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Abstract—We develop a new analysis of sampling-based motion
planning in Euclidean space with uniform random sampling,
which significantly improves upon the celebrated result of Kara-
man and Frazzoli (2011) and subsequent work. Particularly, we
prove the existence of a critical connection radius proportional
to Θ(n−1/d) for n samples and d dimensions: Below this
value the planner is guaranteed to fail (similarly shown by the
aforementioned work, ibid.). More importantly, for larger radius
values the planner is asymptotically (near-)optimal. Furthermore,
our analysis yields an explicit lower bound of 1 − O(n−1)
on the probability of success. A practical implication of our
work is that asymptotic (near-)optimality is achieved when each
sample is connected to only Θ(1) neighbors. This is in stark
contrast to previous work which requires Θ(logn) connections,
that are induced by a radius of order

(
log n

n

)1/d. Our analysis
is not restricted to PRM and applies to a variety of “PRM-
based” planners, including RRG, FMT∗ and BTT. Continuum
percolation plays an important role in our proofs.

I. INTRODUCTION

Motion planning is a fundamental problem in robotics con-
cerned with allowing autonomous robots to efficiently navigate
in environments cluttered with obstacles. Although motion
planning has originated as a strictly theoretical problem in
computer science [12], nowadays it is applied in various fields.
Notably, motion planning arises in coordination of multiple
autonomous vehicles [8], steering surgical needles [3], and
planning trajectories of spacecrafts in orbit [32], to name just
a few examples.

Motion planning is notoriously challenging from a computa-
tional perspective due to the continuous and high-dimensional
search space it induces, which accounts for the structure of
the robot, the physical constraints that it needs to satisfy, and
the environment in which it operates.

Nowadays the majority of practical approaches for mo-
tion planning capture the connectivity of the free space by
sampling (typically in a randomized fashion) configurations
and connecting nearby samples, to form a graph data struc-
ture. Although such sampling-based planners are inherently
incomplete, i.e., cannot detect situations in which a solution
(collision-free path) does not exist, most have the desired
property of being able to find a solution eventually, if one
exists. That is, a planner is probabilistically complete (PC) if
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the probability of finding a solution tends to 1 as the number
of samples n tends to infinity. Moreover, some recently-
introduced sampling-based techniques are also guaranteed to
return high-quality1 solutions that tend to the optimum as n
diverges—a property called asymptotic optimality (AO).

An important attribute of sampling-based planners, which
dictates both the running time and the quality of the returned
solution, is the number of neighbors considered for connection
for each added sample. In many techniques this number is
directly affected by a connection radius rn: Decreasing rn
reduces the number of neighbors. This in turn reduces the
running time of the planner for a given number of samples
n, but may also reduce the quality of the solution or its
availability altogether. Thus, it is desirable to come up with a
radius rn that is small, but not to the extent that the planner
loses its favorable properties of PC and AO.

A. Contribution

We develop a new analysis of PRM [16] for uniform
random sampling in Euclidean space, which relies on a novel
connection between sampling-based planners and continuum
percolation (see, e.g., [7]). Our analysis is tight and proves
the existence of a critical connection radius r∗n = γ∗n−1/d,
where γ∗ > 0 is a constant2, and d > 2 is the dimension:
If rn < r∗n then PRM is guaranteed to fail, where d is the
dimension. Above the threshold, i.e., when rn > r∗n, PRM is
AO for the bottleneck cost, and asymptotically near optimal3

(AnO) with respect to the path-length cost. Furthermore, our
analysis yields concrete bounds on the probability of success,
which is lower-bounded by 1−O(n−1). Notice that this bound
is comparable to the one obtained in [33] (see Section II)
although we show this for a much smaller radius.

Our analysis is not restricted to PRM and applies to a
variety of planners that maintain PRM-like roadmaps, explicitly
or implicitly. For instance, when rn is above the threshold,
FMT∗ [14] is AnO with respect to the path-length cost, while
BTT [29] is AO with respect to the bottleneck cost. RRG
behaves similarly for the two cost functions. Our results are
also applicable to multi-robot motion planners such as the
recently introduced dRRT∗ [6], and M∗ [35] when applied

1Quality can be measured in terms of energy, length of the plan, clearance
from obstacles, etc.

2 0.4 6 γ∗ 6 0.6 for all d > 2.
3AnO means that the cost of the solution tends to at most a constant factor

times the optimum, compared with AO in which this constant is equal to one.



to a continuous domain. See Figure 1 for additional PRM-
based planners to which our analysis is applicable (see more
information in the extended version of the paper [30]).
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Fig. 1. The PRM dynasty. Single robot and multi-robot planners, are bounded
into the blue and red frames, respectively. Planners inside the magenta frame
aim to minimize the path-length cost, whereas BTT is designed for bottleneck
cost, and RRG works for both costs (see more information below). Roughly
speaking, arrow from “A” to “B” indicates that theoretical properties of “A”
extend to “B”, or that the latter maintains “A” as a substructure.

A practical implication of our work is that AO (or AnO), un-
der the regime of uniform random sampling, can be achieved
even when every sample is connected to Θ(1) neighbors. This
is in stark contrast with previous work, e.g., [14, 15, 28, 31],
which provided a rough estimate of this number, that is
proportional to O(log n).

B. Organization

In Section II we discuss related work. Then we proceed to
basic definitions and problem statement in Section III. In that
section we also include a precise description of the robotic
system our theory is developed for. Our central contribution
(Theorem 1), which states the existence of a critical radius r∗n
with respect to PRM, is presented in Section IV. This section
also contains an outline of the proof. In Section V we lay the
foundations of the proof and discuss important aspects of con-
tinuum percolation, that would later be employed in the main
proof, which appears in Section VI. In Section VII we present
experimental work, which validates our theory. We conclude
this paper with directions for future work (Section VIII).

An extended version of the paper [30] provides supplemen-
tary material, and includes proofs that were omitted from the
main document, additional experimental results, and a table
with values of γ∗. It also presents an extension of the analysis
to FMT∗, BTT, RRG and discusses the implications of our re-
sults to the multi-robot planners dRRT∗ and M∗. Additionally,
it presents a new theory for all the aforementioned planners
when constructed with deterministic samples, which are then
sparsified in a randomized fashion. We believe that this new
model, and its analysis, is interesting in its own right.

II. RELATED WORK

This section is devoted to a literature review of sampling-
based planners with emphasis on their theoretical analysis.

The influential work [15] laid the theoretical foundations
for analyzing quality in sampling-based planning. The authors
introduced a set of techniques to prove AO. Using their
framework, they showed that the following algorithms are
AO: PRM∗, which is a special case of PRM4 with a specific
value of the connection radius rn; an AO variant of RRT [18]
termed RRT∗; RRG, which can be viewed as a combination
between RRT and PRM. The analysis in [15] establishes that
rn = Θ

(
(log n/n)1/d

)
guarantees AO, where the configura-

tion space of the robot is assumed to be [0, 1]d. This indicates
that the expected number of neighbors used per vertex should
be O(log n). The authors also proved that for sufficiently-
small radii of order O(n−1/d) the planner is guaranteed to
fail (asymptotically) in finding any solution.

Following the breakthrough in [15], other AO planners have
emerged (see e.g., [1, 2, 10]). The paper [14] introduced FMT∗,
which is a single-query planner that traverses an implicitly-
represented PRM graph, and is comparable in performance to
RRT∗. The authors refined the proof technique of [15], which
allowed them to slightly reduce the connection radius rn nec-
essary to FMT∗ and PRM to achieve AO. We do mention that
here again rn = Θ

(
(log n/n)1/d

)
. BFMT∗, which is a bidirec-

tional version of FMT∗, was introduced in [33]. In this paper
the authors also proved that the success rate of PRM, FMT∗,
BFMT∗ can be lower bounded by 1 − O

(
n−η/d log−1/d n

)
,

where η > 0 is a tuning parameter. In this context, we also
mention the work of Dobson et al. [5], which bounds the
success rate with an expression that depends on the amount
of deviation from the optimum.

A recent work [31] developed a different method for
analyzing sampling-based planners. It exploits a connection
with random geometric graphs (RGGs), which have been
extensively studied (see, e.g., [21]). Their work shows that one
can slightly reduce the PRM and FMT∗ radius obtained in [14].
Furthermore, the connection with RGGs yields additional
analyses of different extensions of PRM, which have not been
analyzed before in a mathematically-rigorous setting.

We also mention that a number of methods have been
developed to reduce the running time or space requirements
of existing planners by relaxing AO to AnO, see, e.g.,
LBT-RRT [24], MPLB [23], SPARS2 [4], and RSEC [25].

A. Extensions

The aforementioned papers deal mainly with the cost func-
tion of path length. Two recent works [28, 29] considered
the bottleneck-pathfinding problem in a sampling-based set-
ting and introduced the BTT algorithm, which traverses an
implicitly-represented PRM graph. The bottleneck-cost func-
tion, which arises for instance in high-clearance multi-robot
motion [29] and Fréchet matching between curves [13], is
defined as follows: Every robot configuration x is paired with
a value M(x), and the cost of a path is the maximum value
of M along any configuration on the path. It was shown

4Throughout this work we will refer to the more general algorithm PRM
rather than PRM∗.



([28, 29]) that BTT is AO, with respect to bottleneck cost,
for the reduced connection radius that was obtained in [31].

The results reported until this point have dealt exclusively
with holonomic robotic systems. Two recent papers [26, 27]
develop the theoretical foundations of PRM and FMT∗-flavored
planners when applied to robots having differential constraints.
Li et al. [19] develop an AO algorithm that does not require
a steering function, as PRM for instance does.

III. PRELIMINARIES

We provide several basic definitions that will be used
throughout the paper. Given two points x, y ∈ Rd, denote
by ‖x− y‖ the standard Euclidean distance. Denote by Br(x)
the d-dimensional ball of radius r > 0 centered at x ∈ Rd and
Br(Γ) =

⋃
x∈Γ Br(x) for any Γ ⊆ Rd. Similarly, given a curve

π : [0, 1] → Rd define Br(π) =
⋃
τ∈[0,1] Br(π(τ)). Given a

subset D ⊂ Rd we denote by |D| its Lebesgue measure. All
logarithms are at base e.

A. Motion planning

Denote by C the configuration space of the robot, and
by F ⊆ C the free space, i.e., the set of all collision free
configurations. Though our proofs may be extended to more
complex robotic systems (see discussion in Section VIII), in
this work we investigate the geometric (holonomic) setting
of the problem in which no constraints are imposed on the
motion of the robot. Additionally, we assume that C is some
subset of the Euclidean space. In particular, C = [0, 1]d ⊂ Rd
for some fixed d > 2. We also assume that for any two
configurations x, x′ ∈ C the robot is capable of following
precisely the straight-line path from x to x′.

Given start and target configurations s, t ∈ F , the problem
consists of finding a continuous path (curve) π : [0, 1] → F
such that π(0) = s, π(1) = t. That is, the robot starts its
motion along π on s, and ends in t, while remaining collision
free. An instance of the problem is defined for a given (F , s, t),
where s, t ∈ F .

B. Cost function

It is usually desirable to obtain paths that minimize a
given criterion. In this paper we consider the following two
cost functions. Given a path π, its length is denoted by
c`(π), and its bottleneck cost is defined to be cb(σ,M) =
maxτ∈[0,1]M(π(τ)), where M : C → R is a cost map.

We proceed to describe the notion of robustness, which
is essential when discussing properties of sampling-based
planners. Given a subset Γ ⊂ C and two configurations
x, y ∈ Γ, denote by ΠΓ

x,y the set of all continuous paths, whose
image is in Γ, that start in x and end in y, i.e., if π ∈ ΠΓ

x,y

then π : [0, 1]→ Γ and π(0) = x, π(1) = y.

Definition 1. Let (F , s, t) be a motion-planning problem. A
path π ∈ ΠFs,t is robust if there exists δ > 0 such that Bδ(π) ⊂
F . We also say that (F , s, t) is robustly feasible if there exists
such a robust path.

Definition 2. The robust optimum with respect to c` is defined
as c∗` = inf

{
c`(π)

∣∣π ∈ ΠFs,t is robust
}

.

The corresponding definition for the bottleneck cost is
slightly more involved.

Definition 3. Let M be a cost map. A path π ∈ ΠFs,t is M-
robust if it is robust and for every ε > 0 there exists δ > 0
such that for every x ∈ Bδ(π),M(x) 6 (1 + ε)cb(π,M). We
also say that M is well behaved if there exists at least one
M-robust path.

Definition 4. The robust optimum with respect to cb is defined
as c∗b = inf

{
cb(π,M)

∣∣π ∈ ΠFs,t is M-robust
}

.

C. Poisson point processes

We draw our main analysis techniques from the literature
of continuum percolation, where point samples are generated
with the following distribution. Thus we will use this point
distribution in PRM, which would be formally defined in the
following section.

Definition 5 ([7]). A random set of points X ⊂ Rd is a
Poisson point process (PPP) of density λ > 0 if it satisfies the
conditions: (1) For mutually disjoint domains D1, . . . , D` ⊂
Rd, the random variables |D1∩X |, . . . , |D`∩X | are mutually
independent. (2) For any bounded domain D ⊂ Rd we have
that for every k > 0, Pr[|X ∩D| = k] = e−λ|D| (λ|D|)

k

k! .

It will be convenient to think about PRM as a subset of the
following random geometric graph (RGG). We will describe
various properties of this graph in later sections.

Definition 6. ([21]) Let X ⊂ Rd be a PPP. Given r > 0,
the random geometric graph G(X ; r) is an undirected graph
with the vertex set X . Given two vertices x, y ∈ X , (x, y) ∈
G(X ; r) if ‖x− y‖ 6 r.

IV. ANALYSIS OF PRM

In this section we provide a mathematical description of
PRM, which essentially maintains an underlying RGG with
PPP samples. We proceed to describe our main contribution
(Theorem 1) which is concerned with the conditions for which
PRM converges to the (robust) optimum. We then provide an
outline of the proof, in preparation for the following sections.

Recall that PRM accepts as parameters the number of
samples n ∈ N+ and a connection radius rn. Denote by Xn
a PPP with mean density n. In relation to the definitions of
the previous section, the graph data structure obtained by the
preprocessing stage of PRM can be viewed as an RGG. For
instance, when F = C, the graph obtained by PRM is precisely
G(Xn ∩ [0, 1]d; rn). In the more general case, when F ⊂ C,
PRM produces the graph G(Xn ∩ F ; rn). As F can be non-
convex, we emphasize that the latter notation describes the
maximal subgraph of G(Xn; rn) such that vertices and edges
are contained in F .

In the query stage, recall that PRM accepts two configura-
tions s, t ∈ F , which are then connected to the preprocessed
graph. Here we slightly diverge from the standard definition of



PRM in the literature. In particular, instead of using the same
radius rn when connecting s, t, we use the (possibly larger)
radius rstn . The graph obtained after query is formally defined
below:

Definition 7. The PRM graph Pn is the union between G(Xn∩
F ; rn) and the supplementary edges⋃

y∈{s,t}

{
(x, y)

∣∣x ∈ Xn ∩ Brstn (y) and xy ⊂ F
}
.

We reach our main contribution:

Theorem 1. Suppose that (F , s, t) is robustly feasible. Then
there exists a critical radius r∗n = γ∗n−1/d, where γ∗ is a
constant5, such that the following holds:

i. If rn < r∗n and rstn =∞ then PRM fails (to find a solution)
a.a.s.6

ii. Suppose that rn > r∗n. There exists β0 > 0 such that for
rstn = β log1/(d−1) n

n1/d , where β > β0, and any ε > 0 the
following holds with probability 1−O(n−1):
1. Pn contains a path πn ∈ ΠFs,t with
c`(πn) 6 (1 + ε)ξc∗` , where ξ is independent of n;

2. If M is well behaved then Pn contains a path π′n ∈
ΠFs,t with cb(π′n,M) 6 (1 + ε)c∗b .

A. Outline of proof

For the remainder of this section we briefly describe our
technique for proving this theorem, in preparation for the
full proof, which is given in Section VI. The critical radius
r∗n defined above, coincides with the percolation threshold,
which determines the emergence of a connected component
of G that is of infinite size. In particular, if rn < r∗n then
G(Xn; rn) breaks into tiny connected components of size
O(log n) each. Thus, unless s, t are infinitesimally close, no
connected component can have both s and t simultaneously.

More interestingly, the radius of rn > r∗n leads to the
emergence of a unique infinite component of G(Xn; rn). That
is, in such a case one of the components of G(Xn; rn) must
contain an infinite number of vertices (Section V-A). Denote
this component by C∞.

In contrast to G(Xn; rn), which is defined for the unbounded
space Rd, our motion-planning problem is bounded to C =
[0, 1]d. Thus, the next step is to investigate the properties of
G(Xn; rn) when restricted to [0, 1]d (Section V-B). Denote by
Cn the largest connected component of C∞ ∩ [0, 1]d. This
structure plays a key role in our proof (see Section VI): With
high probability (to be defined), there exist vertices of Cn
that are sufficiently close to s and t, respectively, so that a
connection between the two vertices can be made through Cn.

Of course, this overlooks the fact that some portions of Cn
lie in forbidden regions of C. Thus, we also have to take the
structure of F into consideration. To do so, we rely on [22] to

5In particular, for any d > 2, γ∗ ∈ (0.4, 0.6) (see [30]).
6Let A1, A2, . . . be random variables in some probability space and let B

be an event depending on An. We say that B occurs asymptotically almost
surely (a.a.s., in short) if limn→∞ Pr[B(An)] = 1.

prove that any small subset of [0, 1]d must contain at least one
point of Cn (see lemmata 2 and 3). This allows us to trace the
robust optimum (and collision-free) path with points from Cn.

The final ingredient, which allows to bound the path length
along G(Xn; rn) ∩ [0, 1]d, is Theorem 4. It states that the
distance over this graph is proportional to the Euclidean
distance between the end points. This also ensures that the
trace points from Cn can be connected with collision-free
paths over the graph.

To conclude, in Section V we provide background on
continuum percolation in unbounded and bounded domains,
and prove two key lemmata (Lemma 2 and Lemma 3). In
Section VI we return to the setting of motion planning and
utilize the aforementioned results in the proof of Theorem 1.

V. ELEMENTS OF CONTINUUM PERCOLATION

In this section we describe some of the properties of the
unbounded graph G(Xn; rn) that will be employed in our
analysis in the following section.

A. The basics

A fundamental question is when G contains an infinite
connected component around the origin.

Definition 8. The percolation probability θ(n, r) is the prob-
ability that the origin o ∈ Rd is contained in a connected
component of G(Xn∪{o}; r) of an infinite number of vertices.
That is, if Co denotes the set of vertices connected to o in the
graph, then θ(n, r) = Pr(|Co| =∞).

We say that a graph percolates iff θ(n, r) > 0. Note that
the selection of the origin is arbitrary, and the following result
can be obtained for any x ∈ Rd alternative to o.

Theorem 2. ([11, Theorem 12.35]) There exists a critical
radius r∗n = γ∗n−1/d, where γ∗ is a constant, such that
θ(n, rn) = 0 when rn < r∗n, and θ(n, rn) > 0 when rn > r∗n.

The following lemma states that the infinite connected
component exists with probability strictly 0 or 1. See proof
in [30].

Lemma 1. Let ψ(n, r) be the probability that G(Xn; r)
contains an infinite connected component, i.e., without con-
ditioning on any specific additional vertex. Then ψ(n, r) = 0
when θ(n, r) = 0 and ψ(n, r) = 1 when θ(n, r) > 0.

The following theorem establishes that the infinite con-
nected component is unique.

Theorem 3. ([20, Theorem 2.3]) With probability 1, G(Xn; r)
contains at most one infinite connected component.

B. Bounded domains

We study different properties of G(Xn; r) when it is re-
stricted to the domain [0, 1]d. In case that θ(n, r) > 0, we
use C∞ to refer to the infinite connected component of the
unbounded graph G(Xn; r). Note that C∞ exists (Lemma 1)
and is unique (Theorem 3) with probability 1.



Denote by Cn the largest connected component of C∞ ∩
[0, 1]d. By definition, Cn is also a subgraph of G(Xn ∩
[0, 1]d; rn). The following lemma shows that with high prob-
ability all the points from C∞, that are sufficiently close to
the center of [0, 1]d, are members of Cn.

Lemma 2. Let rn > r∗n. Define

Hn = [0, 1]d \ B1/ logn

(
Rd \ [0, 1]d

)
.

Denote by E1
n the event that C∞∩Hn ⊂ Cn. Then there exist

n0 ∈ N and α > 0 such that for any n > n0 it holds that

Pr[E1
n] > 1− exp

(
−αn1/d log−1 n

)
.

Proof: This statement is an adaptation of Lemma 8 and
Theorem 2 of [22]7. Let C ′1, . . . , C

′
k denote the connected

components of C∞∩[0, 1]d, and set Cn to be the component C ′i
with the largest number of vertices. Without loss of generality,
Cn = C ′1. See illustration in Figure 2.

Observe that if C ′i ⊂ C∞ then it must have at least one
vertex x′i ∈ C ′i that lies closely to the boundary of [0, 1]d, i.e.,
‖x − ∂([0, 1]d)‖ 6 rn, as otherwise C ′i will not be able to
connect to the rest of C∞. Thus, diam(C ′i) 6 log−1 n − rn
is required for C ′i to be able to reach Hn, where diam(D) =
supx,x′∈D ‖x− x′‖ defines the diameter of a given D ⊂ Rd.
We shall show that this does not hold for i > 1.

Theorem 2 in [22] states that for any φn large enough there
exist α′, n0 such that for any n > n0 it holds with probability
at least 1−exp

(
−α′n1/dφn

)
that diam(C ′i) < φn for any 1 <

i 6 k. By setting α = α′/2, φn = 1/(2 log n) the conclusion
immediately follows.

1

1
log n

Hn

[0, 1]d

Cn = C ′
1

C ′
2

C ′
3

C ′
4

C ′
5

C∞

Fig. 2. Illustration for Lemma 2. The outer cube represents [0, 1]d, whereas
the inner cube depicted with dashed boundary is Hn. Observe that Hn has
side length of 1−2/ logn. The purple, blue and red graphs combined describe
C∞, whereas Cn is depicted in blue, and C′2, C

′
3, C
′
4, C
′
5 are in red.

Observe that for any fixed point x internal to [0, 1]d there
exists n0 ∈ (0,∞) such that for any n > n0 it holds that x ∈
Hn. The following lemma bounds the probability of having at

7We mention that [22] uses a slightly different, but nevertheless equivalent
model. While we consider an RGG that is bounded to [0, 1]d and PPP of
density n, they consider the domain [0, n]d with density 1. It is only a matter
of rescaling and variable substitution to import their results to our domain.

least one point from Cn in a (small) subregion of Hn. Note
that the value β corresponds to the value used in Theorem 1.

Lemma 3. Let rn > r∗n. Define H ′n ⊂ Hn to be a hypercube
of side length h′n = β log1/(d−1) n

n1/d . Denote by E2
n the event that

H ′n ∩Cn 6= ∅. Then there exists n0 ∈ N and β0 > 0 such that
for any n > n0, β > β0 it holds that Pr[E2

n|E1
n] > 1− n−1.

Proof: Define Gn = G(Xn, rn)∩H ′n, n′ = E[|Xn∩H ′n|]
and observe that n′ = n · |H ′n| = βd logd/(d−1) n.

We treat Gn as a subset of Rd in order to apply a rescaling
argument. Observe that (scalar) multiplication of every point
of H ′n with 1/h′n yields a translation of [0, 1]d. We will use the
superscript 1/h′n to describe this rescaling to a given object.
For instance, applying the same transformation on Gn yields
the graph G1/h′n

n , which has the same topology as Gn. Denote
by x` ∈ H ′n the (lexicographically) smallest point of H ′n, i.e.,
x` = (1/ log n, . . . , 1/ log n). Notice that

G
1/h′n
n −x1/h′n

` = G(X 1/h′n
n ∩[0, 1]d, rn/h

′
n) = G(Xn′∩[0, 1]d, rn′),

where the minus sign in the left-hand side represents a trans-
lation by a vector. This implies that Gn, which is defined over
H ′n behaves as G(Xn′ ∩ [0, 1]d; rn′). This allows to leverage
Theorem 1 from [22], which bounds the number of vertices
from the unbounded component. In particular, there exists
β0 > 0 such that

Pr[C∞ ∩H ′n = Θ(n′)] > 1− exp
(
−β−(d−1)

0 n′
d−1
d

)
= 1− exp

(
−β−(d−1)

0 βd−1 log n
)

> 1− exp(− log n) = 1− n−1.

While this is an overkill for our purpose, it does the job in
proving that Pr[C∞∩H ′n 6= ∅] > 1−n−1. As we assume that
E1
n holds (Lemma 2), it follows that Cn ∩H ′n 6= ∅ holds with

probability at least 1− n−1.
The following statement allows to bound the graph distance

between two connected vertices. We endow every edge of the
graph with a length attribute that represents the Euclidean
distance between the edges’ endpoints. For every two vertices
x, x′ of G, dist(G, x, x′) denotes the length of the shortest
(weighted) path on G between the two vertices.

Theorem 4. ([9, Theorem 3]) Let rnr
∗
n. There exists a

constant ξ > 1, independent of n, such that Pr[E3
n] =

1 − O(n−1), where the event E3
n is defined as follows: For

any two vertices x, x′ in the same connected component of
G(Xn ∩ [0, 1]d; rn), with ‖x − x′‖ = ω(rn), it holds that
dist(Gn, x, x′) 6 ξ‖x− x′‖.

VI. PROOF OF THEOREM 1
We provide a full proof for the positive setting with length

cost. The proof for the bottleneck case is very similar to
the length case, and it is therefore deferred to the extended
version [30]. The incompleteness proof for rn < r∗n is
presented there as well.

Suppose that rn > r∗n, r
st
n = β log1/(d−1) n

n1/d , β > β0. For
simplicity, we set rn = γn−1/d, where γ > γ∗. By Lemma 1



and Theorem 3, G(Xn; rn) contains a unique infinite connected
component C∞. Recall that Cn denotes the largest connected
component of C∞ ∩ [0, 1]d. Also note that rstn = h′n, where
h′n is defined in Lemma 3.

Recall that c∗` denotes the robust optimum, with respect to
path length (Definition 2). Fix ε > 0. By definition, there exists
a robust path πε ∈ ΠFs,t and δ > 0 such that c`(πε) 6 (1+ε)c∗`
and Bδ(πε) ⊂ F . See illustration in Figure 3.

Hn

C \ F

π∗
πε

s

t

pi
qi

Brstn (pi)
δ

Fig. 3. Illustration for the proof of Theorem 1.ii. The outer cube represents the
configuration space, whereas the dashed cube is Hn. The gray area represents
the forbidden regions. The robust feasible path π∗ and πε are depicted in green
and red, respectively. Observe that every point along πε is at least δ away
from C \ F . p1 = s, p2, . . . , pk−1, pk = t are depicted as black bullets,
where k = 8. Brstn (pi) are depicted as blue circles, while the blue cross in
each such circle represents qi.

We now define a sequence of k points p1, . . . , pk along πε
that are separated by exactly δ/2ξ units, where ξ is as defined
in Theorem 4. In particular, define k = dc`(πε) · 2ξ/δe, set
p1 = s, pk = t, and assign pi along πε, such that c`

(
πi−1,i
ε

)
=

δ/2ξ, where πi−1,i
ε represents the subpath of πε starting at

pi−1 and ending at pi. Notice that k is finite.

Claim 1. Denote by E4
n the event that for all i ∈ [k] there

exists qi ∈ Cn such that qi ∈ Brstn (pi) and qi ∈ Cn. Then
Pr[E4

n|E1
n] > 1 − kPr[E2

n|E1
n] (see definition of E1

n,E
2
n in

Lemma 2 and Lemma 3, respectively).

Proof: Define H ′n(x) ⊂ Rd to represent a d-dimensional
(axis-aligned) hypercube of side length h′n that is centered in
x ∈ Rd. Formally, H ′n(x) = x+ h′n ·

[
− 1

2 ,
1
2

]d
. Observe that

H ′n(pi) ⊂ Hn for n large enough. Also note that H ′n(pi) ⊂
Brstn (pi). Thus, the result follows from the union bound.

Suppose that E1
n,E

4
n are satisfied. Let q1, . . . , qk ∈ Cn be

the points obtained from Claim 1. These points reside in a
single connected component of Gn. Define the path

πn := s→ q1  q2  . . . qk → t,

where s → q1 represents a straight-line path from s to q1,
and qi  qi+1 represents the shortest path from qi to qi+1

in Gn. The next claim states that if in addition E3
n is satisfied

(Theorem 4), then πn is also collision free.

Claim 2. Suppose that E1
n,E

3
n,E

4
n are satisfied. Then πn ∈

ΠFs,t is a path in Pn (with probability 1).

Proof: First, observe that the straight-line paths s →
q1, qk → t are contained in Pn due to the definition of PRM
and the fact that rstn < δ. Let us consider a specific subpath
qi  qi+1. Recall from Claim 1 and by definition of pi, pi+1

that dist(Gn, qi, qi+1) 6 2rstn + ξ‖pi+1 − pi‖ = o(1) + δ/2,
which is bounded by δ. Thus, for any point q′i along qi  qi+1

it holds that ‖q′i − pi‖ < δ, ‖q′i − pi+1‖ < δ. Thus, Im(πn) ⊂
Bδ(πε) ⊂ F .

The next claim states that the length of πn is a constant
factor from the optimum.

Claim 3. Suppose that E1
n,E

3
n,E

4
n are satisfied. We have that

c`(πn) 6 (1 + ε)ξc∗` (with probability 1).

Proof: By Theorem 4 and the triangle inequality, it
follows that

c`(πn) = ‖s− q1‖+ dist(Gn, q1, qk) + ‖t− qk‖

6 2rstn +

k∑
i=2

dist(Gn, qi−1, qi) 6 o(1) +

k∑
i=2

ξ‖qi−1 − qi‖

6 o(1) + ξ

k∑
i=2

(‖qi−1 − pi−1‖+ ‖pi − pi−1‖+ ‖qi − pi‖)

6 o(1) + ξ

k∑
i=2

c`(π
i−1,i
ε ) 6 o(1) + (1 + ε)ξc∗` .

To conclude, Claim 2 and Claim 3 show the existence of a
(collision free) path πn in Pn, whose length is at most (1 +
ε)ξc∗` . It remains to bound the probability that E1

n,E
3
n,E

4
n hold

simultaneously:

Pr[E1
n ∧ E3

n ∧ E4
n] = Pr

[
E3
n ∧ E4

n|E1
n

]
· Pr[E1

n]

=
(

1− Pr
[
E3
n ∧ E4

n|E1
n

])
· Pr[E1

n]

=
(

1− Pr
[
E3
n ∨ E4

n|E1
n

])
· Pr[E1

n]

>
(

1− Pr
[
E3
n|E1

n

]
− Pr

[
E4
n|E1

n

])
· Pr[E1

n]

By Claim 1 and Lemma 3, Pr[E4
n|E1

n] 6 kPr
[
E2
n|E1

n

]
6

kn−1. Also note that Pr[E3
n|E1

n] > Pr[E3
n], since Pr[E3

n|E1
n] =

0. Therefore,

Pr[E1
n ∧ E3

n ∧ E4
n] >

(
1− Pr

[
E3
n|E1

n

]
− Pr

[
E4
n|E1

n

])
· Pr[E1

n]

>
(
1−O(n−1)− kn−1

) (
1− exp

(
−αn1/d log−1 n

))
= 1−O(n−1).

VII. EXPERIMENTAL RESULTS

We present experiments demonstrating the effect of using
different values of the connection radius rn on the running
time, cost of solution for the length cost c`, and success rate,
when running the algorithms PRM and FMT∗ on problems of
dimensions up to 12. In particular, rn ranges between the
critical radius (Theorem 1) and previously obtained upper
bounds from [14, 15].



We validate our theory for PRM (Theorem1) and FMT∗

(See [30]) for the path-length cost c`. We observe that smaller
connection radii, than previously-obtained bounds, still allow
the planners to converge to high-quality, near-optimal paths.
Furthermore, we identify situations in which using a radius
that is close to r∗n allows to obtain a high-quality solution more
quickly. Moreover, although the resulting cost for the smaller
radii can be slightly worse, we observe that postprocessing the
paths using standard simplification methods yields solutions
that are only marginally inferior to the best (postprocessed)
solution.Specifically, in harder scenarios the advantage in
using a smaller connection radius is more prominent; in some
cases we obtain a reduction of 50% in running time, with an
improved cost, and similar success rate when compared to the
results obtained using the original FMT∗ connection radius.

A. Implementation details

In our experiments, we used the Open Motion Planning
Library (OMPL 1.3) [34] on a 2.6GHz×2 Intel Core i5
processor with 16GB of memory. Result were averaged over
50 runs and computed for dimensions up to 12.

The planners that we used are PRM and the batch variant of
FMT∗, which were adapted for samples from a PPP, where
n is the expected number of samples. The two planners
use the connection radii rn, rstn . Note that rstn should be at
least β log1/(d−1) n

n1/d , but the exact value of β is unknown. For
simplicity, we set rstn to be identical to rPRM∗ , defined in [15].
We emphasize that although we use an asymptotically smaller
value, it still yields (empirically) convergence in cost. This
suggests that the bound on rstn can be further reduced.
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Given a scenario and a value n,
we define a set of k + 1 increasing
connection radii, {r0, . . . , rk}, as fol-
lows. We set the minimal connection
radius to be r0 = γn−1/d, where
γ = 1. Note that γ is larger than
γ∗ by a factor of roughly 2. The
maximal connection radius, denoted
by rk = rFMT∗ , is as defined in [14].
For each 1 6 i 6 k − 1 we define
ri = r0+i·∆, where ∆ = (rk−r0)/k. Now, for every scenario
and number of samples n we run our planning algorithm with
rstn , and rn ∈ {r0, . . . , rk}. Note that all our plots are for
k = 10, and that in some experiments an additional radius
rk+1 = rPRM∗ > rFMT∗ appears as well (see [15]). The figure
to the right depicts the colors and labeling that will be used
throughout this section.

B. Results

Euclidean space. The scenario we consider consists of a
point robot moving in the obstacle-free unit d-dimensional
hypercube. Therefore, F = C = [0, 1]d. We set the start
and target positions of the robot to be s = (0.1, . . . , 0.1) and
t = (0.9, . . . , 0.9), respectively.

We run PRM and plot (i) the overall running time, (ii) the
normalized cost (c`) of the obtained solution, where a value

(a) (b)

Fig. 4. Two of the scenarios used in the experiments. (a) dD Hypercube with
2d hypercubical obstacles, and (b) 3D Cubicles. Start and target configurations
for a robot are depicted in green and red, respectively. Scenario (b) is provided
with the OMPL distribution.

of 1 represents the best possible cost, and (iii) the portion of
successful runs—all as a function of the expected number of
samples n. The results for dimensions 4 and 8 are depicted in
Figure 5a and Figure 5b, respectively. See [30] for plots for
d = 12.

The plots demonstrate the following trend: for each radius r
the cost obtained by PRM converges to some constant8 times
the optimal cost, which is marked with the dashed red curve
in the “Cost vs. n” plot. Clearly, rPRM∗ yields the best cost but
at the price of increased running time. r10 = rFMT∗ obtains the
next best cost, with improved running time, and so on. Note
that for d = 4, already for n = 1K a solution is found for all
radii except r0, whereas for d = 8 and n = 5K a solution is
found for all radii above r4. It is important to note that there
is a clear speedup in the running times of PRM when using ri
for i 6 9, over rFMT∗ , rPRM∗ , with a slight penalty (a factor of
roughly 2) in the resulting costs. In [30] we also study how
ri affects the size of Cn.
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Fig. 5. PRM in the (a) 4D and (b) 8D Hypercube.

General Euclidean space. We consider the following d-

8We note that it is possible that for larger values of n the cost values for
different radii will eventually converge to the same value.



dimensional scenario (based on a scenario from [31]), for
d ∈ {4, 8}, depicted in Figure 4a in 3D, and a point robot:
C = [0, 1]d is subdivided into 2d sub-cubes by halving it along
each axis. Each sub-cube contains a centered d-dimensional
axis-aligned hypercubical obstacle that covers 25% of the sub-
cube. The start position s of the robot is placed on the diagonal
between (0, . . . , 0) and (1, . . . , 1), such that it is equidistant
from the origin and from the closest hypercubical obstacle. t
is selected similarly, with respect to (1, . . . , 1).

Here we use FMT∗ with radii ranging from r0 to r10. We
also ran PRM which exhibited a similar behavior. Figure 6a
presents the results for d = 4. We plot the average cost
after simplifying the resulting paths in addition to the average
original cost. We mention that there is a difference in cost
between the various radii and that costs obtained using larger
radii are often better. However, after applying OMPL’s default
path-simplification procedure we obtain paths with negligible
differences in cost. This suggests that paths obtained using
the smaller connection radii are of the same homotopy class
as the path obtained using rFMT∗ . For d = 8 we obtain similar
results. However, the success rates deteriorate as the dimension
increases (see extended version [30]).

General non-Euclidean space. We use the Cubicles scenario
(see Figure 4b) provided with the OMPL distribution [34].
Here the goal is to find a collision-free path for two L-shaped
robots that need to exchange their positions (in green and red).
Since the robots are allowed to translate and rotate, then d =
12 and C is non-Euclidean. Although our theory does directly
apply here, we chose to test it empirically for such a setting.
A similar experiment involving only one L-shaped robot is
discussed in [30].

We ran our experiments with FMT∗ using a connection radii
ranging from r0 to r10 = rFMT∗ . Initially, no solution was
found in all runs. Indeed, as was mentioned in [17], this is not
surprising, since the theory from which the radius values are
derived assumes that the configuration space is Euclidean. In
the same paper the authors propose a heuristic for effectively
using radius-based connections in motion planning. In our
experiments (Figure 6b) we increased all radii by a multi-
plicative factor of 10 in order to increase the success rates.
We mention that this yielded similar behavior to that when
using the connection scheme suggested in [17].

Observe in Figure 6b, that the variance in cost after path
simplification is again significantly smaller than the variance in
the original cost. Clearly, smaller radii exhibit shorter running
times, but with smaller success rates. However, since the
success rate improves as the number of samples n increases,
one could use the smaller radii with larger n and still obtain
a solution with comparable cost and success rate in shorter
running time. Indeed, using r3 (green) with 75K samples we
obtain a solution whose cost (after simplification) is slightly
better than the cost obtained using r10 with 42K samples (after
simplification). Moreover, the running time of the former is
roughly 50% of the time taken for the latter, and both obtain
similar success rates. This indicates that in such settings, one

could benefit from using smaller radii in terms of favorable
running times and obtain a comparable or even better cost with
similar success rates.
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Fig. 6. (a) FMT∗ for a point robot in the 4D hypercube with obstacles
scenario (Figure 4a) (b) FMT∗ for two rigid-body robots moving in OMPL’s
Cubicles scenario (Figure 4b). Both the average original cost and the average
cost after simplification are presented for each radius. There is a difference in
cost between the various radii (dashed lines), that diminishes after simplifying
the resulting paths (solid lines).

VIII. FUTURE WORK

In this work we leveraged techniques from percolation the-
ory to develop stronger analysis of PRM-based sampling-based
motion planners. In the hope of providing mathematically
rigorous presentation, while still being accessible, we chose to
focus the discussion on simplified, possibly unrealistic, robotic
systems. In particular, we assumed a holonomic system having
a Euclidean configuration space.

Our immediate future goal is to extend our theory to non-
Euclidean spaces, such as those arising from rigid bodies
translating and rotating in space. The next challenge will be
to extend the model to robots with differential constraints.
While the latter task seems daunting, we should keep in
mind that the state space of such systems can be modeled
as a differential manifold. This may allow to locally apply
our Euclidean-space techniques to analyze manifold spaces.
Indeed, a similar approach has already been considered in
previous work [26, 27].

The next algorithmic challenge is to consider robotic sys-
tems for which precise steering, i.e., solving the two-point
boundary value problem, cannot be performed, at least not
efficiently (see discussion in [19, Section 1.3]). In such cases,
PRM-based planners (as we considered here), or RRT∗-based
techniques, cannot be applied. We pose the following question:
Is it possible to extend existing planners to work in the absence
of a steering function, while maintaining their theoretical
properties? We plan to tackle this question in the near future.
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