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Fig. 1: Interactive visual grounding of referring expressions. (a) Ground self-referential expressions. (b) Ground relational
expressions. (c) Ask questions to resolve ambiguity. Red boxes indicate referred objects. Blue dashed boxes indicate
candidate objects. See also the accompanying video at http://bit.ly/INGRESSvid.

Abstract—This paper presents INGRESS, a robot system
that follows human natural language instructions to pick and
place everyday objects. The core issue here is the grounding
of referring expressions: infer objects and their relationships
from input images and language expressions. INGRESS allows
for unconstrained object categories and unconstrained language
expressions. Further, it asks questions to disambiguate referring
expressions interactively. To achieve these, we take the approach
of grounding by generation and propose a two-stage neural-
network model for grounding. The first stage uses a neural
network to generate visual descriptions of objects, compares
them with the input language expression, and identifies a set
of candidate objects. The second stage uses another neural
network to examine all pairwise relations between the candidates
and infers the most likely referred object. The same neural
networks are used for both grounding and question generation for
disambiguation. Experiments show that INGRESS outperformed
a state-of-the-art method on the RefCOCO dataset and in robot
experiments with humans.

I. INTRODUCTION

The human language provides a powerful natural interface
for interaction between humans and robots. In this work, we
aim to develop a robot system that follows natural language
instructions to pick and place everyday objects. To do so, the
robot and the human must have a shared understanding of
language expressions as well as the environment.

The core issue here is the grounding of natural language
referring expressions: locate objects from input images and
language expressions. To focus on this main issue, we assume
for simplicity that the scene is uncluttered and the objects are
clearly visible. While prior work on object retrieval typically

assumes predefined object categories, we want to allow for
unconstrained object categories so that the robot can handle a
wide variety of everyday objects not seen before (Fig. 1). Fur-
ther, we want to allow for rich human language expressions in
free form, with no artificial constraints (Fig. 1). Finally, despite
the richness of human language, referring expressions may be
ambiguous. The robot should disambiguate such expressions
by asking the human questions interactively (Fig. 1).

To tackle these challenges, we take the approach of ground-
ing by generation, analogous to that of analysis by synthe-
sis [26]. We propose a neural-network grounding model, con-
sisting of two networks trained on large datasets, to generate
language expressions from the input image and compare them
with the input referring expression. If the referring expres-
sion is ambiguous, the same networks are used to generate
questions interactively. We call this approach INGRESS, for
INteractive visual Grounding of Referring ExpreSSions.

A referring expression may contain self-referential and re-
lational sub-expressions. Self-referential expressions describe
an object in terms of its own attributes, e.g., name, color, or
shape. Relational expressions describe an object in relation
to other objects, e.g., spatial relations. By exploiting the
compositionality principle of natural language [34], INGRESS
structurally decomposes the grounding process into two stages
(Fig. 2). The first stage uses a neural network to ground the
self-referential sub-expressions and identify a set of candi-
date objects. The second stage uses another neural network
to ground the relational sub-expressions by examining all
pairwise relations between the candidate objects. Following

http://bit.ly/INGRESSvid


Fig. 2: INGRESS overview. The first stage grounds self-referential expressions and outputs a set of candidate referred objects
(top row). The input image goes into a Faster R-CNN [15] based localization module to generate image regions representing
object proposals. Each image region goes into a fully connected network to extract a feature vector, which in turn goes
into an LSTM network to generate a word probability sequence that represents an expression distribution describing the
image region. The generated expression and the input expression are compared to find candidates for the referred object.
The second stage grounds relational expressions by examining all pairs of candidate image regions (bottom row). Each pair
goes into another LSTM network, which generates a word probability sequence describing the relation between the pair of
image regions. Again, the generated expression and the input expression are compared to find the referred object.

earlier work [3, 25, 33], we focus on binary relations here, in
particular, visual binary relations.

We implemented INGRESS on a Kinova Mico robot ma-
nipulator, with voice input and RGB-D sensing. Experiments
show that INGRESS outperformed a state-of-the-art method on
the RefCOCO test dataset [17] and in robot experiments with
humans.

II. RELATED WORK

Grounding referring expressions is a classic question widely
studied in natural language processing, computer vision, and
robotics (e.g., [4, 29]). A recent study identifies four key is-
sues in grounding for human-robot collaborative manipulation:
visual search, spatial reference, ambiguity, and perspectives
(e.g., “on my left”) [21]. Our work addresses the first three
issues and briefly touches on the last one.

Visual grounding of referring expressions is closely related
to object recognition. In robotics, object recognition is often
treated as a classification task, with a predefined set of object
category labels [5, 28]. These methods restrict themselves
to tasks covered by predefined visual concepts and simple
language expression templates. Other methods relax the re-
striction on language by developing a joint model of language
and perception [7, 24], but they have difficulty in scaling up
to many different object categories.

Relations play a critical role in grounding referring ex-
pressions for human-robot interaction, as objects are often

described in relation to others. Again, some earlier work treats
relational grounding as a classification task with predefined
relation templates [9, 10, 14]. A recent state-of-the-art method
performs sophisticated spatial inference on probabilistic mod-
els [30], but it assumes an explicit semantic map of the world
and relies on formal language representation generated by a
syntactic parser, which does not account for the visual context
and is sensitive to grammatical variations.

Our approach to visual grounding is inspired by recent
advances in image caption generation and understanding [12,
15, 23, 25, 35]. By replacing traditional handcrafted visual
feature extractors with convolutional neural networks (CNNs)
and replacing language parsers with recurrent neural networks
(RNNs), these methods learn to generate and comprehend
sophisticated human-like object descriptions for unconstrained
object categories. In essence, the networks automatically con-
nect visual concepts and language concepts by embedding
them jointly in an abstract space. Along this line, Nagaraja
et al. propose a network specifically for grounding relational
expressions [25]. Similarly, Hu et al. propose a modular neural
network and train it for grounding end-to-end [13]. In contrast,
we train separate neural networks for self-referential and
relational expressions and use them in a generative manner.
This allows us to generate questions for disambiguation, an
issue not addressed in these earlier works.

Ambiguity is an important issue for grounding in practice,
but rarely explored. The recent work of Hatori et al. detects



ambiguities, but relies on fixed generic question templates,
such as “which one?”, to acquire additional information for
disambiguation [11]. INGRESS generates object-specific ques-
tions, e.g., “do you mean this blue plastic bottle?”.

III. INTERACTIVE VISUAL GROUNDING

A. Overview

INGRESS breaks the grounding process into two stages
sequentially and trains two separate LSTM networks, S-LSTM
and R-LSTM, for grounding self-referential expressions and
relational expressions, respectively (Fig. 2). The two-stage
design takes advantage of the compositionality principle of
natural language [34]; it reduces the data requirements for
training the networks, as self-referential expressions and re-
lational expressions are semantically “orthogonal”. Further,
the first stage acts as a “filter”, which significantly reduces
the number of candidate objects that must be processed for
relational grounding, and improves computational efficiency.

Each stage follows the grounding-by-generation approach
and uses the LSTM network to generate a textual description
of an input image region or a pair of image regions. It then
compares the generated expression with the input expression to
determine the most likely referred object. An alternative is to
train the networks directly for grounding instead of generation,
but it is then difficult to use them for generating questions in
case of ambiguity.

To resolve ambiguities, INGRESS uses S-LSTM or R-LSTM
to generate the textual description of a candidate object and
fits it to a question template to generate an object-specific
question. The user then may provide a correcting response
based on the question asked.

B. Grounding Self-Referential Expressions

Given an input image I and an expression E, the first stage
of INGRESS aims to identify candidate objects from I and
self-referential sub-expressions of E. More formally, let R be
a rectangular image region that contains an object. We want to
find image regions with high probability p(R

∣∣E, I). Applying
the Bayes’ rule, we have

argmax
R∈R

p(R
∣∣ E, I) = argmax

R∈R
p(E

∣∣R, I) p(R
∣∣ I), (1)

where R is the set of all rectangular image regions in I . As-
suming a uniform prior over the image regions, our objective
is then to maximize p(E

∣∣ R, I), in other words, to find an
image region R that most likely generates the expression E.

To do so, we apply the approach of DenseCap [15], which
directly connects image regions that represent object proposals
with natural expressions, thus avoiding the need for predefined
object categories. See Fig. 2 for an overview. First, we use a
Faster R-CNN [15] based localization module to process the
input image I and find a set of image regions Ri, i = 1, 2, . . .,
each representing an object proposal. We use a fully connected
layer to process each region Ri further and produce a 4096-
dimensional feature vector fi. Next, we feed each feature vec-
tor fi into S-LSTM, an LSTM network, and predict a sequence

Fig. 3: Relevancy clustering. Red boxes (left) and red
dots (right) indicate relevant objects. Green boxes and dots
indicate irrelevant objects.

Si of word probability vectors. The sequence Si represents
the predicted expression describing Ri. The jth vector in Si

represents the jth word in the predicted expression, and each
element of a vector in Si gives the probability of a word. The
input sequence E is padded to have the same length as S. We
then calculate the average cross entropy loss (CEL) between E
and Si, or equivalently p(E | Ri, I) = p(E | Si). Effectively,
the S-LSTM output allows us to estimate the probability of
each word in an expression. The average cross entropy loss
over all words in the expression indicates how well it describes
an image region.

Our implementation uses a pre-trained captioning network
provided by DenseCap [15]. The network was trained on the
Visual Genome dataset [19], which contains around 100, 000
images and 4, 300, 000 expressions, making the model appli-
cable to a diverse range of real-world scenarios. On average,
each image has 43.5 region annotation expressions, e.g., “cats
play with toys hanging from a perch” and “woman pouring
wine into a glass”.

C. Relevancy Clustering

While CEL measures how well the input expression matches
the generated sequence of word probability vectors, it is
subjected to visual ambiguity as a result of lighting condition
variations, sensor noise, object detection failures, etc. Consider
the Pringles chip can example in Fig. 3. The image region
contains only part of the can, and it is visually quite similar to
a red cup. CEL is thus low, indicating a good fit, unfortunately.
Further, the word probability vectors might not consider para-
phrases and synonyms, unless explicitly trained with specific
examples.

To deal with these issues, we consider an additional mea-
sure, METEOR [2]. METEOR is a standard machine transla-
tion metric that calculates the normalized semantic similarity
score between two sentences. For example, the METEOR
score between “the green glass” and “the green cup” is 0.83,
and that between “the green glass” and “the blue book” is 0.06.
METEOR handles paraphrases and synonyms automatically.
We calculate the METEOR measure by generating the most
likely expression Ei from Si and comparing Ei with the input
expression E. METEOR, however, has its own limitation. It
does not account for the visual context and treats all words
in an expression with equal importance. For example, the



METEOR score between “a blue cup on the table” and “a
red cup on the table” is high, because most words in the
expressions match exactly (Fig. 3).

For robustness, we calculate both CEL and METEOR
between Si and E, for i = 1, 2, . . . . We then perform K-
means clustering with normalized CEL & METEOR values
and choose K = 2 to form two clusters of relevant and irrel-
evant candidate image regions for the referred object (Fig. 3).
Finally, the relevant cluster R′ is sent to the second stage of
the grounding model, if R′ contains multiple candidates.

D. Grounding Relational Expressions

In the second stage, we aim to identify the referred object
by analyzing its relations with other objects. We make the
usual assumption of binary relations [3, 18, 25]. While this
may appear restrictive, binary relations are among the most
common in everyday expressions. Further, some expressions,
such as “the leftmost cup”, seem to involve complex relations
with multiple objects, but it can be, in fact, treated as a
binary relation between the referred object and all other objects
treated as a single set. Akin to the grounding of self-referential
expressions, we seek a pair of image regions, referred-object
region R and context-object region Rc, with high probability
p(R,Rc | E, I):

argmax
R∈R′,Rc∈R′∪{I}

R 6=Rc

p(R,Rc

∣∣E, I) = argmax
R∈R′,Rc∈R′∪{I}

R 6=Rc

p(E
∣∣R,Rc, I).

(2)
Our approach for grounding relational expressions parallels

that for grounding self-referential expressions. See Fig. 2 for
an overview. We form all pair-wise permutations of candidate
image regions, including the special one corresponding to
the whole image [23]. An image region consists of a fea-
ture vector and its bounding box representing its 2D spatial
location within the image. We feed all image region pairs
into R-LSTM, another LSTM, trained to predict relational
expressions. By directly connecting image region pairs with
relational expressions, we avoid the need for predefined re-
lation templates. For each image-region pair (R,Rc), we
generate the relational expression E′. We compute CEL and
METEOR between E′ and the input expression E over all
generated expressions and again perform K-means clustering
with K = 2. If all pairs in the top-scoring cluster contain the
same referred object, then it is uniquely identified. Otherwise,
we take all candidate objects to the final disambiguation stage.

Following the approach of UMD RefExp [25], we trained
R-LSTM on the RefCOCO training set [17], which contains
around 19, 000 images and 85, 000 referring expressions that
describe visual relations between images regions, e.g., “bottle
on the left”. Specifically, we used UMD RefExp’s Multi-
Instance Learning Negative Bag Margin loss function for
training. We used stochastic gradient decent for optimization,
with a learning rate of 0.01 and a batch size of 16. The training
converged after 70, 000 iterations and took about a day to train
on an Nvidia Titan X GPU.

Fig. 4: An overview of the system architecture.

E. Resolving Ambiguities

If the referred object cannot be uniquely identified by
grounding the self-referential and relational sub-expressions,
the final disambiguation stage of INGRESS processes the
remaining candidate objects interactively. For each object, it
asks the human “Do you mean . . . ?” and simultaneously,
commands the robot arm to point to the location of the object.

Generating object-specific questions is straightforward for
INGRESS, because of its grounding-by-generation design. To
ask a question about an object, we either use S-LSTM or
R-LSTM to generate an expression E and then fit it to
the question template “Do you mean E?” We start with S-
LSTM, as most referring expressions primarily rely on visual
information [21]. We generate a self-referential expression
for each candidate and check if it is informative. In our
case, an expression E is informative if the average METEOR
score between E and all other generated expressions is small,
in other words, it is sufficiently different from all other
expressions. If the most informative expression has an average
METEOR score less than 0.25, we proceed to ask a question
using E. Otherwise, we use R-LSTM to generate a relational
question.

After asking the question, the user can respond “yes” to
choose the referred object, “no” to continue iterating through
other possible objects, or provide a specific correcting response
to the question, e.g., “no, the cup on the left”. To process the
correcting response, we re-run INGRESS with the identified
candidate objects and the new expression.

IV. SYSTEM IMPLEMENTATION

To evaluate our approach, we implemented INGRESS on
a robot manipulator, with voice input and RGB-D sensing.
Below we briefly describe the system setup (Fig. 4).

A. Visual Perception and Speech Recognition

Our grounding model takes in as input an RGB image and
a textual referring expression, and outputs a 2D bounding
box containing the referred object in the image (Fig. 2). Our
system uses a Kinect2 RGB-D camera for visual perception
and an Amazon Echo Dot device to synthesize the referring
expression from voice input.



B. Grounding Networks

The localization module for object detection uses a non-
maximum suppression threshold of 0.7 and a final output
threshold of 0.05 for minimal overlap between bounding boxes
in uncluttered scenes.

S-LSTM and R-LSTM have a vocabulary size of 10, 497
and 2, 020, respectively. The maximum sequence length for
both is 15 words.

C. Object Manipulation

Our system uses a 6-DOF Kinova MICO arm for object
manipulation. It is currently capable of two high-level actions,
PICKUP and PUTIT. For PICKUP, the system first uses the
Kinect2 depth data corresponding to the selected 2D bounding
box and localizes the referred object in 3D space. It then
plans a top-down or a side grasp pose based on the object
size, as well as a path to reach the pose. For PUTIT, the
system similarly identifies the placement location. It moves the
end-effector to position it directly above the desired location
and then simply opens up the gripper. This simple set up is
sufficient for our experiments. However, we plan to integrate
state-of-the-art methods for grasping and manipulating novel
objects [22].

D. Software and Hardware Platform

The entire system (Fig. 4), with components for RGB-
D visual perception, grounding, and manipulation planning,
is implemented under the Robot Operating System (ROS)
framework and runs on a PC workstation with an Intel i7
Quad Core CPU and an NVIDIA Titan X GPU. The grounding
model runs on the GPU.

E. Perspective Correction

Referring expressions are conditioned on perspectives [21]:
object-centric (e.g., “the bottle next to the teddy bear”), user-
centric (e.g., “the bottle on my left”), or robot-centric (e.g.,
“the bottle on your right”). Object-centric expressions are
handled directly by the grounding model. User-centric and
robot-centric expressions require special treatment. Handling
perspectives reliably is a complex issue. Here we provide a
solution dealing with the simple, common cases in a limited
way. Given two detected viewpoints for the user and the
robot perspective, the system associates a set of possessive
keywords such as “my”, “your”, etc. with each viewpoint. It
then matches the input expression against the keyword list to
select a viewpoint and performs a corresponding geometric
transformation of generated bounding boxes to the specified
viewpoint frame.

For the geometric transformation, we first compute a 3D
centroid for each bounding box using the depth data. The
centroid is then projected onto the image plane of either the
robot’s or the user’s viewpoint. This projected point is taken
to be the center of the new bounding box. The size of the box
is then scaled linearly with respect to the distance between the
centroid and the viewpoint while the original aspect ratio is
maintained.

TABLE I: Grounding accuracy of UMD Refexp and
INGRESS on the RefCOCO dataset, with human-annotated
ground-truth (HGT) object proposals and automatically
generated MCG object proposals.

Dataset HGT (%) MCG (%)

UMD Refexp INGRESS UMD Refexp INGRESS

Val 75.5 77.0 56.5 58.3

TestA 74.1 76.7 57.9 60.3

TestB 76.8 77.7 55.3 55.0

V. EXPERIMENTS

We evaluated our system under three settings. First, we
evaluated for grounding accuracy and generalization to a wide
variety of objects and relations on the RefCOCO dataset [17].
Next, we evaluated for generalization to unconstrained lan-
guage expressions in robot experiments with humans. In both
cases, INGRESS outperformed UMD Refexp [25], a state-
of-the-art method in visual grounding. Finally, we evaluated
for effectiveness of disambiguation and found that INGRESS,
through object-specific questions, sped up task completion by
1.6 times on average.

In uncluttered scenes with 10–20 objects, the overall voice-
to-action cycle takes 2–5 seconds for voice-to-text synthesis,
retrieving the synthesized text from Amazon’s service, ground-
ing, visual perception processing, and manipulation planning
for picking or putting actions by the 6-DOF robot arm. In
particular, grounding takes approximately 0.15 seconds.

A. RefCOCO Benchmark

The RefCOCO dataset contains images and corresponding
referring expressions, which use both self-referential and re-
lational information to uniquely identify objects in images.
The dataset covers a wide variety of different objects and
is well suited for evaluating generalization to unconstrained
object categories. Our evaluation measures the accuracy at
which a model can locate an image region, represented as
an image bounding box, given an expression describing it
unambiguously.

We compared INGRESS with UMD Refexp [25] on the
RefCOCO dataset. UMD Refexp’s approach to relational
grounding is similar to that of INGRESS (see Section III-D),
but there are two key differences. First, UMD Refexp uses fea-
ture vectors from an image-net pre-trained VGG-16 network,
whereas INGRESS uses captioning-trained feature vectors from
the self-referential grounding stage. Second, for images with
more than 10 object proposals, UMD Refexp randomly sam-
ples 9 candidates for relational grounding, while INGRESS
only examines the pairs of objects proposals chosen by the
self-referential grounding stage.

a) Procedure: The RefCOCO dataset consists of a train-
ing set, a validation set (Val), and two test sets (TestA and
Test B). TestA contains images with multiple people. TestB
contains images with multiple instances of all other objects.
TestA contains 750 images with 5657 expressions. TestB



Fig. 5: Experimental setup for robot experiments.

contains 750 images with 5095 expressions. Val contains 1500
images with 10834 expressions. Following UMD Refexp, we
use both human-annotated ground-truth object proposals and
automatically generated MCG proposals [1] in our evaluation.

b) Results: The results are reported in Table I. The
correctness of a grounding result is based on the overlap
between the output and the ground-truth image regions. The
grounding is deemed correct if the intersection-over-union
(IoU) measure between the two region is greater than 0.5.
Table I shows that INGRESS outperforms UMD Refexp in
most cases, but the improvements are small. INGRESS adopts
a two-stage grounding process in order to reduce the number
of relevant object proposals processed in complex scenes. On
average, the validation and test sets contain 10.2 ground-truth
object proposals and 7.4 MCG object proposals per image. As
the number of object proposals per image is small, the two-
stage grounding process does not offer significant benefits.

We also observed that images containing people have
greater improvement in accuracy than those containing only
objects. This likely results from the large bias in the number of
images containing people in the Visual Genome dataset [19].
Future work may build a more balanced dataset with a greater
variety of common objects for training the grounding model.

B. Robot Experiments

We also assessed the performance of our grounding model
in a realistic human-robot collaboration context and particu-
larly, to study its ability in handling unconstrained language
expressions. In our experiments, a group of participants pro-
vided natural language instructions to a 6-DOF manipulator
to pick and place objects (Fig. 5).

Again, we compared INGRESS with UMD Refexp [25]. We
also conducted an ablation study, which compared pure self-
referential grounding (S-INGRESS) and the complete model
with both self-referential and relational grounding. For S-
INGRESS, we directly used the image region with the low-
est cross-entropy loss from the self-referential stage. For
INGRESS, we used the region chosen by the full model. Fur-
ther, both S-INGRESS and INGRESS, used the object proposals
generated by the self-referential stage, whereas UMD Refexp
used MCG proposals [1]. All methods used a large number of
object proposals. So the probability of randomly picking the
referred object was very low.

a) Procedure: Our study involved 16 participants (6
female, 10 male) recruited from a university community. All

Fig. 6: Grounding accuracy in robot experiments with humans.
Error bars indicate 95% confidence intervals.

subjects were competent in spoken English. Each participant
was shown 15 different scenarios with various household
objects arranged in an uncluttered manner.

In each scenario, the experimenter asked the participant to
describe a specific object to the robot. The experimenter ges-
tured at the object without hinting any language descriptions.
Before instructing the robot, the subjects were given three
generic guidelines: the object description has to be simple,
unique (unambiguous), and any perspectives taken should
be stated explicitly e.g., ‘my left’, ‘your right’. Although,
these guidelines were not strictly enforced. Upon receiving an
expression, all 3 models (S-INGRESS, INGRESS, UMD Refexp)
received the same image and expression as input, and 3 trials
were run simultaneously. A trial was considered successful if
the robot located the specified object on its first attempt.

The average number of objects per scenario was 8. And the
maximum number of identical objects was 3. The scenarios
were carefully designed such that 66% required relational
cues, 33% involved perspective taking, and 100% required
self-referential information. For assessing perspectives, the
participant was positioned at one of the four positions around
the robot: front, behind, left, right. Also, since the models were
trained on public datasets, all objects used in the experiments
were ‘unseen’. However, generic objects like apples and or-
anges had minimal visual differences to the training examples.

b) Results: The results (Fig. 6) show that overall
INGRESS significantly outperforms both S-INGRESS (p <
0.001 by t-test) and UMD Refexp (p < 0.001 by t-test).
S-INGRESS is effective in locating objects based on self-
referential information. However, it fails to infer relationships,
as each image region is processed in isolation. While UMD
Refexp in principle makes use of both self-referential and
relational information, it performs poorly in real-robot ex-
periments, particularly, in grounding self-referential expres-
sions. UMD Refexp is trained on a relatively small dataset,
RefCOCO, with mostly relational expressions. Its ability in
grounding self-referential expressions is inferior to that of
INGRESS and S-INGRESS. Further, INGRESS uses relevancy
clustering to narrow down a set of object proposals for
relationship grounding, whereas UMD Refexp examines a
randomly sampled subset of object proposal pairs, resulting
in increased errors. Finally, UMD Refexp is incapable of
handling perspectives, as it is trained on single images without
viewpoint information.
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Fig. 7: Disambiguation performance. Error bars indicate 95%
confidence intervals. (a) Average number of disambiguation
questions asked. (b) User survey on the robot’s effectiveness
in communicating the additional information required for
disambiguation.

During the experiments, we observed that referring expres-
sions varied significantly across participants. Even a simple
object such as an apple was described in many different ways
as “the red object”, “the round object”, “apple in middle”,
“fruit” etc. Likewise, relationships were also described in
many different variations, e.g., “the can in the middle”, “the
second can”, etc. Our model correctly handled most of these
variations.

Occasionally, participants used complex ordinality con-
straints, e.g., “the second can from the right on the top row”.
None of the models examined here, including INGRESS, can
handle ordinality constraints. Other common failures include
text labels and brand names on objects, e.g., “Pepsi”.

C. Disambiguation

We conducted a user study to examine the effectiveness of
INGRESS in asking disambiguating questions. INGRESS asks
object-specific questions (e.g., “do you mean this red cup?”),
and the user may provide a correcting response (e.g., “no, the
red cup on the right”). We compared with a baseline method
similar to the work of Hatori et al. [11]. There, the robot
exhaustively points at objects while asking a generic question
“do you mean this object?”, and expects a yes/no answer from
the user. Specifically, we examined two issues:
• Does INGRESS’ approach of asking object-specific ques-

tions improve grounding in terms of the time required to
resolve ambiguities?

• Are the generated questions effective in communicating
the required additional information from the user?
a) Procedure: The study was conducted with the same

16 participants from Section V-B. 8 participants for the base-
line condition, and 8 participants for our method. Each subject
was shown 10 different scenarios with various household
object. For each scenario, the experimenter initiated the trial
by giving the robot an ambiguous instruction e.g., “pick up the
cup” in scene with a red cup, blue cup, green cup and yellow
cup. The robot chose one of the candidate objects, and asked
a question. Then the participant was asked to choose another
potential objects, which was not chosen by robot, and had
to correct the robot to pick that object. For the baseline, the

participants could only use yes/no corrections. For our method,
they could correct the ambiguous expression with additional
information e.g., “no, the red cup” or “no, the cup on the left”.

Half of the scenarios were visually ambiguous, and the
other half were relationally ambiguous. The average number
of ambiguous objects per scenario was 3, and the maximum
was 7. We conducted a total of 160 trials. In all trials, the
participants were eventually able to correct the robot to find
the required object.

b) Results: Fig. 7a shows that INGRESS (average 1.16
questions) is more efficient in disambiguation than the baseline
method (average 1.91 questions), with p < 0.001 by the t-test.
While the difference appears small, it is statistically signifi-
cant. Further, there are typically only 2–4 objects involved in
the disambiguation stage. The improvement is thus practically
meaningful as well.

We also conducted a post-experiment survey and asked par-
ticipants to rate the agreement question “the robot is effective
in communicating what additional information is required for
disambiguation” on a 5-point Likert scale. Again, INGRESS
scores much higher than the baseline method, 4.4 versus 1.6
with a significance of p < 0.001 by the Kruskal-Wallis test
(Fig. 7b).

During the experiments, we observed that participants often
mimicked the language that the robot used. On average,
approximately 79% of the correcting responses mirrored the
robot’s questions. For example, when robot asks “do you
mean this apple on the bottom right?”, the user responds
“no, the apple on the top left”. A few participants also
commented that they would not have used certain descriptions,
e.g., “top left”, if it were not for the robot’s question. This is
consistent with the psycholinguistic phenomenon of linguistic
accommodation [8], in which participants in a conversation
adjust their language style and converge to a common one.
It is interesting to observe here that linguistic accommodation
occurs not only between humans and humans, but also between
humans and robots. Future works could study this in more
detail.

D. Examples

Fig. 8 shows a sample of interactive grounding results.
Fig. 8(a–b) highlight rich questions generated by INGRESS.
The questions are generally clear and discriminative, though
occasionally they contain artifacts, e.g., “ball in the air” due
to biases in the training dataset. Although our system is
restricted to binary relations, Fig. 8(c–d) show some scenes
that contain complex, seemingly non-binary relationships. The
referred apple is at the bottom right corner of the entire image,
treated as a single object. Likewise, the selected blue cup is
the closest one to the left edge of the image. Fig. 8(e–f ) show-
case user-centric and robot-centric perspective corrections,
respectively. They enable users to adopt intuitive viewpoints
such as “my left”. Fig. 8(g–i) show some common failures.
INGRESS has difficulty with cluttered environments. Partially
occluded objects, such as Fig. 8(g), often result in false
positives. It also cannot handle complex relationships, such



Fig. 8: A sample of interactive grounding results. Red boxes indicate the objects chosen by INGRESS. Blue dashed
boxes indicate candidate objects. The first two rows show successful results and disambiguation questions. The last
row shows some failure cases.

as Fig. 8(h), which requires counting (“third”) or grouping
objects (“row”, “all four”). Fig. 8(i) is an interesting case. The
user’s intended object is the second cup from the left, but the
input expression is ambiguous. While the generated question
is not discriminative, the robot arm’s pointing gesture helps to
identify the correct object after two questions.

VI. DISCUSSION

While the experimental results are very promising, INGRESS
has several limitations (see Fig. 8). First, it handles only binary
relations between the referred and context objects. It is not
easy to scale up the network to handle truly tertiary or more
complex relations. Recent work on relational networks [31]
trained on complex relationship corpora [16, 32] may help.
Further, integrating non-verbal cues such as gestures and
gaze [27, 6] may reduce the need for interpreting complex
instructions. Second, INGRESS relies on keyword matching
to understand perspectives. Augmenting the training set with
perspective-bearing expressions could allow the system to
generalize better. Third, the clustering components of the
grounding model are currently hard-coded. If we represent
them as neural network modules, the grouping of relevant
objects can be learned simultaneously with other components.
Lastly, INGRESS cannot handle cluttered environments with
partially occluded objects. Systematically moving away ob-
jects to reduce uncertainty [20] may help.

VII. CONCLUSION

We have presented INGRESS, a neural network model for
grounding unconstrained natural language referring expres-
sions. By training the network on large datasets, INGRESS
handles an unconstrained, wide variety of everyday objects.
In case of ambiguity, INGRESS is capable of asking object-
specific disambiguating questions. The system outperformed
UMD Refexp substantially in robot experiments with humans
and generated interesting interactions for disambiguation of
referring expressions. Even though we are far from achieving
a perfect shared understanding of the world between humans
and robots, we hope that our work is a step in this direction. It
points to several important, exciting issues (Section VI), which
will be our immediate next steps. An equally important, but
different direction is the grounding of verbs [18] to expand
the repertoire of robot actions.
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