
Experience-driven Predictive Control
with Robust Constraint Satisfaction under

Time-Varying State Uncertainty
Vishnu R. Desaraju, Alexander E. Spitzer, and Nathan Michael

The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{rajeswar, spitzer, nmichael}@cmu.edu

Abstract—We present an extension to Experience-driven Pre-
dictive Control (EPC) that leverages a Gaussian belief prop-
agation strategy to compute an uncertainty set bounding the
evolution of the system state in the presence of time-varying state
uncertainty. This uncertainty set is used to tighten the constraints
in the predictive control formulation via a chance constrained ap-
proach, thereby providing a probabilistic guarantee of constraint
satisfaction. The parameterized form of the controllers produced
by EPC coupled with online uncertainty estimates ensures this
robust constraint satisfaction property persists even as the system
switches controllers and experiences variations in the uncertainty
model. We validate the online performance and robust constraint
satisfaction of the proposed Robust EPC algorithm through a
series of experimental trials with a small quadrotor platform
subjected to changes in state estimate quality.

I. INTRODUCTION

Autonomous robotic systems operating in uncertain, real-
world environments must be able to track trajectories safely
and reliably while obeying system limitations (e.g., actuator
constraints) and operational constraints (e.g., speed limits for
traversing a region of the environment or to satisfy sensor
limitations). However, these systems have inherently noisy
sensing and perception systems that produce state estimates
with variable uncertainty. This is particularly challenging for
small, agile systems, such as micro air vehicles (MAVs) that
are limited in their computation and sensing capabilities by
size, weight, and power restrictions. Therefore, in this work we
aim to develop a computationally efficient predictive control
methodology that leverages uncertainty information from the
state estimator to ensure constraints on the system state and
control inputs are satisfied, even in the presence of time-
varying state uncertainty (illustrated in Fig. 1). We specifi-
cally focus on the problem of robust constraint satisfaction
in predictive control, as the predictive formulation permits
anticipating and mitigating future uncertainty while retaining
an optimal control framework [21].

There are two general classes of approaches for mitigat-
ing the effects of uncertainty in predictive control. Adaptive
formulations seek to estimate the uncertainty in the dynamics
and update the predictive model to more accurately anticipate
the system’s interaction with the constraints [4, 8, 11, 27].
However, in practice, this may still lead to constraint violations
due to the difference in timescales between the disturbance
estimator and high-frequency noise in the state estimate.
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Fig. 1: Overview of the proposed approach that combines
an online learned controller database with estimates of the
dynamics model and state uncertainty. As uncertainty changes,
the tightened constraints (red) on the MAV automatically
adjust to ensure robust satisfaction of the requested constraints
(blue), even as the MAV switches between controllers. In
panel (a), the existing controller in the experience database
is determined to be optimal and applied. Panel (b) shows the
addition of a new controller to the database to accommodate
higher sensor uncertainty. In panel (c), the state uncertainty
parameterizes all controllers in the database as they are reused.

In contrast, robust formulations refine the constraints to
explicitly account for high-frequency uncertainty. Robust MPC
techniques provide constraint satisfaction guarantees in the
presence of bounded, uncertain parameters [19, 20, 23, 30].
For linear dynamics, the effects of bounded uncertainty can be
represented by disturbance-invariant sets [17] that can be used
to tighten the set of feasible states and inputs (via the Pon-
tryagin difference operation). In the nonlinear case, this can be
generalized to min-max formulations to optimize with respect
to the maximal state deviations [1]. These techniques yield
more conservative controllers than the adaptive approaches,
but as a result, are able to account for any variations within
the bounded uncertainty set without requiring a disturbance
estimator that can track rapid variations.

A subset of these Robust MPC techniques employ local
feedback control laws to restrict the anticipated growth of
uncertainty. This yields constraint tightening and Tube MPC
approaches that enable more aggressive performance [18, 23,
30]. While many formulations assume the uncertainty set is



known a priori (e.g., as a disturbance invariant set or via the
min-max calculation), some approaches permit online modifi-
cation of robustness bounds driven by online estimates of the
uncertainty bounds [31]. An extension of this idea replaces
the deterministic uncertainty set with a probabilistic represen-
tation, e.g., as a multivariate Gaussian distribution [35]. This
enables the use of a Kalman filter to predict the evolution of
state uncertainty instead of the recursive Pontryagin difference
operations required for deterministic sets [21]. Many adaptive
MPC formulations also include a robust component that is
coupled to estimator uncertainty [1, 10, 11]. The resulting
robust-adaptive formulations allow the adaptive component to
estimate and compensate for low frequency components of
the uncertainty, while variability about the current estimate is
handled by the robust constraints.

In addition to constraint satisfaction under uncertainty, the
other core challenge for applying predictive control strate-
gies to systems such as MAVs stem from their onboard
computational constraints. That is, we require the ability to
compute predictive control commands at sufficiently high rates
to ensure stability of these agile systems. Fast MPC solution
strategies can be divided into four categories: leveraging fast
online optimization techniques [26], optimizing approximate
formulations [15], explicit enumeration of equivalent con-
trollers [2], and semi-explicit approaches [7, 8, 28]. In this
work, we consider this last class of techniques due to the re-
duced reliance on online optimization in a critical control loop
and their scalability to available computational resources [28].
Within the class of semi-explicit approaches, the Experience-
driven Predictive Control (EPC) algorithm [8] extends this
efficient formulation to mitigate the effects of low-frequency
disturbances to the system dynamics.

Therefore, we propose a constrained, predictive control
strategy that leverages EPC for computational efficiency
and adaptation to low-frequency components of the un-
certainty. We extend the underlying control problem to a
chance-constrained Tube MPC formulation to capture the
effects of time-varying state uncertainty (e.g., due to sensors
with environment-dependent performance) in the robustness
bounds. The resulting Robust EPC algorithm ensures proba-
bilistic constraint satisfaction in the presence of state uncer-
tainty modeled by a multivariate Gaussian distribution, e.g.,
provided by a Kalman filter based state estimator.

II. APPROACH

In this section, we present an extension of the Experience-
driven Predictive Control (EPC) algorithm [8] to achieve high-
rate predictive control with robust constraint satisfaction. EPC
constructs online a two-part experience database consisting
of previously used locally optimal controllers and observed
perturbations to the system’s dynamics model (illustrated by
the blue and yellow boxes in Fig. 1). The controllers are
parameterized by the dynamics model, and thus they automat-
ically adapt to changes in the model. We therefore propose
the Robust EPC algorithm by similarly parameterizing the
controllers in the database by an online updated estimate of

the uncertainty in the system state. This estimate is derived
from the state estimator covariance and enables the use of a
belief propagation approach to construct an uncertainty tube
for the evolution of the state over the prediction horizon.

A. Adaptive Stochastic Dynamics Model

We consider the general nonlinear dynamics and observation
models

xk+1 = f(xk,uk) + wk

zk = h(xk) + vk

(1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control
input, and wk ∼ N (0,Wk) and vk ∼ N (0,Vk) denote
the process and measurement uncertainty, respectively. The
corresponding first order approximations about a nominal state
x∗ and nominal control u∗ are

xk+1 ≈ Ak(xk − x∗) + Bk(uk − u∗) + c̃ + wk

zk ≈ Ck(xk − x∗) + vk

(2)

where c̃ is the estimate of the approximation error. Updating
this estimate via an online learning strategy also captures the
effects of unmodeled dynamics, thus enabling adaptation to
external perturbations (detailed in Sect. II-D).

To model the evolution of this uncertain system, we leverage
the existence of a closed-form belief propagation law for
Gaussian distributions [32] and extend (1) to a standard EKF
belief state update law that yields an estimate of the state,
xk ∼ N (µk,Σk),

µk+1 = f(µk,uk) + PkCT
kL−1

k (zk+1 − h(µk))

Σk+1 = Pk −PkCT
kL−1

k CkPk

where Pk = AkΣkAT
k + Wk and Lk = CkPkCT

k + Vk.
Following Platt et al. [16], we take zk+1 = h(µk) as the
maximum likelihood observation to obtain a simplified belief
state update law

µk+1 = f(µk,uk)

Σk+1 = Pk −PkCT
kL−1

k CkPk

(3)

B. Chance-constrained Tube MPC

To incorporate this uncertainty propagation model into a ro-
bust control framework, we propose a Tube MPC formulation
where the control applied to the system, uS

k , is the combination
of the MPC output, uk, and an ancillary stabilizing controller
with gain matrix Sk,

uS
k = uk + Sk(xk − µk) (4)

This gain, Sk, is designed to stabilize the nominal system via
an unconstrained MPC formulation [24] given in Sect. II-C1.
The introduction of the ancillary controller restricts deviations
from the predicted state mean [21] and enables the MPC
formulation to account for the reduction in uncertainty due
to local feedback. This results in a slight change in the belief
state update law,

Pk = (Ak −BkSk)Σk(Ak −BkSk)T + Wk



The Tube MPC formulation also enforces state and input
constraints, xk ∈ Xk,u

S
k ∈ Uk. In this work, we assume the

admissible state sets, Xk, and input sets, Uk, are polytopic, or
can be approximated by polytopes. This yields a set of half-
plane constraints,

Gx(xk+1 − x∗) ≤ gx

Gu(uS
k − u∗) ≤ gu

(5)

However, due to the stochastic dynamics model, we instead
employ a chance constrained formulation by requiring (5) to
hold with probability 1− α,

P (Gx(xk+1 − x∗) ≤ gx) ≥ 1− α
P
(
Gu(uS

k − u∗) ≤ gu

)
≥ 1− α

(6)

Given that the belief state corresponds to a multivariate Gaus-
sian, N (µ,Σ), its probability mass level sets are ellipsoids
defined by a χ2 value. The ellipsoid containing 1 − α of the
probability mass is given by (x− µ)TΣ−1(x− µ) = χ2

n(α).
Therefore, a given chance constraint threshold, 1 − α, yields
an ellipsoid defining the state uncertainty bounds.

Ensuring robust constraint satisfaction requires tighten-
ing (5) by these bounds [21], as illustrated in Fig. 2. Con-
sequently, to retain the linear form of the constraints, we
follow Domes et al. [9] to approximate the ellipsoid by its
axis-aligned bounding box with side lengths given by

δxk+1 =
√
χ2
n(α)diag(Σk+1) (7)

where diag(·) returns the diagonal elements of the argument
as a vector.

While the MPC output, uk, does not introduce any control
input uncertainty, the ancillary controller is a function of the
uncertain future state. This yields a similar bound on the
control command,

δuk =
√
χ2
n(α)diag(SkΣkST

k) (8)

Given these bounding box dimensions, we convert the proba-
bilistic state and input constraints (6) to tightened deterministic
constraints, xk ∈ X̃k,uk ∈ Ũk,

Gx(µk+1 − x∗) ≤ gx −Gxδ
x
k+1 = g̃x

Gu(uk − u∗) ≤ gu −Guδ
u
k = g̃u

(9)

Although the bounding box is generally a conservative approx-
imation of the ellipsoid, we observe that for any axis-aligned
box constraint, tightening by the bounding box is equivalent to
the exact approach of tightening by the axis-aligned suprema
over the ellipsoid [5].

C. Robust EPC formulation

Although this chance-constrained Tube MPC formulation
permits an optimization-based solution, in this work, we
propose a novel extension to the Experience-driven Predictive
Control (EPC) algorithm [8] to enable Robust MPC on com-
putationally constrained systems. The proposed Robust EPC
algorithm leverages this tube-based formulation to enforce
robust constraint satisfaction while retaining the computational
efficiency and model adaptation properties of EPC.
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Fig. 2: Two-dimensional illustration of constraint tightening:
(a) nominal state constraints (blue line) with the predicted
Gaussian uncertainty tube (Σi) define (b) chance-constraint
bounds (δi) that yield tightened constraints (red).

As in EPC, we can formulate the receding-horizon control
problem as a quadratic program (QP) due to the model
adaptation term, c̃, that captures the nonlinearities and other
unmodeled dynamics. The QP is formulated about a nominal
state, x∗ and input, u∗, to track a sequence of N reference
states r1, . . . , rN ,

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQ(x̄k+1 − r̄k+1)

+
1

2
(ūk − ūc)TR(ūk − ūc)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxx̄k+1 ≤ g̃x, Guūk ≤ g̃u

∀ k = 0, . . . , N − 1

(10)

where x̄k = µk − x∗, r̄k = rk − x∗, and ūk = uk − u∗.
If it is possible to derive a control input, ūc, from the model
adaptation term (e.g., if c̃ is an acceleration disturbance, ūc

would be the corresponding force) we subtract it in the cost
function to avoid penalizing model error compensation [8].

Given that we can forward predict the mean and covariance
evolution via (3), we can simplify notation by defining x =[
x̄T

1, . . . , x̄
T
N

]T
, r =

[
r̄T

1, . . . , r̄
T
N

]T
, u =

[
ūT

0, . . . , ū
T
N−1

]T
,

uc =
[
ūT
c, . . . , ū

T
c

]T
,

B =


B 0 . . . 0

AB B . . . 0
...

...
. . .

AN−1B AN−2B . . . B

 , c =


c̃

(A + I) c̃
...∑N−1

i=0 Aic̃

 ,



Q = diag(Q, . . . ,Q), R = diag(R, . . . ,R), Gx =
diag(Gx, . . . ,Gx), and Gu = diag(Gu, . . . ,Gu), where
diag(·) here diagonally concatenates matrices. Similarly, let
gx =

[
g̃T
x, . . . , g̃

T
x

]T
and gu =

[
g̃T
u, . . . , g̃

T
u

]T
to capture the

tightened constraints (9).
Finally, we define µ0 to be a parameter of the optimization

constrained by the current state (see Sect. II-C2) rather than
directly using the current state as in EPC. Therefore, the
nominal state, x∗ = µ0, x̄0 = 0, and (10) simplifies to

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− uc)TR(u− uc)

s.t. x = Bu+ c, Gxx ≤ gx, Guu ≤ gu
Incorporating the dynamics into the cost and constraints

yields an equivalent QP that facilitates the state space par-
titioning and local controller computation steps of EPC,

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(11)

where H = BTQB + R, h = BTQ(c− r)−Ruc,

Γ =

[
GxB
Gu

]
, and γ =

[
gx − Gxc
gu

]
As in EPC, the partitioning of the state-space for Robust

EPC is determined by the Karush-Kuhn-Tucker (KKT) condi-
tions for optimality,

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0
(12)

where λ is the vector of Lagrange multipliers and Λ =
diag(λ). Therefore, given a set of active constraints (i.e., with
λ > 0), we can solve for the optimal control sequence u and
corresponding λ by solving a linear system derived from (12),[

H Γ T
a

Γ a 0

] [
u
λa

]
=

[
−h
γa

]
where the subscript a denotes rows corresponding to active
constraints. For any linearly independent set of active con-
straints [3], the resulting u is affine in the predicted state mean
error, r,

u = E5r −

E5c− E4Ruc + E3


g+
x − Gxc
−g−x + Gxc

g+
u

−g−u


a

 (13)

where E1 = Γ aH−1, E2 = −(E1Γ
T
a)−1, E3 = ET

1E2, E4 =
H−1 + E3E1, and E5 = E4BTQ. Moreover, the coefficients
in (13) are all functions of A,B, c̃, δx, and δu. Therefore, the
final control law κ(x0, r1, . . . , rN ) is given by a parameterized
feedback gain matrix K, a parameterized feedforward vector
kff, and the ancillary control gain matrix, S,

κ(x0, r1, . . . , rN ) = K(A,B, c̃, δx, δu)r

+ kff(A,B, c̃, δ
x, δu)

+
[
S0(x0 − µ0)T, . . . ,SN−1(xN−1 − µN−1)T]T (14)

The KKT matrices that determine whether a previously com-
puted controller is locally optimal are similarly parameterized,
and the active Lagrange multipliers, λa, are given by

λa = −E6r+

E6c− ET
3Ruc + E2


g+
x − Gxc
−g−x + Gxc

g+
u

−g−u


a

 (15)

where E6 = ET
3B

TQ. Therefore, given a set of active
constraints, the corresponding controller and KKT matrices
can be reconstructed online using (13), (15), and the current
A,B, c̃, δx and δu. Therefore, each controller automatically
evolves with both the estimated system dynamics and state
uncertainty. This also enables the construction of a controller
database that recovers the functionality of (10) by switching
between controllers according to the KKT conditions, thus pro-
viding the foundation for the Robust EPC algorithm detailed
in Sect. II-E.

1) Ancillary Controller: In addition to the introduction of
a chance-constrained formulation, the extension of EPC to
Robust EPC requires two key components. The first is an
ancillary controller that aims to drive the current state, xk,
(now treated as deterministic) to the state mean sequence,
µk, produced by (11). The corresponding unconstrained MPC
formulation,

argmin
uk

N−1∑
k=0

1

2
(xk+1 − µk+1)TQ(xk+1 − µk+1) +

1

2
uT
kRuk

yields an equivalent set of feedback control gains computed
analogously to (14) without constraints,

diag(S0, . . . ,SN−1) = (BTQB + R)−1BTQ (16)

2) Initial State Selection: The second component is the
initial state mean parameter, µ0. Due to the uncertainty in the
state, µ0 is not necessarily set to the initial state, x0. Instead,
the tube-based formulation permits selecting µ0 such that

x0 ∈ µ0 ⊕ Box(δx0) (17)

where Box(δx0) is the bounding box with dimensions given
by δx0 [22] and ⊕ denotes the Minkowski sum. We therefore
propose a piecewise definition of µ0,

µ0 =

{
x0, x0 ∈ X̃0

projX̃ (x0), x0 ∈ X0\X̃0

(18)

where the projX̃ (·) operator projects the state onto the tight-
ened constraint set, X̃ . If x0 ∈ X̃0, the initial state satis-
fies (17) and can be assigned to µ0. Otherwise, we assume
only the noisy state is outside X̃0 and use the projection
operation to find the closest point in X̃0. Due to the chance-
constrained formulation, infrequent constraint violations are
possible. Therefore, if x0 /∈ X0, an intermediate controller
is applied as part of the Robust EPC algorithm detailed in
Sect. II-E to recover from the constraint violation.



D. Online Model Adaptation

In addition to robust constraint satisfaction, the param-
eterized controllers (14) generated via Robust EPC retain
the adaptation properties of EPC, thus providing a means to
mitigate both high and low frequency sources of uncertainty.
While EPC employs Locally Weighted Projection Regression
(LWPR) to construct and update a database of local dynamics
models, we consider three online model adaptation strategies
to assess their effects on robust constraint satisfaction.

LWPR Model Learner: LWPR learns corrections to a
nominal dynamics model via a Gaussian-weighted combina-
tion of local linear functions that are updated incrementally
via partial least squares [33]. Therefore, given a state-control
pair, (x,u), LWPR returns the anticipated error, c̃ between the
predicted and actual next state.

ISSGPR Model Learner: Incremental Sparse Spectrum
Gaussian Process Regression (ISSGPR) [12] projects input
data onto a set of trigonometric basis functions with random
frequencies. Regularized linear regression in this feature space
yields the predictive mean. While standard Gaussian process
regression run time is cubic in the amount of data, ISSGPR
achieves constant time by using an explicit feature space to
avoid the expensive computation of the Gramian matrix.

Luenberger Disturbance Observer: Finally, we also con-
sider a purely reactive adaptation strategy based on L1 adap-
tive control [34]. This approach employs a nonlinear Luen-
berger observer driven by the difference between the state
predicted via (1) and the state reported by the state estimator.

E. Algorithm Overview

The Robust EPC algorithm leverages this formulation to
achieve high-rate adaptive control while providing robust
constraint satisfaction, as illustrated in Fig. 1 and detailed in
Alg. 1. We incrementally construct an experience database,
M, as a mapping from experiences, (x, r,u,A,B, c̃, δx, δu),
to controllers, (K,kff), that can be queried in future control
iterations to recover the functionality of (10). In every control
iteration, Robust EPC obtains the current state estimate, x0,
reference sequence, r1, . . . , rN , and dynamics model (A,B, c̃)
updated via adaptation. It also computes the robustness
bounds, δx and δu, via the current state estimate covariance
and the ancillary controller gains, and sets the initial state, µ0,
according to (18). The algorithm then searchesM and assesses
the optimality of each element via the parameterized KKT
conditions (line 8). If any element meets the optimality criteria,
the search terminates and the corresponding parameterized
controller is augmented with the ancillary controller (14) and
applied (as in Fig. 1a). This implies that the current situation
is only required to match the active set for the experience
entry, not the entire tuple, (x, r,u,A,B, c̃, δx, δu). Thus we
can simply store sets of active constraints in the database.

As in Fig. 1b, if no element satisfies the KKT conditions
(line 16), a new element is computed via (11) and added to
M to extend the stored experiences to include the current
scenario. To avoid blocking the control loop during this
computation, a short-horizon intermediate MPC with slack

Algorithm 1 Robust Experience-driven Predictive Control

1: M← ∅ or Mprior
2: while control is enabled do
3: x0 ← current system state estimate mean
4: r1, . . . , rN ← current reference sequence
5: A,B, c̃← current dynamics model via adaptation
6: Compute S via (16) and δx, δu via (7),(8)
7: Select µ0 via (18)
8: for each element mi ∈M do
9: Compute u,λ via (13),(15)

10: if x, r satisfy parameterized KKT criteria then
11: importancei ← current time, sort M
12: solution_found ← true
13: Apply control law (14) from mi

14: end if
15: end for
16: if solution_found is false then
17: Apply interm. control via (11) with slack variables
18: Update QP formulation with (A,B, c̃, δx, δu)
19: Generate new controller via QP (11) (in parallel)
20: if |M| = maximum table size then
21: Remove element with min. importance
22: end if
23: Add mnew = (K,kff,importance) to M
24: end if
25: end while

on state constraints (line 17) is applied in parallel. The short
horizon is selected to achieve the required control rate at the
expense of degraded performance, while the slack constraints
ensure feasibility even in the presence of constraint violations.
Robust EPC also bounds search time by limiting the size
of M. Each element is given an importance score based
on how recently it was used, and M is sorted in order of
decreasing importance. When a new element is added,
the element of M with the minimum importance may be
removed to maintain the size limit (line 21). As this algorithm
runs,M will be populated with the appropriate controllers for
the current situation, thereby reducing the dependence on the
intermediate controller. Due to the parameterized form of the
controller gains (13) and KKT matrices (15), the elements
of M also automatically adapt to changes in the dynam-
ics model and robustness bounds, thus maintaining robust
constraint satisfaction via controller switching. Finally, we
note that switching controllers within the database preserves
stability as it is analogous to explicit MPC techniques [13],
while transitions to and from the intermediate controller will
preserve stability if they are sufficiently infrequent [6, 14].

III. RESULTS

To assess the performance of the proposed Robust EPC
algorithm, we aim to demonstrate the following results through
a series of flight experiments: R1: stable control performance,
R2: real-time computation of control commands, R3: con-
straint satisfaction in the presence of time-varying sensor



(a) (b)

Fig. 3: (a) The quadrotor and ODROID-XU4 used for exper-
imental validation. (b) Snapshots from the linear trajectory.

uncertainty (i.e., robust constraint satisfaction), R4: improved
trajectory tracking performance while satisfying constraints,
and R5: robust constraint satisfaction during aggressive flight.

A. Experimental Setup

The experimental platform is a small, 790 g quadrotor
aerial robot equipped with an ODROID-XU4 (2 GHz ARM
processor with 2 GB RAM), as shown in Fig. 3a. All control
algorithms are implemented in C++ via ROS [29] and run in
real-time on the ODROID. We employ a cascaded setup with
a translational controller providing references for an attitude
controller that, in turn, provides actuator commands to the
motor controllers [25].

A motion capture arena provides position and heading
feedback that is combined with IMU measurements using an
onboard state estimator. Due to the low variance in the motion
capture feedback, we inject Gaussian noise with changing vari-
ance into the motion capture data to emulate a lower-quality
sensor that exhibits changes in performance as a function
of the environment (e.g., a vision-based sensor transitioning
between feature-rich and feature-sparse regions). The changing
uncertainty in the motion capture data is also broadcast to
the state estimator and Robust EPC to inform belief state
propagation via the measurement covariance term in (1).

For these experiments, we consider the problem of control-
ling the translational dynamics of the quadrotor [25], subject
to velocity and control constraints. This yields an MPC formu-
lation with n = 6 states and m = 3 inputs. We also consider
a horizon of N = 25 steps at the control update rate (100 Hz)
for the main Robust EPC formulation. The nominal state, x∗,
is set to the current state at each control iteration, and the
nominal control, u∗, is set to hover to avoid penalizing gravity
compensation. We use α = 0.001 for a constraint satisfaction
probability of 99.9%. The intermediate controller is formulated
with a horizon of N = 10 to yield comparable solution times
to Robust EPC. The cost function weight matrices are selected
such that a finite-horizon LQR using either set of weights (and
the corresponding horizon) would yield the same gain matrix.
The proportional and derivative gains for the L1 adaptive
controller used as a baseline also match this LQR formulation.

B. Timescale Separation with Model Adaptation

As Robust EPC extends EPC, we retain its ability to mitigate
the effects of low-frequency sources of uncertainty (e.g., due
to bulk fluid flow) via online model adaptation. The quadrotor
is first commanded to track the linear trajectory in Fig. 3b
(five laps between two waypoints about 3.6 meters apart)
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Fig. 4: Cross-track error for EPC with the three model
adaptation strategies discussed and L1 adaptive control. LWPR
and ISSGPR yield superior tracking after gaining experience.
To better visualize the low-frequency components, we apply
exponential smoothing with a two-second window.
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Fig. 5: With injected noise, (non-robust) EPC yields velocity
constraint violations for all three model adaptation strategies.

subject to a 6 m/s external wind that is orthogonal to the
trajectory, and Fig. 4 shows the resulting cross-track errors
(L1 adaptive control is included for reference). As expected,
all three model adaptation strategies (described in Sect. II-D
with parameters tuned empirically) yield low cross track error,
and LWPR and ISSGPR exhibit zero-mean tracking as they
accumulate experience. However, as Fig. 5 illustrates, no
choice of adaptation strategy is sufficient to mitigate the effects
of state uncertainty, resulting in repeated constraint violations.
This further demonstrates the need for the proposed Robust
EPC formulation. Moreover, as the choice of model adap-
tation strategy does not fundamentally change the system’s
ability to mitigate high-frequency source of uncertainty, we
follow EPC [8] and proceed with LWPR for the following
experimental studies.

C. Robust Constraint Satisfaction

We first evaluate Robust EPC’s trajectory tracking perfor-
mance along the linear trajectory in Fig. 3b. Figure 6 shows
that Robust EPC stabilizes the system to track the trajectory,
which achieves a maximum linear velocity of 2.7 m/s (R1).
Table I shows the compute times for the different components
of Robust EPC from one representative trial. This demonstrates
that both the Query and Intermediate controller components,
which constitute the primary control thread, run in real-time
on the computationally constrained flight hardware (R2). In
contrast, the variance in solving the QP may yield control it-
erations that violate the 100 Hz update rate, making traditional
optimization-based Robust MPC approaches infeasible.

To show robust constraint satisfaction in the presence of
time-varying sensor uncertainty, we inject zero-mean Gaussian
noise with a standard deviation of 0.03 into the motion capture
data when the y-axis position of the vehicle is between -0.5 m
and 0.5 m. This makes satisfaction of the velocity constraints



TABLE I: Compute times for Robust EPC components with
the number of control iterations statistics are computed across.

Query Interm. QP Add Element
Iterations 5949 18 12 12

Mean (ms) 1.089 1.303 4.427 4.891
Std. Dev. (ms) 1.463 0.886 2.720 5.393
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Fig. 6: Linear trajectory tracking performance across five laps

particularly difficult as the vehicle also attains its maximum
speeds in this region.

In addition to Robust EPC, we consider three baseline
control strategies: L1 adaptive control (a reactive approach),
EPC, and a Robust MPC (R-MPC) formulation that solves the
QP online with N = 10 (the reduced horizon is required to
achieve comparable solution times to EPC) and slack on state
constraints (to ensure problem feasibility). Figure 8 shows the
resulting velocity profiles with the constraint bounds shown
by the dashed lines. L1 adaptive control shows unconstrained
control performance, which naturally violates the constraints
as the reference velocity has a maximum of 2.7 m/s. The
enforcement of constraints in EPC yields smaller constraint
violations, but the non-robust formulation of the constraints
fails to mitigate the effects of measurement uncertainty. R-
MPC also exhibits substantial constraint violations. To confirm
that the degraded performance of R-MPC is due to the short
horizon and not the slack constraints, we also compared
performance of R-MPC and Robust EPC with N = 25
using a high-fidelity simulator on a more powerful computer
and observed comparable performance and robust constraint
satisfaction (not shown). Therefore, these results illustrate that
over repeat trials, only Robust EPC consistently satisfies the
velocity constraints (R3).

Figure 7 illustrates controller generation and reuse as in-
dicated by the amount of time each controller is applied.
Note that the intermediate controller (index 1) is only used
in the first few laps, while controller 2 is applied frequently
as it corresponds to nominal operation, i.e., away from all
constraints. This indicates that over time, all of the controllers
needed to track the trajectory and satisfy constraints are
enumerated and available for use in the experience database.

D. Time-Varying Uncertainty Prediction

To show that Robust EPC leverages the Gaussian nature
of the state estimator output and exploits regions of low
uncertainty to improve performance over more conservative
approaches, we investigate its performance compared to an
instantiation of Robust EPC that uses a fixed upper bound
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Fig. 7: Time spent using each controller per lap. Note that
multiple controllers are learned and reused and that the inter-
mediate controller (index 1) ceases to be used past lap 3.
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(a) L1 Adaptive Control
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(b) EPC (N = 25)
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(c) Robust MPC (QP, N = 10)
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(d) Robust EPC (N = 25)

Fig. 8: Comparison of y-velocity profiles for the line trajectory
across 5 trials of each controller. Only Robust EPC satisfies
the nominal velocity constraints (dashed lines).

on the uncertainty. We take the maximum bound applied by
Robust EPC during a run of the trajectory as the uncertainty
value for this fixed bound approach. The quadrotor is com-
manded to track a vertical circle trajectory while Gaussian
noise with a standard deviation of 0.03 is injected when the
vehicle is below one meter in height. Figure 10 shows tracking
results for Robust EPC using three approaches: Gaussian belief
propagation, the fixed bound approach using the true upper



Fig. 9: Circle trajectory used to evaluate belief propagation.
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Fig. 10: Position along the y and z axes for Robust EPC
and the fixed bound approach as compared to the reference
trajectory. The fixed bound approach that uses the true upper
bound (0.53 m/s) fails to track the trajectory. The mean and
max error for Robust EPC along the y-axis are 0.22 and 0.41,
respectively, while for the successful fixed bound approach
(0.40 m/s), the mean and max error are 0.24 and 0.51.

bound as described above, and the fixed bound approach using
the highest bound that allows for stable trajectory tracking. The
fixed bound approach is unable to complete the trajectory with
the true upper bound, and Robust EPC yields reduced tracking
error compared to the less conservative fixed bound approach.
This confirms that Robust EPC exploits the low noise region
above one meter and achieves better performance than the
conservative approaches (R4). We also consider uncertainty
propagation via recursive application of the Pontryagin dif-
ference with the uncertainty set [30]. However, even with the
ancillary controller, this results in an infeasible problem for the
longer horizons permitted by Robust EPC. Figure 11 illustrates
the tube growth with a 25-step horizon for the two approaches.

E. Implications for Aggressive Flight

To further assess the performance of Robust EPC, we test
constraint satisfaction on a high speed linear trajectory with
a maximum velocity of 3.6 m/s. As Fig. 12 shows, Robust
EPC satisfies velocity constraints throughout the trial with
the exception of a 0.03 m/s violation during the final lap.
Due to the chance-constrained formulation, there is a nonzero

Fig. 11: Overlay of tube growth for Set Propagation and Belief
Propagation based on the bounds computed by each at the
start of trajectory tracking. Set Propagation growth is too fast
to yield feasible constraints.
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Fig. 12: Velocity of Robust EPC along a high-speed linear
trajectory. There is a small constraint violation of 0.03 m/s
during the last lap.

probability of constraint violation (0.1% in our experiments).
In addition, higher speeds accentuate the effects of modeling
errors and may yield degraded performance if the model
adaptation is not sufficiently fast. As a result, we conclude
that Robust EPC reliably enforces constraints even during
aggressive motion (R5).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we present an extension to Experience-driven
Predictive Control (EPC) that allows for robust constraint
satisfaction in the presence of time- and state-dependent un-
certainty. We have shown that the proposed approach, Robust
EPC, successfully stabilizes the vehicle along a variety of tra-
jectories (R1), easily meets computational requirements on a
compute-constrained system (R2), reliably satisfies constraints
in the presence of time-varying sensor uncertainty (R3) while
improving tracking performance as compared to conservative
methods (R4), and maintains constraint satisfaction properties
during aggressive operation (R5). In the future, we intend
to integrate this robust control strategy with a visual odom-
etry system that introduces more realistic state uncertainty.
Also, the current Robust EPC formulation assumes that the
uncertainty is well-modeled by a Gaussian distribution, but
incorporating distributions without closed-form propagation
models is another avenue for future study. This formulation
can also be extended to account for additional sources of
uncertainty, including communication latency and the variance
in model adaptation techniques such as LWPR and ISSGPR.
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Robust model predictive control using tubes. Automatica, 40
(1):125–133, January 2004.
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predictive control of constrained linear systems with bounded
disturbances. Automatica, 41(2):219–224, February 2005.

[24] D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi.
Tube-based robust nonlinear model predictive control. J. Robust
and Nonlin. Control, 21:13411353, 2011.

[25] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. Experi-
mental evaluation of multirobot aerial control algorithms. IEEE
Robotics & Automation Magazine, September 2010.

[26] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli. Fast Nonlinear Model Predictive
Control for Unified Trajectory Optimization and Tracking. In
Proc. of the IEEE Intl. Conf. on Robot. and Autom., Stockholm,
Sweden, May 2016.

[27] C. Ostafew, A. Schoellig, and T. Barfoot. Learning-Based
Nonlinear Model Predictive Control to Improve Vision-Based
Mobile Robot Path-Tracking in Challenging Outdoor Environ-
ments. In Proc. of the IEEE Intl. Conf. on Robot. and Autom.,
pages 4029–4036. IEEE, May 2014.

[28] G. Pannocchia, J. B. Rawlings, and S. J. Wright. Fast, large-
scale model predictive control by partial enumeration. Automat-
ica, 43(5):852–860, 2007.

[29] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: An open-source Robot
Operating System. In ICRA Workshop on open source software,
page 5, Kobe, Japan, 2009.

[30] A. Richards. Robust Model Predictive Control for Time-Varying
Systems. In Proc. of the IEEE Conf. on Decision and Control,
pages 3747–3752, Seville, Spain, December 2005.

[31] A. Richards and J. How. Robust Model Predictive Control with
Imperfect Information. In Proc. of the Amer. Control Conf.,
New York City, NY, July 2005.

[32] E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman, and A. S.
Willsky. Nonparametric Belief Propagation. Comm. of the ACM,
53:95–103, 2010.

[33] S. Vijayakumar, A. DSouza, and S. Schaal. Incremental Online
Learning in High Dimensions. Neural Comp., 17(12):2602–
2634, 2005.

[34] J. Wang, F. Holzapfel, E. Xargay, and N. Hovakimyan. Non-
Cascaded Dynamic Inversion Design for Quadrotor Position
Control with L1 Augmentation. In Proc. of the CEAS Specialist
Conf. on Guidance, Navigation & Control, Delft, Netherlands,
April 2013.

[35] J. Yan and R. R. Bitmead. Incorporating state estimation into
model predictive control and its application to network traffic
control. Automatica, 41:595–604, 2005.


	Introduction
	Approach
	Adaptive Stochastic Dynamics Model
	Chance-constrained Tube MPC
	Robust EPC formulation
	Ancillary Controller
	Initial State Selection

	Online Model Adaptation
	Algorithm Overview

	Results
	Experimental Setup
	Timescale Separation with Model Adaptation
	Robust Constraint Satisfaction
	Time-Varying Uncertainty Prediction
	Implications for Aggressive Flight

	Conclusions and Future Work

