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Abstract—Deep reinforcement learning (RL) has proven a
powerful technique in many sequential decision making domains.
However, robotics poses many challenges for RL, most notably
training on a physical system can be expensive and dangerous,
which has sparked significant interest in learning control policies
using a physics simulator. While several recent works have shown
promising results in transferring policies trained in simulation
to the real world, they often do not fully utilize the advantage
of working with a simulator. In this work, we propose the
Asymmetric Actor Critic, which learns a vision-based control
policy while taking advantage of access to the underlying state
to significantly speed up training. Concretely, our algorithm
employs an actor-critic training algorithm in which the critic
is trained on full states while the actor (or policy) is trained on
images. We show that using these asymmetric inputs improves
performance on a range of simulated tasks. Finally, we combine
this method with domain randomization and show real robot
experiments for several tasks like picking, pushing, and moving
a block. We achieve this simulation to real-world transfer without
training on any real-world data. Videos of these experiments can
be found in www.goo.gl/b57WTs.

I. INTRODUCTION

Reinforcement learning (RL) coupled with deep neural net-
works has recently led to successes on a wide range of control
problems, including achieving superhuman performance on
Atari games [26] and beating the world champion in the classic
game of Go [45]. In physics simulators, complex behaviours
like walking, running, hopping and jumping have also been
shown to emerge [43, 23].

However, in the context of robotics, learning complex
behaviours faces two unique challenges: scalability and safety.
Robots are slow and expensive, which makes existing data
intensive learning algorithms hard to scale. These physical
robots could also damage themselves and their environment
while exploring these behaviours. A recent approach to cir-
cumvent these challenges is to train on a simulated version
of the robot and then transfer the learned policy to the real
robot [8, 12, 18, 39, 7, 52, 40, 13].

One common method for robot learning using simulators
is by training a visual policy on rendered images and then
transferring it to a real robot [40, 39, 47]. These visual
policies allow for easy instrumentation on the robot’s end.
However, this comes at the increased cost of learning from
high dimensional visual observations. Other methods first
learn state-based policies in the simulator. Then, these state-
based policies can be behaviour cloned or imitation learned
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Fig. 1. By training policies with asymmetric inputs for actor-critic along with
domain randomization, we learn complex visual policies that can operate in
the real world without having seen any real world data in training.

to a visual policy [15]. This allows for faster learning, but
behaviour cloning does not work well when the observation
domain is different between the expert and the cloned policy
(see Section. V-D). Instead of behaviour cloning, one could
also perform explicit state estimation from visual observations
and employ a state based policy. However, as demonstrated
in Andrychowicz et al. [3] the errors in estimation often
leads to failure with complex policies. This leads us to a
conundrum, i.e., training on images is hard because of their
high dimensionality, on the other hand learned state-based
policies are hard to use on a robot.

We solve this conundrum by learning a policy that operates
only on visual observations (RGBD images), but accesses
full state during training. Physics simulators give us access
to both the full state of the system and the rendered images
of the scene. But how can we combine these observations to
train complex behaviours faster? In this work, we exploit the
access to states and train an actor-critic algorithm [19, 23]
that uses asymmetric inputs, i.e. the actor takes visual partial
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observations as input while the critic takes the underlying full
state as input. Since the critic works on the low dimensional
full state, it learns the state-action value function much faster.
This also allows for better updates for the actor. During
testing, the actor is employed on the high dimensional visual
observations and does not depend on the full state (the full
state is only used during training). This novel technique allows
us to train an actor/policy network on visual observations while
exploiting the availability of full states to train the critic.

However, simulators are not perfect representations of the
real world. The domain of observations in the real world (real
camera images) significantly differs from rendered images
from a simulator. This makes directly transferring policies
from the simulator to the real world difficult. However,
Sadeghi and Levine [40] and other researchers [47, 49] show
how randomizing textures and lighting allows for effective
transfer to the real world. We employ these domain random-
ization techniques to transfer to a real robot.

Our experimental evaluations on 2D environments such as
Particle and Reacher and 3D robot environments such as
Fetch Pick show that Asymmetric Actor Critic significantly
improves over both learning with only visual observations [23]
and cloning from a state based expert [15]. By combining
our Asymmetric Actor Critic training with domain randomiza-
tion [47], we show that these visual policies can Pick, Push
and Move a block using a real robot without any training on
the physical system (see Figure 1).

In summary, this paper presents three main contributions:
(a) We propose a novel technique for learning visual policies
by exploiting low dimensional full state observations in a sim-
ulator. (b) We show that this asymmetric training significantly
speeds up training. (c) We can use these policies on real robots
without any training on the physical system.

II. RELATED WORK

A. Reinforcement Learning

Recent work in deep reinforcement learning (deep RL) has
shown impressive results in the domain of games [26, 45] and
simulated control tasks [43, 23]. The class of RL algorithms
our method employs are called actor-critic algorithms [19].
Deep Deterministic Policy Gradients (DDPG) [23] is a popular
actor-critic algorithm that has shown impressive results in
continuous control tasks. Although we use DDPG for our base
optimizer, our method is applicable to arbitrary actor-critic
algorithms.

Learning policies in an environment that provides only
sparse rewards is a challenging problem due to a very limited
feedback signal. However it has been shown that sparse
rewards often allow for better policies when trained appro-
priately [3]. Moreover having sparse rewards allows us to
circumvent manual shaping of the reward function.

Foerster et al. [10] and Lowe et al. [24] have trained actor-
critic algorithms for multi-agent environments. Here a single
critic is trained with information from all the agents while
multiple actors are trained for each agent using each agent’s

observation. However we use asymmetric inputs in the context
of speeding up learning of visual policies.

B. End-to-end robot learning

Learning policies directly from observations [21, 28, 2, 22]
has received significant attention over the last few years. These
works have shown that without explicit modeling and state
estimation, complex manipulation behaviors can be learned.
Reducing the error-prone aspects of modeling and estimation
also allows for easier deployment of robots. However, these
end-to-end learning methods often require significant amounts
of real world robot data [28, 2, 22] which makes it difficult
to scale and dangerous to the environment. Simulators hold
promise in alleviating both these challenges since simulators
are orders of magnitude faster than the real world and do not
perform physical interactions. This paper looks to improve
robot learning by training completely in a simulator without
seeing any real world robot data.

C. Transfer from simulation to the real world

Bridging the reality gap in transferring policies trained in a
simulator to the real world is an active area of research in the
robot learning community. Apart from being faster, simulators
are also safer than real robots [11, 13]. One approach to
transfer simulator policies to the real world is to make the
simulator as close to the real world as possible [14, 33, 37].
But these methods have had limited success due to hard system
identification problems.

Another approach is domain adaptation from the simula-
tor [8, 12, 18, 39, 7, 52], since it may be easier to fine
tune from a simulator policy than training in the real world.
However if the simulator differs from the real world, the
policy trained in simulation can perform very poorly in the
real world and fine tuning may not be any easier than
training from scratch. This limits most of these works to
learning simple behaviours. Making policies robust for physics
adaptation [36, 32, 51] is also receiving interest, but these
methods haven’t been shown to be powerful enough to work
on real robots. Using bottlenecks [52] has been shown to
help domain adaptation for simple tasks like reaching. In this
work, we show how bottlenecks can be exploited for more
complex fine manipulation tasks. We also note that our method
is complementary to actor-critic versions of several of these
domain adaptation methods.

A promising approach is domain adaptation by domain
randomization [47, 40]. Here the key idea is to train on
randomized renderings of the scene, which supports learning
robust policies for transfer. However these works do not show
transfer to precise manipulation behaviours. We show that this
idea of randomization can be extended to complex behaviours
when coupled with our asymmetric actor critic.

D. Robotic tasks

We perform real robot experiments on tasks like picking,
pushing, and moving a block. The Picking task is similar to
grasping objects [6, 28, 31, 25], however in this work we learn



a visual end-to-end policy that moves to the object, grasps it
and moves the grasped object to its desired position. The focus
is on learning the fine manipulation behaviour directly from
visual inputs. The tasks of Forward Pushing and Block Move
are similar to pushing objects [5, 2, 29, 30], however as in the
case of Picking, this paper focuses on the visual learning of
the fine pushing behaviour.

III. BACKGROUND

Before we discuss our method, we briefly introduce some
background and formalism for the RL algorithms used. A more
comprehensive introduction can be found in Kaelbling et al.
[16] and Sutton and Barto [46].

A. Reinforcement Learning

In this paper we deal with continuous space Markov
Decision Processes that can be represented as the tuple
(S,O,A,P, r, γ, S), where S is a set of continuous states and
A is a set of continuous actions, P : S × A × S → R is
the transition probability function, r : S × A → R is the
reward function, γ is the discount factor, and S is the initial
state distribution. O is a set of continuous partial observations
corresponding to states in S.

An episode for the agent begins with sampling s0 from the
initial state distribution S. At every timestep t, the agent takes
an action at = π(st) according to a policy π : S → A.
At every timestep t, the agent gets a reward rt = r(st, at),
and the state transitions to st+1, which is sampled according
to probabilities P(st+1|st, at). The goal of the agent is to
maximize the expected return ES[R0|S], where the return is
the discounted sum of the future rewards Rt =

∑∞
i=t γ

i−tri.
The Q-function is defined as Qπ(st, at) = E[Rt|st, at]. In the
partial observability case, the agent takes actions based on the
partial observation, at = π(ot), where ot is the observation
corresponding to the full state st.

B. Deep Deterministic Policy Gradients (DDPG)

Deep Deterministic Policy Gradients (DDPG) [23] is an
actor-critic RL algorithm that learns a deterministic con-
tinuous action policy. The algorithm maintains two neural
networks: the policy (also called the actor) πθ : S → A (with
neural network parameters θ) and a Q-function approximator
(also called the critic) Qπφ : S ×A → R (with neural network
parameters φ).

During training, episodes are generated using a noisy ver-
sion of the policy (called behaviour policy), e.g. πb(s) =
π(s)+N (0, 1), where N is the Normal distribution noise. The
transition tuples (st, at, rt, st+1) encountered during training
are stored in a replay buffer [26]. Training examples sampled
from the replay buffer are used to optimize the critic. By
minimizing the Bellman error loss Lc = (Q(st, at) − yt)

2,
where yt = rt + γQ(st+1, π(st+1)), the critic is optimized
to approximate the Q-function. The actor is optimized by
minimizing the loss La = −Es[Q(s, π(s))]. The gradient
of La with respect to the actor parameters is called the
deterministic policy gradient [44] and can be computed

by backpropagating through the combined critic and actor
networks. To stabilize the training, the targets for the actor
and the critic yt are computed on separate versions of the
actor and critic networks, which change at a slower rate than
the main networks. A common practice is to use a Polyak
averaged [34] version of the main network.

In this actor-critic framework, the role of the critic is to
improve the policy gradient estimates by providing a value
function (Q) estimate. The only way the critic interacts with
the learning is through the value estimate. The more accurate
the value estimate, the better the policy gradient is estimated.
In Asymmetric Actor Critic this critic is trained on state
information, which allows the value estimates to be more
accurate compared to a critic trained on images. Furthermore,
since the policy only depends on value estimates, a visual
policy can be learned.

C. Multigoal RL

We are interested in learning policies that can achieve
multiple goals (a universal policy). One way of doing this is
by training policies and Q-functions that take as an additional
input a goal g ∈ G [41, 3], e.g. at = π(st, g). A universal
policy can hence be trained by using arbitrary RL algorithms.

Following UVFA [41], the sparse reward formulation
r(st, a, g) = [d(st, g) < ε] will be used in this work, where the
agent gets a positive reward when the distance d(., .) between
the current state and the goal is less than ε. In the context of
a robot performing the task of picking and placing an object,
this means that the robot gets a reward only if the object is
within ε Euclidean distance of the desired goal location of
the object. Having a sparse reward overcomes the limitation
of hand engineering the reward function, which often requires
extensive domain knowledge. However, sparse rewards are not
very informative and makes it hard to optimize. In order to
overcome the difficulties with sparse rewards, we employ a
recent method: Hindsight Experience Replay (HER) [3].

D. Hindsight Experience Replay (HER)

HER [3] is a simple method of manipulating the replay
buffer used in off-policy RL algorithms that allows it to
learn universal policies more efficiently with sparse rewards.
After experiencing some episode s0, s1, ..., sT , every transition
st → st+1 along with the goal for this episode is usually stored
in the replay buffer. However with HER, the experienced
transitions are also stored in the replay buffer with different
goals. These additional goals are states that were achieved later
in the episode. Since the goal being pursued does not influence
the environment dynamics, we can replay each trajectory using
arbitrary goals assuming we use an off-policy RL algorithm
to optimize [35].

IV. METHOD

We now describe our method along with the technique of
bottlenecks to speed up training. Following this, we also de-
scribe domain randomization for transferring simulator learned
policies to the real robot.
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Fig. 2. Having asymmetric inputs, i.e. full states for the critic and partial
observations for the actor improves training. In the multi goal setting, the
critic additionally requires full goal states while the actor additionally requires
partial observations for the goal.

A. Asymmetric Actor Critic

In its essence our method builds on actor-critic algo-
rithms [19] by using the full state st ∈ S to train the critic,
while using partial observation ot ∈ O to train the actor (see
Figure 2). Note that st is the underlying full state for the
observation ot. In our experiments, observations ot are images
taken by an external camera.

Algorithm 1 Asymmetric Actor Critic
Initialize actor-critic algorithm A
Initialize replay buffer R
for episode= 1,M do

Sample a goal g and an initial state s0
Render goal observation go

go ← render(g)
for t = 0, T − 1 do

Render image observation ot
ot ← render(st)

Obtain action at using behavioural policy:
at ← πb(ot, g

o)
Execute action at, receive reward rt and transition

to st+1

Store (st, ot, at, rt, st+1, ot+1, g, g
o) in R

end for
for n=1, N do

Sample minibatch {s, o, a, r, s′ , o′
, g, go}B0 from R

Optimize critic using {s, a, r, s′ , g}B0 with A
Optimize actor using {o, a, r, o′

, go}B0 with A
end for

end for

The algorithm (described in Algorithm 1), begins with
initializing the networks for an off-policy actor-critic algorithm
A [35]. In this paper, we use DDPG [23] as the actor-critic
algorithm. The replay buffer R used by this algorithm is

initialized with no data. For each episode, a goal g and an
initial state s0 are sampled before the rollout begins. go is the
rendered goal observation. At every timestep t of the episode,
a partially observable image of the scene ot is rendered from
the simulator at the full state st. The behavioural policy from
A, which is usually a noisy version of the actor is used to
generate the action at for the agent/robot to take. After taking
this action, the environment transitions to the next state st+1,
with its corresponding rendered image ot+1.

Since DDPG relies on a replay buffer to sample training
data, we build the replay buffer from the episodic experience
(st, ot, at, rt, st+1, ot+1, g, g

o). To improve performance for
the sparse reward case, we augment the standard replay buffer
by adding hindsight experiences [3].

After the episodic experience has been added to the replay
buffer R, we can now train our actor-critic algorithm A from a
sampled minibatch of size B from R. This minibatch can be
represented as {s, o, a, r, s′ , o′

, g, go}B0 , where s
′

and o
′

are
the next step full state and next step observation respectively.
Since the critic takes full states as input, it is trained on
{s, a, r, s′ , g}B0 . Since the actor takes observations as input,
it is trained on {o, a, r, o′

, go}B0 . We experimentally show
that asymmetric inputs for the critic and actor significantly
improves performance and supports transfer of more complex
manipulation behaviours to real robots.

B. Improvements with bottlenecks

One way of improving the efficiency of training is to use
bottlenecks [52]. The key idea is to constrain one of the actor
network’s intermediary layers to predict the full state. Since
the full state is often of a smaller dimension than the other
layers of the network, this state predictive layer is called the
bottleneck layer.

C. Randomization for transfer

A powerful technique for domain transfer of policies from
rendered images to real world images is domain randomiza-
tion [47, 40]. The key idea is to randomize visual elements
in the scene during the rendering. Learning policies with this
randomization allows the policy to generalize to sources of
error in the real world and latch on to the important aspects
of the observation.

For the purposes of this paper, we randomize the following
aspects: texture, lighting, camera location and depth. For
textures, random textures are chosen among random RGB
values, gradient textures and checker patterns. These random
textures are applied on the different physical objects in the
scene, like the robot and the table. For lighting randomization,
we randomly switch on lighting sources in the scene and also
randomize the position, orientation and the specular charac-
teristics of the light. For camera location, we randomize the
location of the monocular camera in a box around the expected
location of the real world camera. Furthermore, we randomize
the orientation and focal length of the camera and add uniform
noise to the depth. RGB samples of randomization on the Fetch
Pick environment can be seen in Figure 3.



Fig. 3. To enable transfer of policies from the simulator to the real world,
we randomize various aspects of the renderer during training. These aspects
include textures, lighting and the position of the camera.

V. RESULTS

To show the effectiveness of our method, we experiment
on a range of simulated and real robot environments. In this
section we first describe the environments. Following this, we
discuss comparisons of our methods to baselines and show
the utility of our method for improving training. Finally, we
discuss real robot experiments.

A. Environments

Since there are no standard environments for multi-goal RL,
we create three of our own simulated environments to test our
method. The first two environments, Particle and Reacher are
in a 2D workspace. The third environment Fetch Pick is in
a 3D workspace with a simulated version of the Fetch robot
picking up and placing a block. All these environments are
simulated in the MuJoCo [48] physics simulator.

(a) Particle: In this 2D environment the goal for the agent is to
move a 2D particle to a given location. The state space is 2D
and consists of the particle’s location. The observation space is
RGB images (100× 100× 3) from a camera placed above the
scene. The action space is the 2D velocity of the particle. This
action space allows for control on single RGB observations
without requiring memory for velocity (since velocity cannot
be inferred from a single RGB frame). The agent gets a sparse
reward (+1) if the particle is within ε of the desired goal
position and no reward (0) otherwise. The observation for the
goal is an image of the particle in its desired goal position.

(b) Reacher: In this 2D environment the goal for the agent
is to move the end-effector of a two-link robot arm to a

target location. The state space is 2D and consists of the joint
positions. The observation space is RGB images (100×100×3)
from a camera placed above the scene. The action space is the
2D velocities for the joints. The agent gets a sparse reward
(+1) if the end-effector is within ε of the desired goal position
and no reward (0) otherwise. The observation for the goal is an
image of the reacher in its desired goal end-effector position.

(c) Fetch Pick: In this 3D environment with the simulated
Fetch robot, the goal for the agent is to pick up the block
on the table and move it to a given location in the air. The
state space consists of the joint positions of the robot and
the location of the block on the table. The observation space
is RGBD images (100 × 100 × 4) from a camera placed in
front of the robot. The action space is 4D. Since this problem
does not require gripper rotation, we keep it fixed. Three of
the four dimensions of the action space specify the desired
relative1 position for the gripper. The last dimension specifies
the desired distance between the fingers of the gripper. The
agent gets a sparse reward (+1) if the block is within ε of the
desired goal block position. The observation for the goal is an
image of the block in its desired goal block position and the
Fetch arm in a random position. To make exploration in this
task easier following [3], we record a single state in which
the box is grasped and start half of the training episodes from
this state.

B. Robot evaluation

For our real world experiments we use a 7-DOF Fetch
robotic arm2, which is equipped with a two fingered parallel
gripper. The camera observations for the real world experi-
ments is an off the shelf Intel RealSense R200 camera that
can provide aligned RGBD images. Since real depth often
contains holes [27], we employ nearest neighbour hole filling
to get better depth images [50]. To further improve the depth,
we cover/recolor parts of the robot that are black like parts of
the torso and parts of the gripper.

We experiment on three tasks for the real robot. The first
task is Pick which is similar to the simulated task of Fetch
Pick described in Section V-A(c). The second task is Forward
Push, where the robot needs to push a block forward3. The
third task is Block Move, where the robot needs to move the
block to the target position on the table. In all tasks the goal
is specified by an image of the block in the target location.
The manipulation behaviour is considered to be successful if
the block is within 2cm of the desired target location. A video
of these experiments can be found in the supplementary video
and sample successes from our method in Figure 7.

The observations for the real robot tasks is an RGBD image
from the physical camera placed in front of the robot. The goal
observation for the actor is a simulated image describing the
desired goal. We note that giving real world observations for

1The desired gripper position is relative to the current gripper position.
2fetchrobotics.com/platforms-research-development/
3The fingers are blocked for this task to avoid grasping.

fetchrobotics.com/platforms-research-development/
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Fig. 4. To evaluate our method, we test on three different environments: Particle, Reacher and Fetch Pick. Since we learn multi goal policies, the policy
takes in both the observation at timestep t and the desired goal for the episode.

0 1.6E4 3.2E4 4.8E4 6.4E4 8.0E4
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0 3.2E3 6.4E3 9.6E3 1.2E4 1.6E4 0 3.2E3 6.4E3 9.6E3 1.2E4 1.6E4
Number of episodes

Fi
na

l s
uc

ce
ss

 Asym HER
Sym HER 
Asym DDPG
Sym DDPG
DAgger

Number of episodes Number of episodes

Particle Reacher Fetch Pick

Fig. 5. We show that asymmetric inputs for training outperforms symmetric inputs by significant margins on our simulated environments. The shaded region
corresponds to ±1 standard deviation across 5 random seeds. The y-axis corresponds to the sparse reward obtained at the end of an episode averaged over
100 runs. Although the behaviour cloning (BC) by expert imitation baseline (dashed lines) learns faster initially, it saturates to a sub optimal value compared
to asymmetric HER. Also note that the BC baseline doesn’t include the iterations the expert policy was trained on.
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Fig. 6. We show that bottlenecks can be used to further improve training of our method. The shaded region corresponds to ±1 standard deviation across
5 random seeds. The y-axis corresponds to the sparse reward obtained at the end of an episode averaged over 100 runs. On the Particle and Reacher, the
improvements are quite significant. On Fetch Pick, we observe more stable training (lower variance denoted by shaded regions).

the goal observation also works, however for consistency in
evaluation, we use a simulated goal observation.

C. Do asymmetric inputs to the actor critic help?

To study the effect of asymmetric inputs, we compare to the
baseline of using symmetric inputs (images for both the actor
and the critic networks). Figure 5 shows a summary of the final
episodic rewards, with the x-axis being the number of episodes
the agent experiences. As evident from the Particle results,

asymmetric input versions of both DDPG and HER perform
much better than their symmetric counterparts. The simplicity
of the Particle may explain the similar performance between
asymmetric DDPG and HER. Fetch Pick is a much harder
sparse reward task, which shows the importance of using HER
over DDPG. In this case as well, the asymmetric version of
HER performs significantly better than the symmetric version.
This experiment hence demonstrates the significant utility of
asymmetric training for learning visual policies.
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Fig. 7. Successive frames of our asymmetric HER policies on three real robot tasks show how our method can be successfully used for simulation to real
transfer of complex policies. Full length experiments can be found in the supplementary video.

TABLE I
COMPARISON OF ASYMMETRIC HER WITH BASELINES AND ABLATIONS

Asym HER Baselines Randomization ablations
Asym DDPG Sym HER Vanilla BC DAgger BC Without any Without viewpoints

Pick 5/5 0/5 0/5 0/5 3/5 0/5 0/5
Forward Push 5/5 0/5 0/5 1/5 0/5 0/5 0/5
Block Move 5/5 0/5 0/5 0/5 0/5 0/5 4/5
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Fig. 8. Domain randomization during training allows the learned policies
to be robust to distractors. Here we see how a policy trained to Pick the red
block is robust to distractor blocks. The difference in the two scenes shown
here is that inspite of changing the initial location of the red block, the arm
still picks the red block.

D. Would state-based learning followed by visual behavioral
cloning succeed?

Imitation learning is a powerful technique in robotics [4].
Hence a much stronger baseline is to behaviour clone from
an expert policy. To do this we first train an expert policy [4]
on full states that performs the task perfectly. Now given this

expert policy, we behaviour clone to a policy that takes the
visual observations as input [15]. Furthermore, since we have
access to the expert state-based policy, we can improve the
imitated visual policy using DAgger [38].

Figure 5 shows the final episodic rewards of the behaviour
cloned policy (in dashed lines) with the x-axis being the
number of demonstrations. As expected, the DAgger policy
learns much faster initially (since it receives supervision from a
much stronger expert policy). However in all the environments,
it saturates in performance and is lower than than our method
(asymmetric HER) for a large number of rollouts. One reason
for this is that behaviour cloning would fail if the expert
policy depends on information contained in the full state but
not in the partial observation. This experiment shows that
although behaviour cloning can help speed up visual learning,
it cannot overcome the domain mismatch between the expert
and cloned policy. These findings are consistent with the
results in James et al. [15]. Asymmetric Actor Critic does
not face this challenge since state information is used only in
the training of the critic.

E. Does the bottleneck layer speed up training?

Another way of incorporating the full state from the simu-
lator is by adding an auxiliary task of predicting the full state
from partial observations. By adding a bottleneck layer [52]
in the actor and adding an additional L2 loss between the



bottleneck output and the full state, we further speed up
training. On our simulated tasks, these bottlenecks in the
policy network improve the stability and speed of training (as
seen in Figure 6).

F. How well do these policies transfer to a real robot?

By combining asymmetric HER with domain randomiza-
tion [47], we show significant performance gains (see Table I)
compared to baselines previously mentioned. Note that we
measure success if the block is within 2cm of the desired target
position. Our method succeeds on all the three tasks for all the
5 times the policy were run with different block initializations
and goals. We also note that behaviours like push-grasping [9]
and re-grasping [42] emerge from these trained policies which
can be seen in the www.goo.gl/b57WTs. Among the baselines
we evaluate against, we note that behaviour cloning with
DAgger is the only one that performs reasonably (as seen in
the video and Table I).

This experiment demonstrates the utility of our method on
robots with minimal instrumentation. Using RGBD inputs in
this fashion means that error-prone aspects like state estimation
or precise camera calibration aren’t required. Moreover, since
the goal is defined by an image, this can be given by showing
the camera the desired scene. Alternatively, if it is easier to
describe the goal by the state of the block, a rendered image
of the block in the desired state can be used as the goal.

G. How important is domain randomization?

To show the importance of randomization, we perform
ablations (last two columns of Table I) by training policies
without any randomization and testing them in the real world.
We notice that without any randomization, the policies fail
to perform on the real robot while performing perfectly in
the simulator. Another randomization ablation is by removing
the viewpoint randomization while keeping the texture and
lighting randomization during training. We notice that apart
from the Block Move task, removing viewpoint randomization
severely affects performance.

Randomizing the observations in training also gives us an
added benefit: robustness to distractors. Figure 8 shows the
performance of our Pick policy, which was trained on a single
red block, work even in the presence of distractor blocks.

H. Implementation Details

In this section we provide more details on our training setup.
The critic is a fully connected neural network with 3 hidden
layers; each with 512 hidden units. The hidden layers use
ReLU [20] for the non linear activation. The input to the critic
is the concatenation of the current state st, the desired goal
state g and the current action at. The actor is a convolutional
neural network (CNN) with 4 convolutional layers with 64
filters each and kernel size of 2× 2. This network is applied
to both the current observation ot and the goal observation go.
The outputs of both CNNs are then concatenated and passed
through a fully connected neural network with 3 hidden layers.
Similar to the critic, the hidden layers have 512 hidden units

each with ReLU activation. The output of this actor network
is normalized by a tanh activation and rescaled to match the
limits of the environment’s action space. In order to prevent
tanh saturation, we penalize the preactivations in the actor’s
cost.

During each iteration of DDPG, we sample 16 parallel
rollouts of the actor. Following this we perform 40 opti-
mization steps on minibatches of size 128 from the replay
buffer of size 105 transitions. The target actor and critic
networks are updated every iteration with a Polyak averaging
of 0.98. We use Adam [17] optimization with a learning rate
of 0.001 and the default Tensorflow [1] values for the other
hyperparameters. We use a discount factor of γ = 0.98 and
use a fixed horizon of T = 50 steps. For efficient learning,
we also normalize the input states by running averages of the
means and standard deviations of encountered states.

The behavioural policy chosen for exploration chooses a
uniform random action from the space of valid actions with
probability 20%. For the rest 80% probability, the output of
the actor is added with coordinate independent Normal noise
with standard deviation equal to 5% of the action range.

VI. CONCLUSION

In this work we introduce asymmetric actor-critic, a power-
ful way of utilizing the full state observability in a simulator.
By training the critic on full states while training its actor on
rendered images, we learn vision-based policies for complex
manipulation tasks. Extensive evaluation both in the simulator
and on our real world robot shows significant improvements
over standard actor-critic baselines. This method’s perfor-
mance is also superior to the much stronger imitation learning
with DAgger baseline, even though it was trained without an
expert. Coupled with domain randomization, our method is
able to learn visual policies that works in the real world while
being trained solely in a simulator.
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