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Abstract—Aiming at the practical usage of dense 3D recon-
struction on portable devices, we propose FlashFusion, a Fast
LArge-Scale High-resolution (sub-centimeter level) 3D recon-
struction system without the use of GPU computing. It enables
globally-consistent localization through a robust yet fast global
bundle adjustment scheme, and realizes spatial hashing based
volumetric fusion running at 300Hz and rendering at 25Hz
via highly efficient valid chunk selection and mesh extraction
schemes. Extensive experiments on both real world and synthetic
datasets demonstrate that FlashFusion succeeds to enable real-
time, globally consistent, high-resolution (5mm), and large-scale
dense 3D reconstruction using highly-constrained computation,
i.e., the CPU computing on portable device.

I. INTRODUCTION

Real-time 3D reconstruction, an attractive topic in both
computer vision and robotics, has boosted immense practical
applications on human-robot interaction, path planning [24],
machine perception [16, 23], etc. Newcombe et al. [13] firstly
exploits the possibility of high resolution dense 3D recon-
struction using a commodity depth sensor [26] combined with
Truncated Signed Distance Fields (TSDF) [1] for fusing mul-
tiple depth observations from different viewing angles. While
KinectFusion [13] works within a limited volume size and
requires a Graphics Processing Unit for computing, the high-
quality of its reconstruction results and real-time performance
demonstrate its potential for a wide range of applications.
Latter on, various approaches are proposed addressing the scal-
ability [15, 25], efficiency [11, 9, 17] and global consistency
[2] of dense 3D reconstruction problems.

Recently, the state-of-the-art BundleFusion [2] shows su-
perior performance to achieve high resolution and globally
consistent real-time 3D reconstruction by utilizing the frame
based localization for robustness, and reintegrate frames to
correct surfaces on-line when previous poses are updated
based on loop closure constraints and bundle adjustment
optimizations. Nevertheless, it requires two high-end GPUs
for computing. On the other extreme, the state-of-the-art
CHISEL [11] merely relies on CPU computing for real-time
3D reconstruction on portable device. However, due to its
localization drift and inefficient TSDF fusion, CHISEL can
not enable global consistency, and its real-time implementation
can merely support 20mm voxel resolution. Regardless the

remarkable progress, the state-of-art remains an either-or so-
lution: an efficient reconstruction runs on portable devices but
fails in robustness and quality [11, 17], or a globally consistent
high-quality system yet requires high-end GPUs for real-time
performance [2], prohibiting its applications to more general
cases like mobile robots or wearable devices.

In this paper, we propose FlashFusion, a Fast yet LArge-
Scale High-resolution (sub-centimeter level) dense 3D recon-
struction system without the use of GPU computing. Es-
sentially, FlashFusion contains a globally consistent yet fast
localization module, as well as a highly efficient reconstruction
module. For the former one, we adopt and further improve our
FastGO scheme [7] to optimize the reprejection error of all the
feature pairs and achieve globally consistent pose estimation.
For the latter one, we investigate the fast implementation
of TSDF fusion and mesh extraction using CPU computing.
Technical contributions are summarized as follows.

• We improve the robustness of localization by using
Huber-norm during pre-integration stage, and further
solving it via an on-line fast correction method by
exploiting the inherent nature that Huber-norm can be
interpreted as an iteratively re-weighted least squares
problem, guaranteeing the robust yet efficient globally
consistent localization.

• We speed up the TSDF fusion to realize 300Hz im-
plementation by proposing sparse voxel sampling to
directly locate the valid voxels that fall into the truncate
range of observed surfaces, instead of processing all
the voxels that fall into the frustum of camera views.
Given that surfaces are continuous and nearby voxels
have correlative sdf values, the sparse voxel sampling
merely requires the sdf values of 8 corners in each chunk
(composing 8 × 8 × 8 voxels) to determine whether it
contains valid voxel whose sdf value is smaller than the
truncate range. Such chunk filtering step is further shared
within keyframes to avoid replicative computations.

• We accelerate the mesh extraction to achieve 25Hz im-
plementation via three stages: 1) an adaptive threshold
to identify voxels that may relate to surfaces for each
chunk instead of exhaustive estimation. 2) minimizing



the computation of polygon generation by utilizing the
feature that only 1 degree of freedom exists for each
generated vertex. 3) an efficient look-up-table for each
chunk to maintain the address of its neighboring chunks
merely, as only the neighboring chunks are accessed in
each inter-chunk voxel accessing, assuring efficient voxel
accessing even if the chunks are represented sparsely.

Given the above technical contributions, we demonstrate
FlashFusion, the first CPU-based globally consistent
real-time 3D reconstruction system on portable de-
vices. The live demos are available on the project website
www.luvision.net/FlashFusion.

II. RELATED WORK

RGBD based 3D reconstruction have demonstrated their
robustness, high-quality and scalability with the development
of both powerful processing units like GPU and depth sensors
such as Kinect. Generally, the frameworks can be categorized
into Voxel or Surfel-based methods, where the former one
divides the space into equally distributed 3D grids (voxels)
and extract surface from the TSDF field of voxels, and the
latter one employs dense surfels to represent the surface and
assigns each surfel a range and normal.

Consider the relatively higher universality of voxel-based
techniques to fit in with various applications including path
planning [24], machine perception [23] and dynamic recon-
struction [14], we mainly focus on voxel-based methods in
this paper. In this line, Newcombe et al. [13] pioneered the
framework of using Truncated Signed Distance Fields (TSDF)
to fuse depth observations from a moving RGBD camera with
real-time performance on a GPU. Based on it, the extensions
in different ways are proposed as follows.
Scalability: Nießner et al. [15], Zeng et al. [25] and Whelan
et al. [21] tried various technique to make the TSDF-based
fusion methods be scalable to large environments, following
the similar insight that surfaces are sparse compared with
space. More concretely, [21] uses a moving volume to extend
the covered area of the fixed TSDF volumes in [13], [15]
handles this sparsity using hashing techniques to represent the
sparse voxels around the surface, and [25] exploits the Octree
data structure to represent a large space volume, where only
voxels around surface are represented using a small resolution
and empty voxels are represented using a large resolution.
Global Consistency: Such feature is of great importance since
drift introduced by camera or inertial sensors are inevitable
and little camera pose error may introduce significant artifacts
in the reconstructed model. [2] investigates it using two high-
end GPUs, one for globally consistent localization based on
frame registration against all previous frames, the other for
TSDF integration and reintegration when loop closures are
detected and previous camera poses are updated to correct
previously incorrect observations. Considering that [2] solves
inconsistency in TSDF fields at the cost of heavy com-
putational demands, [12] addresses it by only reintegrating
keyframes instead of all previous frames. Meanwhile, [10]
proposes to divide the scenes into submaps and adjust the

poses of submaps to maintain global consistency. Compared
with keyframe based methods, where the number of keyframes
grows with time, the number of submaps in [10] grows only
with the size of reconstructed map, yet each submap requires
several hundred Megabytes for storage.
Efficiency: [9] proposes to optimize the basic data structure in
[15] and recasting pipeline, so that the reconstruction pipeline
is able to work in real-time on portable GPU devices. To
achieve global consistency, a high-end GPU is still necessary
as demonstrated in [10]. On the other hand, CPU based dense
3D reconstruction is quite attractive for applications including
mobile robots and wearable devices.[17, 11] try to fuse depth
observations at frame-rate and output meshes at a backend
thread. [17] exploits the benefits of octree data structure
while [11] is proposed based on the framework of [15]. Both
benefits from the sparse representation of surfaces where less
voxels are required to process. However, even with extensive
optimizations in multi-threads and SIMD instructions, Klin-
gensmith et al. [11] can only work at a voxel resolution of
2cm for indoor environments while Steinbrücker et al. [17]
only handles voxels at a resolution of 5mm for limited areas.

This paper aims at the practical use of 3D reconstruction
on portable devices by presenting FlashFusion, a Fast LArge-
Scale High-resolution (sub-centimeter level) 3D reconstruction
system without the use of GPU computing. The scalability,
global consistency and high-resolution characteristics of Flash-
Fusion benefit from the joint realization of robust globally
consistent localization and highly efficient TSDF Fusion.

III. SYSTEM ARCHITECTURE

The system architecture of FlashFusion is depicted in Fig. 1,
which contains the front-end tracking thread, and the back-
end optimization thread and meshing thread. The tracking
thread takes raw RGBD data as input, and the drift can be
eliminated through a high-precision yet high-efficient loop
closure detector: MILD [6], which simply uses ORB features
and does not rely on any training process. The back-end
threads that relate to the localization and reconstruction are
implemented as follows.

Localization – Considering the high demand of efficiency,
the frames are divided into keyframe and local frame based on
the disparity criteria, i.e., new keyframe is inserted when the
average disparity of corresponding features between current
frame and its corresponding keyframe is larger than a thresh-
old. Only the pose of keyframes are updated in the global opti-
mization procedure, while the relative transformation between
local frame and its preceding keyframe is fixed and the pose
of local frame is updated based on the optimized keyframe.

Reconstruction – Resembling [15] and [11], the world is
represented as a two level tree, where a cubic of certain
voxels are grouped as a chunk and each chunk is spatially-
hashed [19] into a dynamic hash map. Given the organization
of keyframe and local frame, the reconstruction can be divided
into TSDF fusion and mesh extraction. Precisely, TSDF field
is updated based on the depth observations for each incoming
frame, and all the depth observations from both local frames



Fig. 1. Framework of FlashFusion.

and keyframes are fused into the TSDF field to ensure the
quality of the reconstructed 3D model. The update of meshes,
however, is activated only when a new keyframe is inserted.
Motivation behind such strategy is that the keyframe and its
succedent local frames share a large overlap and there is no
need to update meshes every time a local frame is fused in.

IV. REAL-TIME GLOBALLY CONSISTENT DENSE 3D
RECONSTRUCTION USING CPU COMPUTING

To elaborate how FlashFusion can enable the global consis-
tency and high efficiency simultenously, this section is orga-
nized as follows: a robust localization framework that based
on our FastGO scheme [7] is briefly introduced in Sec. IV-A,
then Sec. IV-B and Sec. IV-C1 explain the proposed TSDF
fusion and mesh extraction methods, finally the reintegration
implementation is shown in Sec. IV-D.

A. Robust Globally Consistent Localization

As usual, the frame registration that widely used in pose
estimation is discriminated as locally and globally. The local
registration indicates frame registration between current frame
and its previous keyframe. If the keyframe update criteria
meets, current local frame is recognized as a new keyframe and
matched against all the previous keyframes, which is global
registration. Here the frame registration works via finding the
corresponding ORB features (around 1000 ORB features are
extracted for each frame) between two frames, saying Fi, Fj ,
and the relative transformation is estimated by minimizing the
following cost function on manifold using Lie group [20],

Ei,j(Ti,j |Ti,j ∈ SE3) =

|Ci,j |−1∑
k=0

||pki − Ti,jpkj ||2 (1)

where Ci,j = {(pki ,pkj )|k = 0, 1, · · · , |Ci,j | − 1}, (pki ,pkj )
indicates the k-th feature correspondence between frame Fi

and Fj , pki ∈ Fi,p
k
j ∈ Fj . Ti,j is the relative transformation

in Euclidean space from Fj to Fi.
Given the pair-wise frame correspondence, we minimize the

reprojection error of all corresponding keyframe pairs from

global registration, so as to achieve a globally consistent pose
estimation,

E(ξ) =

N−1∑
i=0

∑
j∈Φ(i)

Ei,j =

N−1∑
i=0

∑
j∈Φ(i)

|Ci,j |−1∑
k=0

||pki − Ti,jpkj ||2,

(2)
where Φ(i) represents the top 5 most similar images that se-
lected via a super-fast yet high-accurate loop closure detection
technique MILD [6], as a traverse search [2] is impractical for
CPU computing.

Suppose there are M feature correspondences in E(ξ), we
have:

E(ξ) = r(ξ)Tr(ξ), (3)

where r(ξ) =
[
rT0 , r

T
1 , · · · , rTM−1

]
, and rl = pki − Ti,jpkj

represents the re-projection vector of the l-th feature cor-
respondence among the M features. The non-linear Gauss-
Newton optimizations are used to solve this problem on Lie
manifold in SE3 space iteratively:

δ = −(J(ξ)TJ(ξ))−1J(ξ)Tr(ξ), (4)

where J(ξ), of size 3M × 6(N − 1), is the Jacobian of
r(ξ). Instead of computing J(ξ) directly, J(ξ)TJ(ξ) and
J(ξ)Tr(ξ) are computed directly for efficiency since they are
more compact:

J(ξ)TJ(ξ) =

N−1∑
i=0

∑
j∈Φ(i)

|Ci,j |−1∑
k=0

(Jk
i,j)

TJk
i,j ,

J(ξ)Tr(ξ) =

N−1∑
i=0

∑
j∈Φ(i)

|Ci,j |−1∑
k=0

(Jk
i,j)

Trl,

(5)

where J l
i,j is the Jacobian of rl. As noted in FastGO [7] that∑|Ci,j |−1

k=0 (Jk
i,j)

TJk
i,j and

∑|Ci,j |−1
k=0 (Jk

i,j)
Trl in Eqn. 2 can

be efficiently computed with the complexity of O(1) instead
of O(|Ci,j |), by pre-integrating the second order statistics of
feature correspondences from Ci,j , enabling Eqn. 2 to be
solved in real-time using CPU computing.



While FastGO technique leads to superior performance on
efficiency, it appears brittle in the presence of outliers. We
thus use more robust Huber norm instead of l2 norm in the
cost function, which however, requires the weight of each
feature pair to be updated based on the latest pose estimations,
implying that it cannot be represented using the second-
order statistics as implemented in FastGO. A traverse search
of all the feature pairs in Eqn. 2 after each Gauss-Newton
update would take extensive computations. To solve Huber-
norm based minimization in real-time, an on-line correction
scheme is adopted by choosing only the top 10 frame pairs
whose relative poses change most significantly in all the frame-
pairs collected. The insight of such correction is that the
re-projection error of features depends on the relative poses
of frame-pairs while only a limited number of frame-pairs’
relative poses are updated after loop closure detection and
global bundle adjustment in practice.

B. Efficient TSDF Fusion

1) Review of TSDF Representation: Recall that surface
can be represented implicitly using TSDF, where each 3D
point in space is mapped to a distance (denoted as Signed
Distance Function (SDF)) to its nearest surface, and the SDF
values of points on a surface are close to 0. Continuous space
is digitalized as voxels, where each voxel stores the SDF
of its center point. To efficiently index valid voxels around
surfaces, Hashing [15] and Octree [25] based data structures
are proposed employing the sparsity of valid voxels. In voxel-
hashing based reconstruction systems, 8 × 8 × 8 voxels are
organized as chunks. Each chunk is mapped to an address
based on the spatial hash function [19]. Depth observations are
integrated chunk-wisely using a projective mapping manner:
for each voxel, its voxel center is projected onto the 2.5D depth
map, the difference between projective distance and depth map
reading is recognized as surface distance d and fused into the
TSDF field. Since depth readings have different covariance
due to the sensor model, observations are fused with different
weight w which is determined directly by depth readings:

sdfn =
sdfo ∗ wo + sdfi ∗ wi

wi + wo
, wn = wi + wo, (6)

where sdfo and wo indicate the original sdf and weight value,
sdfi and wi are the incoming observations of sdf and weight,
sdfn and wn are the newly-updated sdf and weight.

2) Valid Chunk Selection: Previously, all the chunks fall
into the frustum of the camera view are selected as candidate
chunks, which are processed equally during fusion [11]. Then
the invalid chunks (the blue grids in Fig. 2) whose voxels
have no valid sdf are removed, retaining the valid chunks (the
yellow grids in Fig. 2) that are within the truncated band of
a surface. Apparently, the valid chunks account for a little
portion of the candidate chunks, while most computational
resources are wasted on the invalid chunks.

To identify valid chunks efficiently, we propose a sparse
voxel sampling scheme by collecting the eight corners of a
candidate chunk and checking if the minimum absolute sdf

Fig. 2. Illustration of chunk selection, where FlashFusion deals with effective
chunks (yellow grids) merely, while CHISEL processes all the candidate
chunks (both the blue and yellow grids).

Fig. 3. Illustration of sparse voxel sampling for chunk filtering, which
calculates the sdf values of eight corners in the chunk merely.

is larger than a threshold. Insight behind is that surfaces are
continuous in general, i.e., if a chunk contains surface inside,
there exists a high probability that surfaces may pass at least
one of the six faces of this chunk, and at least one of the eight
corners can be projected on the surface, as illustrated in Fig. 3.
For example, suppose the voxel resolution is r and there are
N3

v voxels in each chunk, if there is one voxel that falls in the
truncation of a surface, the sdf value dv of that voxel should
satisfy: |dv| < Ttruncation. Accordingly, the sdf of a corner
voxel dc would satisfy: |dc| ≤ |dv|+

√
2Nv×r < Ttruncation+√

2Nv × r. On the contrary, if all the corner’s sdf values are
smaller than Ttruncation +

√
2Nv×r, it is improbable that the

chunk contains surface inside. While the eight corners can be
calculated parallelly using SIMD operations, the computation
would be still extensive when the voxel size is smaller than
1cm. Thus, the chunks are firstly examined at a resolution
of 20mm using sparse voxel sampling, if detected sdf values
demonstrate that there may be surface within this large chunk,



Fig. 4. Performance analysis of our sparse voxel sampling by comparing
with conventional candidate chunk selection strategy on fr3office dataset.

we traverse the chunks at a resolution of 5mm inside the large
chunk to find the truly valid chunks.

In this way, the currently valid chunks can be effectively
estimated using the above sparse voxel sampling scheme,
while for the previously valid chunks (but currently invalid
anymore caused by the object movement), we need to check
the stored chunks exhaustively, inducing the linear growth
of computation with the size of reconstructed 3D model. To
address it, we use a second hash table and hash chunks at a
coarse level: every 8× 8× 8 chunks are organized as a cube,
which is spatially hashed based on its central position and only
the existing chunk IDs are stored in the corresponding hash
entry. In other words, we firstly select the cubes that fall into
the frustum of current camera view, and traverse search the
existing chunks stored in the selected cubes to check if they
are observed by current camera view.

Fig. 4 presents the experiments on fr3office dataset regard-
ing the performance of our sparse voxel sampling by com-
paring with conventional candidate chunk selection strategy,
where the horizontal axis indexes the frames of sequence, and
the left vertical axis denotes the precision of estimated valid
chunks, the right vertical axis relates to the computational
complexity. Apparently, the acceleration of chunk selection
is considerable, retaining more than 98% truly valid chunks
under the cost of 2% computational complexity on average.

3) Keyframe based Optimizations: The selection of valid
chunks applies for keyframes merely, the local frames are
then integrated accordingly. In other words, the IDs of selected
chunks are stored in each keyframe and can be further reused
when the keyframe needs to be de-integrated. As further
shown in the experiments that TSDF integration for each frame
takes approximately 2ms and the valid voxel selection takes
6ms, the waiver of valid voxel selection for local frames
significantly reduces the complexity of TSDF fusion, enabling
the reintegration using CPU computing.

Resembling [11, 15], color observations are fused into the
TSDF model following the average framework in Eqn. 6.
Distinction in FlashFusion is that we store the color values
implicitly using the multiplication result (represented by un-
signed short for each channel) of color value and weight
(the maximum weight is set as 255). In this way, there is

Fig. 5. Illustration of generating polygons using 8 neighboring voxels [4].

no need to calculate the updated color value explicitly for
each voxel, while color values can be easily computed in
the rendering stage for each generated vertex. To fuse new
observations, a single integer addition is enough for the update
of the multiplication result while previous methods require 2
additions, 2 multiplications and 1 division to get the updated
color value and weight. Note that division requires 38 clock
cycles in intel SSE instructions (including latency) while
integer addition merely requires 1 clock cycle [5].

C. Mesh Extraction

In general, given the TSDF fields, we can use incremental
marching cubes algorithm [4] to estimate the surfaces repre-
sented by triangles (meshes), which however, is impractical to
be implemented via CPU computing. For example, the mesh
extraction in the state-of-art CHISEL [11] takes around 100ms
and 1500ms at the voxel resolution of 20mm and 5mm,
respectively. We thus investigate the major computation bur-
dens of mesh extraction, i.e., polygons generation and normal
extraction, accomplishing highly accelerated mesh extraction
within 60ms at the voxel resolution of 5mm.

1) Polygons Generation: Recall that for each valid voxel
v0, its seven neighboring voxels vi, i = 1, 2, · · · , 7 are ex-
tracted composing a cubic c as shown in Fig. 5. Polygons
inside this cubic can be calculated given the sdf value of its
8 corners following the classic marching cube algorithm, i.e.,
vertices merely exist on the edge of c where the sign of the
two endpoints’ sdf values are different. The exact location v
of each vertex is determined by linear interpolation of the two
endpoints va, vb based on their sdf values sa, sb as follows,

v =
sa × vb − sb × va

sa − sb
. (7)

Nevertheless, by examining all the voxels to estimate
whether any polygon exists in its neighborhood is improvident.
Even though the voxels with small sdf values are closer to
surfaces than those with larger sdf values, it is impractical to
determine a fixed threshold to filter out voxels with large sdf
values, since we are using projective sdf instead of Euclidean
sdf. For example, when a surface is observed in parallel to its
normal, voxels that close to the surface may have large sdf
value. To overcome it, we adopt a dynamic threshold strategy



to assign different chunks with different thresholds. When a
mesh is created, the maximum absolute sdf value of voxels that
contain surfaces is used as threshold. When new observations
are introduced and the mesh needs to be updated, voxels with
sdf values larger than the threshold are ignored. Given that
around 10% meshes are newly created while the other 90%
meshes are existing ones that need to be updated at each
mesh extraction stage, such strategy successfully achieves 2x
acceleration for Polygons Generation.

Moreover, by analyzing the specific structure of the cubic
c generated in mesh extraction, we find that the linear inter-
polation is essentially unnecessary since relative to its origin
corner v0, c is a fixed cube whose side length equals to voxel
resolution. Since the generated vertices are expected to be on
the edge of c, allowing one freedom for the position of each
vertex, which is linear to the interpolation coefficient: sa

sa−sb .
The remaining two freedoms merely depend on the edge and
can be found through a small look up table.

2) Normal Extraction: the normal n of each vertex is
computed via the derivative of TSDF field as [13]:

n =

δxδy
δz

 =

si+1,j,k − si−1,j,k

si,j+1,k − si,j−1,k

si,j,k+1 − si,j,k−1

 , (8)

where i, j, k indicates the index of the voxel vn that is closest
to the vertex v. Note that vn can be determined directly in
the polygons generation step where v is close to either va if
fabs(sa) < fabs(sb) or vb if fabs(sa) > fabs(sb). Three
of the neighbor voxels required for normal estimation of vn
(Eqn. 8 ) are already grouped in the cubic c, while the other
three ones can be found in the nearby chunks, thus normal can
be estimated directly in the mesh extraction step with little
computational burden.

The remaining bottleneck of the rendering stage belongs to
voxel access which is extensively used, e.g., 7 nearby voxels
are accessed in polygons generation for each voxel candidate,
and 6 nearby voxels are accessed in normal extraction for
each vertex. For inter-chunk voxel access, we need to check
the existence of its corresponding chunk firstly and locate the
chunk in a large hash table where all chunks are stored. In
FlashFusion, a look-up-table is maintained in each chunk when
chunks are created or removed. The addresses of its neighbor
chunks are stored in the look-up-table thus avoiding the query
of the chunk hash map for each voxel in polygons generation
step and for each vertex in the normal estimation step.

D. Re-integration

Benefit from the highly accelerated TSDF fusion and mesh
extraction, we can reintegrate depth observations online to
realize a realtime 3D reconstruction on CPU computing. At
each keyframe, we reintegrate up to 10 previous keyframes.
One keyframe may relate to many local frames whereas we
only select at most 10 local frames evenly to guarantee that
reintegration can be accomplished within certain clock cycles
and will not block the whole system pipeline. Insight behinds
is: a keyframe links too many local frames may imply that

TABLE I
ACCURACY COMPARISON OF LOCALIZATION ON TUM RGBD DATASET

(CM)

fr1/desk fr2/xyz fr3/office fr3/nst
RGBD SLAM 2.3 0.8 3.2 1.7
ElasticFusion 2.0 1.1 1.7 1.6

BundleFusion (on-line) 1.7 1.4 2.9 1.6
BundleFusion (off-line) 1.6 1.1 2.2 1.2

FlashFusion 1.9 1.3 2.5 1.8

TABLE II
ACCURACY COMPARISON OF LOCALIZATION ON ICL-NUIM DATASET

(CM)

kt0 kt1 kt2 kt3
RGBD SLAM 2.6 0.8 1.8 43.3
ElasticFusion 0.9 0.9 1.4 10.6

BundleFusion (on-line) 0.8 0.5 1.1 1.2
BundleFusion (off-line) 0.6 0.4 0.4 1.1

FlashFusion 0.7 0.8 1.1 1.4

TABLE III
ACCURACY COMPARISON OF SURFACE RECONSTRUCTION ON ICL-NUIM

DATASET (CM)

kt0 kt1 kt2 kt3
RGBD SLAM 4.4 3.2 3.1 16.7

FastFusion 5.6 7.5 7.0 6.6
ElasticFusion 0.7 0.7 0.8 2.8

InfiniTAM 1.3 1.1 0.1 2.8
BundleFusion 0.5 0.6 0.7 0.8
FlashFusion 0.8 0.8 1.0 1.3

the camera is static or moving slowly, and the consecutive
local frames are less informative, thus evenly selecting 10 local
frames assures both the efficiency and the diversity.

V. EXPERIMENTS

To verify the performance of FlashFusion, extensive ex-
periments are implemented on both synthetic ICL-NUIM [8]
dataset (with noise) and real-world TUM RGBD dataset [18],
using an Intel Core i7 7700 @3.6GHz CPU. The ICL-NUIM
dataset provides ground truth data for both localization and
reconstruction, while the TUM RGBD dataset provides ground
truth data for localization merely. State-of-the-art including
BundleFusion [2], ElasticFusion [22], InfiniTAM [10], RGB-
D SLAM [3] , FastFusion [17] and CHISEL [11] are taken
for comparisons.

Moreover, the live scanning via an Asus Xtion sensor
using FlashFusion that implemented on the CPU computing
of the portable tablet Surface Pro1 is demonstrated, where
FlashFusion works at sub-centimeter level (5mm) resolution
and achieves global consistency in real-time without the use
of GPU computing. The video that contains both live demos
as well as the experiments on TUM RGBD dataset is available
on the project website2.

A. Accuracy

Localization accuracy is evaluated using the rmse of Ab-
solute Trajectory Error (ATE) Sturm et al. [18], as shown

1https://www.microsoft.com/en-us/surface
2http://www.luvision.net/FlashFusion/



(a) Phong-shaded rendering (b) Normal map (c) Color map

Fig. 6. Qualitative illustration of FlashFusion for fr3office dataset [18], (a) Phong-shaded rendering, (b) normal map, (c) color map.

Fig. 7. The thread implementation of FlashFusion and its computational complexity analysis.

in Table I for TUM RGBD datasets and Table II for ICL-
NUIM datasets, where a smaller value of ATE implies higher
accuracy. Regarding the surface reconstruction accuracy, we
compute the differences between the reconstructed meshes
and the ground truth 3D model using the SurfReg tool [8],
as depicted in Table III for ICL-NUIM datasets.

In general, BundleFusion that adopts two high-end GPU
computing performs the best, achieving the highest accuracy in
both localization and surface reconstruction, as it matches each
keyframe against all the previous keyframes using more robust
feature descriptors as well as dense registration. FlashFusion
provides relatively lower yet comparable accuracy as Bundle-
Fusion, whereas using CPU computing for both localization
and reconstruction.

The representative qualitative results of FlashFusion are
presented in Fig. 6 for fr3office dataset [18] at 5mm-level
resolution, where Fig. 6(a) is the reconstructed model under
phong - shaded rendering, Fig. 6(b) is the normal map, and
Fig. 6(c) shows its color map. In this dataset, camera moves
around the desk and returns to the start point. The procedure

of re-integration after loop closure in FlashFusion succeeds
to correct the misalignments caused by localization drift,
producing a globally consistent 3D model in real-time using
CPU computing. More live scanning results can be found in
the supplementary video.

B. Efficiency

The detailed computing components in FlashFusion are
presented in Fig. 7(a). The tracking thread, serving as the
front-end thread for pose estimation, runs at 30Hz constantly.
When a new keyframe Fi is inserted, optimization thread will
be activated for global pose optimization based on all the
previous keyframes. Once the pose of keyframe is determined,
valid chunk selection is activated to select chunk candidates
to be updated based on current keyframe. When the next
keyframe is inserted, Fi and its corresponding local frames
are fused into the TSDF field, and then meshing thread
starts to update meshes given the updated chunks. All the
above computations are accomplished on CPU computing. The
reconstructed model including vertices, colors and normals



Fig. 8. Reconstructed 3D model of the dyson lab [22] dataset.

are then transmitted to GPU for visualization merely. To
further demonstrate the efficiency of FlashFusion on large
scale datasets, quantitative measurements are conducted on
the representative dyson lab [22] dataset which refers the
scanning of the whole lab with 6400 frames, as presented
in Fig. 7(b). The corresponding qualitative illustration of
reconstructed model is shown in Fig. 8. Note that apart from
the processing time of each frame, the other 5 components are
only invoked at keyframe rate running at back-end threads.
Visibly, all the computing components can be accomplished
efficiently, guaranteeing the real-time performance of Flash-
Fusion on CPU computing.

As it may be irrational to conduct efficiency comparison
between GPU and CPU computing, we compare with state-
of-the-art CPU-based systems FastFusion [17] and CHISEL
[11] on the fr3office dataset. FastFusion employs an octree
data structure where the voxel sizes vary from 20mm to
5mm. It takes FastFusion 20ms for TSDF fusion per frame
on average while 300ms to 1000ms for mesh extraction,
approximately 6 times slower than FlashFusion. The detailed
efficiency comparison that relates to TSDF fusion and mesh
extraction under different voxel resolutions (5mm, 10mm and
20mm) is presented in Table IV. CHISEL achieves real-time
performance at 20mm resolution, whereas the computational
cost grows significantly with the increase of resolution to
prevent the real-time implementation. Instead, FlashFusion
enables sub-centimeter level resolution in real-time, i.e., 5mm
in 300Hz for TSDF fusion and 25Hz for mesh reconstruction,
ensuring better performance in applications like VR/AR or
mobile robots that need to interact with the environment
tightly. Moreover, global consistency that cannot be achieved
in CHISEL due to its localization drift and slow TSDF fusion
is realized in FlashFusion, as demonstrated in the supplemen-
tary video.

TABLE IV
EFFICIENCY COMPARISON BETWEEN CHISEL AND FLASHFUSION (MS)

CHISEL FlashFusion
TSDF
Fusion

Mesh
Extraction

TSDF
Fusion

Mesh
Extraction

5mm 483 1518 3.6 38.4
10mm 86 312 1.1 19.7
20mm 15 70 0.7 6.5

VI. CONCLUSIONS AND LIMITATIONS

In this paper, we present FlashFusion, a CPU-based globally
consistent real-time 3D reconstruction system. Based on the
proposed technique, TSDF fields can be updated in 300Hz at
5mm voxel resolution or 900Hz at 1cm voxel resolution using
CPU computing, benefiting the practical applications such as
on-board path planning of flying vehicles or robot arms based
on TSDF fields, high-resolution dense 3D reconstruction on
wearable devices etc.

Fig. 9. Artifacts introduced due to the keyframe based integration scheme.

Although the proposed keyframe based fusion technique
reduces the complexity of TSDF fusion significantly, it may
diminish the quality by inducing minor artifacts at the border
of a keyframe as shown in Fig. 9. Since we only select
valid voxels for each keyframe and update the TSDF fields
of these voxels based on the incoming local frames, surfaces
observed in local frames but out the scope of the keyframe
are neglected for TSDF fusion. With the incoming of next
keyframe, surfaces that belong to both keyframes are fused
by N1 + N2 observations, while surfaces belong to the later
keyframe solely are fused by N2 observations (N1 and N2 in-
dicate the number of frames that belong to the first and second
keyframe respectively). Artifacts appear due to the inconsistent
fusion, which only occur at the border of keyframes and will
vanish quickly after more observations are introduced.

For the future work, we will try to solve the limitations
reported as well as consider the joint 3D reconstruction and
semantic understanding, which may further help robots interact
with the real world.
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