ŷ
drift case. Initial conditions x, y, z were sampled uniformly
from a 30 cm radius from the origin, discarding samples
for which the initial distance was less than 5 cm. We
consider samples to be successful if, during 60 seconds of
simulation, they approached the origin within 5 cm. Out
of 500 samples, controls based on second-order variations
converged 91% of the time (with average convergence time

of 5.87 s), compared to 89% for first-order actions (with av-
erage convergence time of 9.3 s). Simulation parameters were
T=1 s, λ=10−4, Q=10−3diag(10,10,10,0,0,0,0,1,1,1,1,1,1),
P1=diag(100,100,100,0,0,0,0, 12 ,

1
2 ,

1
2 ,0,0,0), γ=−25000, R=

diag(0.1,0.1,104,104) for (9), and R= 1
2diag(10−5,10−5,1,1)

for (8).

V. CONCLUSION

This paper presents a needle variation control synthesis
method for nonlinearly controllable systems that can be ex-
pressed in control affine form. Control solutions provably
exploit the nonlinear controllability of a system and, contrary
to other nonlinear feedback schemes, have formal guarantees
to decrease the objective. By optimally perturbing the system
with needle actions, the proposed algorithm avoids the expen-
sive iterative computation of controls over the entire horizon
that other NMPC methods use and is able to run in real time.

Simulation results on three underactuated systems compare
first- and second-order needle variation controls and demon-
strate the superior convergence success rate of the proposed
feedback synthesis. Because second-order needle variation
actions are non-singular for a wider set of the state space
than controls based on first-order sensitivity, they are also
more suitable for time-evolving objectives, as demonstrated
by the trajectory tracking examples in this paper. Second
order needle variation controls are also calculated at little
computational cost and preserve control effort. These traits,
demonstrated in the simulation examples of this paper, render
feedback synthesis based on second- and higher-order needle
variation methods a promising alternative feedback scheme for
underactuated and nonlinearly controllable systems.
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