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Abstract—This paper reports an adaptive sensor bias estimator
and attitude observer operating directly on SO(3) for true-North
gyrocompass systems that utilize six-degree of freedom inertial
measurement units (IMUs) with three-axis accelerometers and
three-axis gyroscopes (without magnetometers). Most present-
day low-cost robotic vehicles employ attitude estimation systems
that employ micro-electromechanical systems (MEMS) magne-
tometers, angular rate gyros, and accelerometers to estimate
magnetic heading and attitude with limited heading accuracy.
Present day MEMS gyros are not sensitive enough to dynamically
detect Earth’s rotation, and thus cannot be used to estimate true-
North geodetic heading. In contrast, the reported gyrocompass
system utilizes fiber optic gyroscope (FOG) IMU gyro and MEMS
accelerometer measurements (without magnetometers) to dynam-
ically estimate the instrument’s time-varying attitude in real-time
while the instrument is subject to a priori unknown rotations.
Stability proofs, preliminary simulations, and a fullscale vehicle
trial are reported that suggest the viability of the true-North
gyrocompass system to provide dynamic real-time true-North
heading, pitch, and roll while utilizing a comparatively low-cost
FOG IMU.

I. INTRODUCTION

Accurate true-North heading and local level (roll and pitch)
referenced to the local gravitational field (which we will refer
to as true-North attitude) are critical components of high-
accuracy navigation systems for a wide variety of robotic
vehicles. The need for accurate true-North attitude estimation
is particularly acute in the case of vehicles operating in
global positioning system (GPS)-denied environments (such as
underwater) and in magnetically compromised environments
(such as near ferromagnetic structures, buildings, or natural
local magnetic anomalies). Smaller and lower-cost vehicles
represent an additional challenge due to their limited sensor
budget, small physical size, and limited energy storage capac-
ity.

Over the past decade the development of a new generation
of small low-cost underwater vehicles (UVs) has begun to
enable oceanographic, environmental assessment, and national
security missions that were considered impractical or infeasi-
ble before (e.g. [3, 4, 25, 34, 38]). This new generation of UVs
often employ low-cost navigation systems that presently limit
them to missions requiring only low-precision navigation of

O(1-100)m accuracy when submerged. High-end navigation
approaches, of O(0.1-10)m accuracy, traditionally require a
Doppler sonar, costing $20k-$50k, and a North-seeking gyro-
compass or inertial navigation system (INS), costing $50k-
$250k. These high-end navigation approaches are largely
incompatible with low-cost autonomous underwater vehicles
(AUVs) with target total vehicle cost of $50k-$250k.

Moreover, the high cost, large size, and high power-
consumption of commercially available optical true-North
seeking gyrocompasses is a principal barrier to the widespread
use of high accuracy navigation for smaller and lower-cost
UVs.

Small low-cost UVs typically employ micro-electro-
mechanical systems (MEMS) inertial measurement units
(IMUs) comprised of 3-axis MEMS magnetometers, gyros,
and accelerometers to estimate local magnetic heading, pitch,
and roll, typically to within several degrees of accuracy,
but require careful soft-iron and hard-iron calibration and
compensation to achieve these accuracies. Moreover, magnetic
attitude sensors must be recalibrated for soft-iron and hard-iron
errors whenever the vehicle physical configuration changes
significantly (i.e. sensors or other payloads added or removed,
etc.). Studies have shown that the accuracy of these magnetic
heading sensors can be a principal error source in overall
navigation solutions [15].

Recently, a new class of lower-cost (∼$20k USD), compact
and lower power fiber optic gyroscope (FOG) IMUs have
become available — for example the commercial-off-the-
shelf (COTS) KVH 1775 FOG IMU (KVH Industries, Inc.,
Middletown, RI, USA) — that provide sensor accuracies
sufficient for estimation of true-North heading, pitch and roll.
This is in contrast to MEMS IMUs, which employ MEMS
gyros that lack the sensitivity necessary to find true-North,
and thus rely on MEMS magnetometers to sense magnetic
heading.

True-North heading estimation differs from that of magnetic
heading in that true-North heading uses the Earth’s rotation
to estimate the direction to the geodetic North Pole, while
magnetic heading measures the Earth’s magnetic field to esti-
mate the direction to the magnetic North Pole. The gyroscope



sensors (includes all MEMS IMUs) used in magnetic-North
attitude sensors typically lack the sensitivity to detect the
angular rate of Earth (15◦/hr) and are typically modeled as

wm(t) = wv(t) + wb + η(t) (1)

where wm(t) is the measured angular rate in instrument
coordinates, wv(t) is the angular rate of the instrument with
respect to the local North, East, down frame, wb is a constant
measurement bias, and η(t) is zero-mean Gaussian measure-
ment noise. In contrast, true-North gyrocompass systems use
high-end gyroscopes, such as three-axes FOGs, which are
sensitive enough to measure Earth’s angular rate and are
typically modeled as

wm(t) = wE(t) + wv(t) + wb + η(t) (2)

where wm(t), wv(t), wb, and η(t) are the same as in (1)
and wE(t) is the angular rate of the Earth (15◦/hr). By
fusing gyroscope and accelerometer measurements, true-North
gyrocompass systems generate an estimate for the wE(t)
component of the measured angular rate wm(t). Since the
Earth’s angular rate, wE(t), lies in the local North-down
plane, the estimated angular-rate of Earth (wE(t)) and the
estimated gravity vector can be fused to estimate the true-
North direction. We define the local North-down plane to be
plane that intersects the origin of the NED frame (defined in
Section III-A) and spans the North and down directions.

This paper is the first report of a novel algorithm for
estimating true-North attitude with real-time adaptive bias
estimation of a dynamic (rotating) IMU without use of mag-
netometers. Preliminary simulation and experimental results
of the reported true-North gyrocompass system employing a
low-cost FOG IMU are reported.

This paper is organized as follows: Section II provides a
literature review of attitude and sensor bias estimation. Section
III gives an overview of preliminaries. Section IV reports the
sensor bias and Earth-rate vector observer and stability proof.
Section V presents the attitude observer and stability proof.
Section VI presents preliminary numerical simulations and
experimental results. Section VII summarizes and concludes.

II. LITERATURE REVIEW

A. Attitude Estimation

The majority of the attitude estimation literature addresses
the case of magnetic heading attitude estimation using MEMS
IMUs [7, 10, 11, 21, 22, 37]. Mahony et al. report an attitude
nonlinear complementary filter on SO(3) [19]. A recent study
by Costanzi et al. explores utilizing a FOG for doing attitude
estimation under unknown magnetic disturbances [5]. These
studies however, differ from the current paper as they estimate
magnetic North heading, while this paper presents an estimator
for true-North heading.

Martinelli reports a method for estimating attitude using a
three-axis accelerometer and three-axis gyroscope IMU and a
monocular camera [20]. This approach however is impractical
for many UV applications (e.g. when there is poor visibility,

operating in the mid-water, operating in a region with a
featureless bottom) and impossible for the many unmanned
underwater vehicles (UUVs) with no cameras.

Previous studies by Spielvogel and Whitcomb suggest the
practical utility of a low-cost FOG IMU as the primary
sensor in a North-seeking gyrocompass system [31, 32]. These
studies assume that sensor biases have been calculated and
compensated for a priori and rely on the differentiation of
accelerometer measurements for estimating true-North.

In contrast to the previously reported observers by Spielvo-
gel and Whitcomb, the present paper estimates true-North
attitude without the need to differentiate accelerometer mea-
surements and also addresses the problem of real time bias
estimation for both gyros and accelerometers, which is essen-
tial for accurate true-north heading estimates.

B. IMU Sensor Bias Estimation

Several methods for IMU measurement bias estimation have
been reported in recent years. Much of this literature, though,
focuses on magnetometer bias estimation [1, 2, 6, 8, 10, 16,
18, 35].

Many papers report results for gyro sensor bias estimation.
Most address MEMS gyro sensor bias estimation in which
the angular rate due to Earth’s rotation is ignored in the gyro
measurement model. They use a measurement model similar
to that of (1) and neglect the Earth rate term because it is
dynamically undetectable with MEMS gyros.

George and Sukkarieh report an identifier for accelerometer
and gyroscope sensor bias [9]. However, they utilize GPS
which is unavailable to submerged vehicles.

Scandaroli et al. and Scandaroli and Morin [29, 30] also
report a sensor bias estimator for 6-degrees of freedom
(DOF) IMUs utilizing computer vision. This method though
is dependent on the presence of a vision system, which
requires identification markers and a camera system which is
unavailable for many robotic vehicle (e.g. many underwater
vehicles).

Metni et al. and Pflimlin et al. report nonlinear comple-
mentary filters for estimating attitude and gyroscope sensor
bias [21, 22, 27]. While these estimators identify angular-rate
sensor bias, they do not address linear acceleration sensor bias
and do not distinguish the gyroscope sensor bias from Earth’s
angular velocity.

Spielvogel and Whitcomb address the problem of identify-
ing and distinguishing the gyro bias from the Earth-rate signal
[33]. However, their reported approach requires knowledge of
the instrument’s real-time attitude.

In contrast to previously reported estimators, the present
paper proposes an algorithm for doing adaptive identification
of both gyro and accelerometer sensor biases and true-North
heading pitch, and roll on SO(3) without a priori knowledge
of the instrument’s attitude.

III. PRELIMINARIES

A. Coordinate Frames

We define the following coordinate frames:



• Instrument Frame: A frame, denoted (i), fixed in the
IMU instrument.

• North-East-Down (NED) Frame: The North-East-Down
(NED) frame, denoted (N ), has its x-axis pointing North,
its y-axis pointing East, its z-axis pointing down, and its
origin co-located with that of the instrument frame.

B. Notation and Definitions
For each vector, a leading superscript indicates the frame

of reference and a following subscript indicates the signal
source, thus Nwm is the measured instrument angular velocity
in the NED frame and iam is the measured instrument linear
acceleration in the instrument sensor frame.

For each rotation matrix a leading superscript and subscript
indicates the frames of reference. For example, N

i R is the
rotation from the instrument frame to the NED frame.

Definition: J is defined as a function that maps a 3 × 1
vector to the corresponding 3×3 skew-symmetric matrix, J :
R3 → so(3). For k ∈ R3,

J (k) =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 . (3)

We define its inverse J−1 : so(3)→ R3, such that ∀x ∈ R3,
J−1(J (x)) = x.

C. Mathematical Background
We will make use of the following mathematical facts:
Proposition: For Q(t) ∈ so(3), the rotation matrix R(t)

can be computed by Rodrigues’ Equation [23]

R(Q(t)) = I3×3 + γ(t)Q(t) + κ(t)Q(t)2 (4)

where

q(t) = J−1(Q(t)) (5)

γ(t) =
sin(‖q(t)‖)
‖q(t)‖

(6)

κ(t) =
1− cos(‖q(t)‖)
‖q(t)‖2

. (7)

Proposition: q̇(t) is related to Ṙ(t) by the mapping

RT (t)Ṙ(t) = J (A(q(t))q̇(t)) (8)

where A(q(t)) is the right Jacobian of R(q(t)) = eJ (q(t)) with
respect to the angular position vector q(t) ∈ R3. A(q(t)) and
its inverse,

A−1(q(t)) = I3×3 + α(t)J (q(t)) + β(t)J (q(t))2 (9)

where

α(t) = −1

2
, (10)

β(t) =
1

‖q(t)‖2
− 1 + cos(‖q(t)‖)

2‖q(t)‖ sin(‖q(t)‖)
, (11)

are reported by Park in [26].
If A(q(t)) is invertible, (8) can be rearranged as

q̇(t) = A−1 (q(t))J−1
(
RT (t)Ṙ(t)

)
. (12)

D. Sensor Model

The sensor measurement models for angular rate and linear
acceleration are

iwm(t) = iwE(t) + iwv(t) + iwb + iηw(t) (13)
iam(t) = iag(t) + iav(t) + iab + iηa(t) (14)
iwe(t) = iwE(t) + iwv(t) + iwb (15)
iae(t) = iag(t) + iav(t) + iab (16)

where iwm(t) is the IMU measured angular-rate, iwe(t) is
the true noise-free angular-rate, iwE(t) is the true angular
velocity due to the rotation of the Earth, iwv(t) is the true
angular velocity due to the rotation of the instrument with
respect to the NED frame, iwb is the angular velocity sensor
bias offset, iηw(t) is the zero-mean Gaussian angular velocity
sensor noise, iam(t) is the IMU measured linear acceleration,
iae(t) is the true noise-free linear acceleration, iag(t) is the
true linear acceleration due to gravity and the Earth’s rotation,
iav(t) is the instrument’s true linear acceleration with respect
to Earth, iab is the linear accelerometer sensor bias, and iηa(t)
is the zero-mean Gaussian linear accelerometer sensor noise.

For many robotic vehicles, the gravitational field iag(t)
dominates the vehicle linear acceleration (iav(t)). Thus, it is
common to use

iae(t) ≈ iag(t) + iab (17)

as a low-frequency estimate of (16) ([5, 19, 27, 37]). Given
(17), the sensor measurement model becomes

iwm(t) = iwE(t) + iwv(t) + iwb + iηw(t) (18)
iam(t) = iag(t) + iab + iηa(t) (19)
iwe(t) = iwE(t) + iwv(t) + iwb (20)
iae(t) = iag(t) + iab. (21)

Section VI-G shows the proposed algorithms perform well in
the experimental trial, thus justifying the neglection of the
vehicle acceleration term iav(t) in (17).

E. Earth’s Angular Velocity

Since we know that iwE(t) lies in the North-down plane,
we can write the signal iwE(t) as the sum of its North and
down components as

iwE(t) = iwEn
(t) + iwEd

(t). (22)

In addition, we know that iag(t) is in the direction of up and
what the values of the magnitudes (function of latitude) of the
two components of iwE(t) are. We can substitute into (22)
resulting in

iwE = iwEn(t) + γiag(t) (23)

where

γ =
‖NwEd

‖
‖Nag‖

. (24)



IV. SENSOR BIAS AND wEn
OBSERVER

This section reports the derivation and stability analysis
of an adaptive sensor bias and Earth-rate vector (the North
component) observer for six-DOF IMUs equipped with a
three-axis accelerometer and three-axis angular rate gyroscope.

Note that the gyroscope must be sensitive enough to detect
Earth-rate. The measurement noise of present-day angular rate
gyros in MEMS IMUs is orders of magnitude larger than is
needed to detect the extremely minute signal of the Earth’s
rotation rate (15◦/hr), thus, MEMS IMUs cannot be utilized to
dynamically estimate directly true-North heading. At present,
true-North attitude can only be successfully instrumented with
high-end, angular-rate gyros that employ ring laser gyro (RLG)
or FOG angular rate sensors, or that employ large inertial-
grade mechanical gyrocompasses. The present paper reports a
system that successfully estimates true-North attitude utilizing
a new class of lower-cost FOG IMUs.

A. System Model

We consider the system model
Nag = N

i R(t)iag(t)

= N
i R(t)

(
iae(t)− iab

)
(25)

NwEn
= N

i R(t)iwEn
(t). (26)

Differentiating (25) and (26) and rearranging terms yields
iȧe(t) = −J

(
iwe(t)− iwb − iwE(t)

)
iag(t) (27)

iẇEn
(t) = −J

(
iwe(t)− iwb − iwE(t)

)
iwEn

(t). (28)

Substituting (23) into (27) and (28) results in
iȧe(t) = −J

(
iwe(t)− iwb − iwEn

(t)− γiag(t)
)
iag(t)

= −J
(
iwe(t)− iwb − iwEn(t)

)
iag(t)

≈ −J
(
iwe(t)− iwb − iwEn

(t)
)
iae(t)

+ J
(
iwe(t)

)
iab (29)

iẇEn
= −J

(
iwe(t)− iwb − iwEn

(t)− γiag(t)
)
iwEn

(t)

= −J
(
iwe(t)− iwb − γiag(t)

)
iwEn(t)

≈ −J
(
iwe(t)− γiae(t)

)
iwEn

(t) (30)

where we are making the approximations that
J
(
iwb + iwEn(t)

)
iab ≈ 0 and J

(
iwb − γiab

)
iwEn ≈ 0,

since the cross products between sensor biases and the Earth
rate vector are orders of magnitude smaller than the other
signals.

B. Sensor Bias and wEn Observer

We consider the observer system model
i ˙̂ae(t) = −J

(
iwe(t)− iŵb(t)− iŵEn

(t)
)
iâe(t)

+ J
(
iwe(t)

)
iâb(t)− ka(t)∆a(t) (31)

i ˙̂wEn
(t) = −J

(
iwe(t)− γiae(t)

)
iŵEn

(t)

− kE(t)J
(
iae(t)

)
∆a(t) (32)

i ˙̂wb(t) = −kbw(t)J
(
iae(t)

)
∆a(t) (33)

i ˙̂ab(t) = kba(t)J
(
iwe(t)

)
∆a(t) (34)

where ka(t), kE(t), kbw(t), and kba(t) are positive non-
increasing scalar gains, iâe(t), iŵEn(t), iŵb(t), and iâb(t) are
the estimates of iae(t), iwEn(t), iwb, and iab respectively, and

∆a(t) = iâe(t)− iae(t) (35)

∆wEn
(t) = iŵEn

(t)− iwEn
(t) (36)

∆wb(t) = iŵb(t)− iwb (37)

∆ab(t) = iâb(t)− iab (38)

are the error terms.

C. Error System

The resulting error system is

∆ȧ(t) = −J
(
iae(t)

)
∆wb(t)− J

(
iae(t)

)
∆wEn

(t)

+ J
(
iwe(t)

)
∆ab(t)− ka(t)∆a(t)

− J
(
iwe(t)− iŵb(t)− iŵEn

(t)
)

∆a(t) (39)

∆ẇEn
(t) = −J

(
iwe(t)− γiae(t)

)
∆wEn

(t)

− kE(t)J
(
iae(t)

)
∆a(t) (40)

∆ẇb(t) = −kbw(t)J
(
iae(t)

)
∆a(t) (41)

∆ȧb(t) = kba(t)J
(
iwe(t)

)
∆a(t). (42)

D. Stability

Consider the Lyapunov function candidate

V =
1

2
∆aT (t)∆a(t) +

1

2kE(t)
∆wT

En
(t)∆wEn

(t)

+
1

2kbw(t)
∆wT

b (t)∆wb(t) +
1

2kba(t)
∆aTb (t)∆ab(t).

(43)

Differentiating (43) results in

V̇ =
(
−∆aT (t)J

(
iae(t)

)
+ ∆aT (t)J

(
iae(t)

))
∆wb(t)

+
(
−∆aT (t)J

(
iae(t)

)
+ ∆aT (t)J

(
iae(t)

)
+

1

kE
∆wT

En
(t)J

(
iwe(t)− γiae(t)

))
∆wEn

(t)

+
(
∆aT (t)J

(
iwe(t)

)
−∆aT (t)J

(
iwe(t)

))
∆ab(t)

−∆aT (t)J
(
iwe(t)− iŵb(t)− iŵEn(t)

)
∆a(t)

− ka‖∆a(t)‖2 +
1

2k̇E(t)
‖∆wEn

(t)‖2

+
1

2k̇bw(t)
‖∆wb(t)‖2 +

1

2k̇ba(t)
‖∆ab(t)‖2

= −ka‖∆a(t)‖2 +
1

2k̇E(t)
‖∆wEn

(t)‖2

+
1

2k̇bw(t)
‖∆wb(t)‖2 +

1

2k̇ba(t)
‖∆ab(t)‖2. (44)

Since kE(t), kbw(t), and kba(t) are non-increasing scalars,
the time derivative of the Lyapunov function is negative
semidefinite and the observer is locally stable. Additional
arguments beyond the scope of this paper are required to show
local asymptotic stability; however preliminary numerical sim-
ulations and experimental results demonstrate the estimator to
converge.



V. ATTITUDE OBSERVER

This section derives an attitude observer that updates di-
rectly on SO(3) for doing true-North attitude estimation.
The observer is inspired by the reserch of Mahony et al. on
Nonlinear Complementary Filters on SO(3) [19] and research
by Kinsey and Whitcomb on adaptive identification on SO(3)
[14].

We choose the update law

N
i

˙̂
R(t) = N

i R̂(t)J
(
ã(t) + ñ(t) + iwe(t)− iwb

−N
i R̂

T (t)NwE

)
. (45)

where the local-level ã(t) and heading ñ(t) error terms are
defined, respectively, as

ã(t) = kg(t)J
(
iag(t)

)
N
i R̂

T (t)Nag (46)

ñ(t) = kn(t)PJ
(
iwEn(t)

)
N
i R̂

T (t)NwEn (47)

where

P = N
i R̂

T (t)N āg
N āTg

N
i R̂(t), (48)

Nag = −
(
I3×3 +

1

g0
J (NwE)2

)
e3, (49)

N āg =
Nag
‖Nag‖

, (50)

NwEn
=
(
I3×3 − e3e3T

)
NwE , (51)

e3 =
[

0 0 1
]T
, (52)

g0 is the magnitude of gravity (∼ 9.81 m/s2), and kg(t) > 0
and kn(t) > 0 are scalar gains.

The parameter error is defined as

R̃(t) = N
i R

T (t)Ni R̂(t) (53)

with the time derivative

˙̃R(t) = N
i Ṙ

T (t)Ni R̂(t) + N
i R

T (t)Ni
˙̂
R(t)

= −J
(
iwv(t)

)
R̃(t)

+ R̃(t)J
(
ã(t) + ñ(t) + iwe(t)− iwb

−N
i R̂

T (t)NwE

)
= R̃(t)J

(
ã(t) + ñ(t) + iwe(t)− iwb

−R̃T (t)iwE(t)− R̃T (t)iwv(t)
)

= R̃(t)J
(
ã(t) + ñ(t) + iwEv(t)− R̃T (t)iwEv(t)

)
(54)

where

iwEv(t) = iwE(t) + iwv(t). (55)

A. Stability

The Lyapunov candidate function is

V
(
R̃(t)

)
=

1

2
‖q̃(t)‖2. (56)

The time derivative of the Lyapunov candidate function is

V̇
(
R̃(t)

)
= q̃T (t) ˙̃q(t). (57)

Substituting (12) into (57) results in

V̇
(
R̃(t)

)
= q̃T (t)

(
A−1 (q̃(t))J−1

(
R̃T (t) ˙̃R(t)

))
(58)

and substituting in (9) and (54) results is

V̇
(
R̃(t)

)
= q̃T (t)

(
ã(t) + ñ(t) + iwEv(t)− R̃T (t)iwe(t)

)
.

(59)

Substituting (46), (47), and (4) into (59) results in

V̇
(
R̃(t)

)
= q̃T (t) (ã(t) + ñ(t))

= kg(t)q̃T (t)J
(
iag(t)

)
N
i R̂

T (t)Nag

+ kn(t)q̃T (t)PJ
(
iwEn

(t)
)
N
i R̂

T (t)NwEn

= kg(t)q̃T (t)J
(
iag(t)

)
R̃T (t)iag(t)

+ kn(t)q̃T (t)PJ
(
iwEn

(t)
)
R̃T (t)iwEn

= −kg(t)γ̃(t)q̃T (t)J
(
iag(t)

)
J (q̃(t)) iag(t)

− kn(t)γ̃(t)q̃T (t)PJ
(
iwEn(t)

)
J (q̃(t)) iwEn .

(60)

Using the fact that P 2 = P for projection matrices and that
orthogonal matrices distribute across the cross product, the
time derivative simplifies to

V̇
(
R̃(t)

)
= −kg(t)γ̃(t)‖J

(
iag(t)

)
q̃(t)‖2

− kn(t)γ̃(t)q̃T (t)PJ
(
P iwEn

(t)
)
J (P q̃(t))P iwEn

= −kg(t)γ̃(t)‖J
(
iag(t)

)
q̃(t)‖2

− kn(t)γ̃(t)‖PJ
(
iwEn

(t)
)
q̃(t)‖2

≤ 0. (61)

Thus, the time derivative of the Lyapunov function is negative
semidefinite and the observer is locally stable. Additional
arguments beyond the scope of this paper are required to show
local asymptotic stability; however preliminary numerical sim-
ulations and experimental results demonstrate the estimator to
asymptotically converge to the true attitude.

VI. GYROCOMPASS SYSTEM PRELIMINARY EVALUATION

The estimates of, iwEn
, iwb, and iab from the bias observer

presented in Section IV are utilized in real-time by the attitude
observer of Section V as follows:

iwEn
(t) = iŵEn

(t), (62)
iag(t) = iae(t)− iâb(t), (63)

iwb = iŵb(t). (64)

The combined use of the reported bias estimator (for ac-
celerometers and angular rate sensor bias calibration on-the-
fly) and the reported true-North attitude estimator will be
termed the “gyrocompass system” in the following sections.

The gyrocompass system is preliminarily evaluated in three
numerical simulations and one UV trial.



Fig. 1: Fully actuated ROV used for vehicle trial.

Note that in the derivation and stability proofs presented in
Sections IV and V, the noise free case (20-21) of the mea-
surement model is used. In the evaluation of the gyrocompass
system, the noisy measurement model (18-19) is used instead.

A. Test Facility

An experimental trial was performed with a remotely op-
erated vehicle (ROV) equipped with a KVH 1775 FOG IMU
(KVH Industries, Inc., Middletown, RI, USA) in the facility’s
7.5 m diameter × 4 m deep fresh water tank. The ROV is a
fully actuated (six-DOF) vehicle with six 1.5 kW DC brushless
electric thrusters and employs a suite of sensors commonly
employed on deep submergence underwater vehicles. This
includes a high-end INS, the iXBlue PHINS III (iXBlue SAS,
Cedex, France) [12, 13], that is used as a “ground-truth”
comparison during the experimental trial. The PHINS is a
high-end INS (∼$120k) with roll, pitch, heading accuracies
of 0.01◦, 0.01◦, 0.05◦/ cos(latitude), respectively [12]. Figure
1 shows the ROV operating in the test tank.

B. Modified Linear Acceleration Bias Update Law

In our initial experiments we observed that, over time, the
magnitude of the estimated gravity vector would gradually
evolve to a physically unrealiztic value. Using the additional
information that we know the magnitude of iag(t) at a given
latitude and longitude, the observer system model, (34), for the
linear acceleration bias was modified to preserve the correct
a priori known magnitude of the acceleration estimation as it
is adapted as follows:

i ˙̂ab(t) = kba(t)J
(
iwe(t)

)
∆a(t)

+ kf

iâTg (t)iwe(t)

|iâTg (t)iwe(t)|

iwe(t)

‖iwe(t)‖
(
‖iâg(t)‖ − ‖Nag(t)‖

)
(65)

where

iâg(t) = iâe(t)− iâb(t) (66)

and kf > 0. We have made this modification so that the linear
acceleration bias also evolves along iwe(t) instead of only in
the image of J

(
iwe(t)

)
. The resulting entire observer system

model from Section IV becomes
i ˙̂ae(t) = −J

(
iwe(t)− iŵb(t)− iŵEn

(t)
)
iâe(t)

+ J
(
iwe(t)

)
iâb(t)− ka(t)∆a(t) (67)

i ˙̂wEn(t) = −J
(
iwe(t)− γiae(t)

)
iŵEn(t)

− kE(t)J
(
iae(t)

)
∆a(t) (68)

i ˙̂wb(t) = −kbw(t)J
(
iae(t)

)
∆a(t) (69)

i ˙̂ab(t) = kba(t)J
(
iwe(t)

)
∆a(t)

+ kf

iâTg (t)iwe(t)

|iâTg (t)iwe(t)|

iwe(t)

‖iwe(t)‖
(
‖iâg(t)‖ − ‖Nag(t)‖

)
.

(70)

This modified observer has performed well in prelimi-
nary simulation studies and experimental evaluation. We are
presently working to develop a concise stability analysis for
this variant of the algorithm, and hope to report it in future
publications.

C. Gain Selection

Gain selection is important to the performance of the
gyrocompass system. As with most adaptive systems that rely
on persistence of excitation [24, 28] to converge to the true
parameter values, the rate of convergence is dependent on the
amount of excitation the system is experiencing and gains.
In order for consistent rates of convergence across different
instrument rotation rates, we have found it to be helpful for
the gains in the observer to be adaptive with respect to the
system’s excitation. The gains used in the simulations and
experiment were empirically selected as follows:

kg = 0.1 (71)

k̇n(t) =

{
−0.0005, kn > 0.0025

0, kn ≤ 0.0025

kn(0) = 1 (72)
ka = 0.01 (73)
kE = 0.000001 (74)

k̇bw(t) =

{
−0.000000003 ∗ ‖iwe(t)‖, kbw > 0.0000005

0, kbw ≤ 0.0000005

kbw(0) = 0.000001 (75)
kba = 1 (76)
kf = 0.0025. (77)

The purpose of these time varying gains is to begin with large
gains while the system is initializing, and to reduce the gains as
the system errors converge in response to the vehicle angular
motion. These time varying gains are included in the stability
analysis resported in Section IV.

D. Simulation Setup

The gyrocompass system is evaluated in three numerical
simulations.



Fig. 2: Results of three numerical simulations.

• Sensor measurement sampling was simulated at 1kHz.
• Simulations include sensor biases consistent in magnitude

to those seen in KVH 1775 IMUs.
• Simulations were for a latitude of 39.32◦N.
• Simulations included sensor measurements with sensor

noise representative of the KVH 1775 FOG IMU (used
iam(t) and iwm(t) instead of iae(t) and iwe(t)). Angular
velocity sensor and linear accelerometer sensor noises are
computed from the IMU’s specifications [17], as per [36],
and confirmed by the authors experimentally to be σw =
6.32× 10−3 rad/s and σa = 0.0037 g.

• The exp1 simulation experienced no rotation.
• The exp2 and exp3 simulations experienced changes in

heading.

E. Simulation Results

The estimated attitude and sensor bias errors for the three
simulations are shown in Figure 2. The exp1 simulation results

show that when the instrument is not excited via rotations,
the sensor bias do not converge to their true values. This is
consistent with adaptive identifiers which rely on persistence
of excitation ([24, 28]). In the exp2 and exp3 simulations, the
attitude converges. Specifically, the simulations show (after the
system has converged) the gyrocompass system to estimate roll
and pitch within 0.25◦ and heading within 0.5◦.

F. Experimental Setup

The gyrocompass system is evaluated with a preliminary ve-
hicle trial employing a comparatively low-cost (∼ $20k USD)
FOG KVH 1775 IMU (KVH Industries, Inc., Middletown, RI,
USA).
• The KVH 1775 FOG IMU was sampled at 5kHz.
• The KVH 1775 FOG IMU was aligned via a fixture

to the ROV’s iXSEA PHINS INS (iXblue SAS, Cedex,
France). The PHINS is used as ground truth during our
experimental evaluation of the attitude estimator.
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Fig. 3: Experimental results of full scale vehicle trial in test tank.

• The 2018 1 12 10 36 experiment was conducted at a
latitude of 39.32◦N.

• The ROV was commanded to execute smooth sinusoidal
rotations (∼ 180◦) in heading while in closed-loop con-
trol.

G. Experimental Results

The attitude and sensor bias estimations and attitude errors
for the vehicle trial are shown in Figure 3. The results show
that during this experimental evaluation of the gyrocompass
system, the attitude estimate converges to the true attitude.
Roll and pitch converge to within 0.5◦ and true-North heading
to within 1◦ of their true values.

In this preliminary result, the estimator took ∼50 minutes
to converge to the correct true-North heading. Long conver-
gence time is typical of true-North gyrocompass systems. For
example, the iXBlue PHINS takes ∼25 minutes to achieve fine
alignment [13]. We are currently investigating improvements
to this sensor bias and Earth-rate observer (e.g. adaptive gains)
to improve its rate of convergence.

VII. CONCLUSION

This paper reports the derivation and stability analysis of
an adaptive bias and North vector observer and an attitude
observer for use in true-North gyrocompass systems. Prelim-
inary simulations and a preliminary vehicle experiment using
a commercially available low-cost FOG IMU are presented.

The preliminary simulation and vehicle trial suggest, for the
case of a rotating IMU, the convergence of the gyrocompass
system to the true attitude without using magnetometers. The
vehicle trial shows roll and pitch converge to within 0.5◦ and
true-North heading to within 1◦ of their true values.

In future studies, the authors hope to improve the time
of convergence, increase the accuracy of the gyrocompass
system, extend the stability proofs to include the modified bias
update law reported in Section VI-B, and do thorough vehicle
trials both in the lab and in the field.
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