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Abstract—In this paper we present the mechanics and al-
gorithms to compute the set of feasible motions of an object
pushed in a plane. This set is known as the motion cone and
was previously described for non-prehensile manipulation tasks
in the horizontal plane. We generalize its geometric construction
to a broader set of planar tasks, where external forces such
as gravity influence the dynamics of pushing, and prehensile
tasks, where there are complex interactions between the gripper,
object, and pusher. We show that the motion cone is defined by
a set of low-curvature surfaces and provide a polyhedral cone
approximation to it. We verify its validity with 2000 pushing
experiments recorded with motion tracking system.

Motion cones abstract the algebra involved in simulating
frictional pushing by providing bounds on the set of feasible
motions and by characterizing which pushes will stick or slip.
We demonstrate their use for the dynamic propagation step in
a sampling-based planning algorithm for in-hand manipulation.
The planner generates trajectories that involve sequences of con-
tinuous pushes with 5-1000x speed improvements to equivalent
algorithms.

I. INTRODUCTION

A motion cone is the set of feasible motions that a rigid
body can follow under the action of a frictional push. We can
think of it as a geometric representation of the underactuation
inherent to frictional contacts. Since contacts can only push,
and since friction is limited, a contact can move an object
only along a limited set of rays. The concept was introduced
by Mason [22] for point contacts in the context of a planar
horizontal pushing task.

Motion cones abstract the algebra involved in simulating
frictional contact dynamics. A contact force on the inside
(boundary) of the friction cone produces sticking (slipping)
behavior, and leads to motion rays on the inside (boundary)
of the motion cone. Lynch and Mason [21] generalized the
construction of motion cones to line contacts in a horizontal
plane. They used them to plan stable pushing trajectories
without the complexities of standard complementarity formu-
lations of contact dynamics [29, 24} [2]. Motion cones have
since been the basis of several efficient planning and control
strategies for planar manipulations on a horizontal support
surface [9, 15, 11} 134, [12]].

This paper studies the construction of motion cones in a
more general set of planar tasks. In particular, we highlight
the case of prehensile manipulation in the vertical plane. In
general planar tasks, external forces other than the pusher
force (for example, gravity) can alter the dynamics of contact
interactions between the pusher, object, and gripper/support-
plane. Motion cones efficiently capture the intricate mechanics
of these tasks for simulation, planning, and control.
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Fig. 1: (top) Example friction cone and motion cone of an
object moving in the vertical plane. The pusher can move the
object along any direction [V, V, w,] inside the motion cone.
(bottom) A plan via motion cones. Motion cones capture local
reachability. A path in the tree of motion cones generates a
pushing strategy to move an object.

We present three main contributions:

o Mechanics of motion cones for planar tasks in the gravity
plane. We show that the motion cone is defined by a
set of low-curvature surfaces, intersecting at a point and
pairwise in lines. We propose a polyhedral approximation
to the motion cone for efficient computation.

o Experimental validation of the stick/slip condition of
motion cones in a prehensile pushing task instrumented
with a Vicon motion tracker.

o Application of motion cones in a sampling-based plan-
ning framework for in-hand manipulation using prehen-
sile pushes (see Fig. 1). We show this yields significant
speed improvements with respect to our prior work [2, [3]].

Fig. 2 shows an example of a pushing trajectory planned to

change the grasp on a T-shaped object. The resulting trajectory
is a sequence of continuous stable pushes, each where the
object sticks to a particular external pusher. The proposed
planning algorithm obtains these trajectories consistently in
less than a second.
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Fig. 2: Manipulating a T-shaped object in a parallel-jaw grasp by pushing it against features in the environment. The

manipulation is shown from a side view.

Section III reviews the mechanics of pushing in an arbitrary
plane, while Section IV describes the process to construct
the corresponding motion cones. In Section V we discuss the
computational aspects in the calculation and approximation of
motion cones for pushing an object gripped with a finite force.
In Section VI we demonstrate a sampling-based planning ap-
proach that exploits motion cones to speed up the computation
of local contact dynamics for prehensile pushing.

The generalization of motion cones to interactions with
gravity opens a door for efficient and robust planning of in-
hand manipulations that respect and exploit the basic prin-
ciples of frictional rigid-body contact interactions: Newton’s
second law, Coulomb’s friction law, the principle of Maximal
Dissipation, and the rigidity of rigid-bodies.

II. RELATED WORK

Planning and control through contact is a central topic in
robotic manipulation research. Rigid-body contact is modeled
as a series of constraints on the possible motions and forces
at contact. Simplifying and exploiting these constraints is a
pivotal theme in the non-prehensile manipulation literature.
Goyal [10] introduced the concept of a limit surface, a compact
mapping from the friction wrench between slider and ground
and the sliding twist at contact. Mason [22] studied the
mechanics of pushing and proposed the concept of the motion
cone. These two fundamental geometric constructions provide
direct force-motion mappings for contact interactions and have
facilitated efficient planning and control techniques in non-
prehensile manipulation [20, 21} 15, 6, [11} [34]].

Recent work on trajectory optimization and manipulation
planning shows that it is possible to reason about different con-
tact modes and plan trajectories through contact in a standard
rigid body dynamics framework based on complementarity
constraints. These methods often have to compromise on the
computational efficiency [24, 2] or the realism of contact
dynamics [[19} 31} [18]].

In contrast, some more recent work has focused on particu-
lar types of manipulation primitives and exploits assumptions
in the problem formulation to develop fast planning and robust
control strategies. Shi et al. [25] demonstrates dynamic in-
hand manipulation planning in a parallel-jaw grasp. With a
pre-defined contact mode sequence at the fingers and a limit
surface approximation for the force-motion interaction at the
fingers, they derive a control law that can move the object

to the goal pose in the grasp. Similar approaches are explored
for planning and controlling in-hand manipulations by actively
using gravity [32] or dynamic motions [13} 28} [14].

Sundaralingam and Hermans [30] propose a trajectory-
optimization based, purely-kinematic approach for in-hand
manipulation with a multi-finger gripper. They assume that the
fingers on the object do not slip and impose soft constraints
that in practice minimize the slip at the fingers. With the
assumption of sticking at all contacts, and neglecting friction
dynamics, they obtain kinematic plans quickly.

In our recent work [3], we present a fast sampling-based
planning framework for in-hand manipulations with prehensile
pushes, where the pusher contact is forced to stick to the
object. The plans are discrete sequences of continuous pushes
that respect friction, contact, and rigid-body constraints.

These promising results on in-hand manipulation research,
which limit to certain types of manipulation primitives for
efficient planing and control, motivate us to generalize the
concept of motion cones to more general pushing tasks.
Motion cones, as a set of direct constraints on the object
motion or control inputs, can naturally fit well in a trajectory
optimization framework. As we illustrate in this paper, for
sampling-based methods, the motion cone can be used to guide
sampling, and for fast dynamics propagation.

III. MECHANICS OF PUSHING IN A PLANE

Fig. 3 shows four different cases of planar pushing. In case
(a), the pusher force is the only external force on the object
in the plane of motion. However, in the rest of the cases,
a component of gravity is also present. The concept of the
motion cone as originally studied in [22]] is limited to the
case (a) in Fig. 3. Our extension of the motion cone to a
general planar case is valid for all the cases in Fig. 3.

In this section we discuss the mechanics of pushing an
object in a plane. First we will review the fundamental
concepts, namely, the limit surface [10], and the generalized
friction cone [8]] that will help us model the friction interaction
at the contacts involved in pushing.

A. Limit Surface

The limit surface is a common approach to model a friction
interaction between an object and a support contact. In case
(a) and (b) in Fig. 3, the surface on which the object rests
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Fig. 3: Pushing an object (a) on a horizontal surface, (b) on an inclined surface, (c) in a grasp in the gravity plane, and (d) in

a grasp in a tilted plane

is the support contact. In case (c) and (d), the finger contacts
play the same role.

Goyal [10] defined the boundary of the set of all possible
friction wrenches that a contact can offer as the Limit Surface.
Howe and Cutkosky [15]], Xydas and Kao [33] showed that an
ellipsoidal approximation allows for a simpler representation
of the limit surface geometry. In this paper we will assume
an ellipsoidal approximation of the limit surface, which has
been shown to be computationally efficient for simulating and
planning pushing motions [21} |6l 25| [34].

Let w = [f, f,, my] be a frictional wrench on the object
from the support contact in the contact frame. A mathematical
representation of the ellipsoidal limit surface is given by
w? Aw = 1, where A = Diag(a;?, a2, a3?). For isotropic
friction, the maximum friction force is, a3 = as = p.N,
where (. is the friction coefficient between the contact and the
object and N is the normal force at the contact. The maximum
friction torque about the contact normal is ag = rcu. N, where
r is the radius of the contact and ¢ € [0,1] an integration
constant. For a uniform pressure distribution at the contact, ¢
is about 0.6 [33} 125].

When the object slides on the support contact, the friction
wrench between the object and the contact (w.) intersects
the limit surface. Based on the maximal energy dissipation
principle, the normal to the limit surface at the intersection
point provides the direction of the twist of the object at the
contact. Conversely, if the object twist (voj = [V, V2, wy]T)
is known, we can find the friction wrench following [235] as,

—1
A 'Uobj_c
\V Uobj_cT A1 Vobj_c

Here, vop;_c is the velocity of the object in the contact frame
and can be computed from wvop; as Vopj o = jc “ Vop;. The
jacobian (Je) maps the object velocity from the object frame
to the support contact frame. W, = [f,, f,,m,]T is the unit
wrench lying on a limit surface that is scaled by maximum
linear friction available at contact (u./N) to produce the net
frictional wrench.

w, = = pcNw, (D

Under the ellipsoidal limit surface model assumption, trans-
lational velocity [vx ¢, v, ¢]T of the object in the contact frame
is always parallel and opposite to the linear frictional force
[f.,f.]T applied by the contact in the contact frame [20].
Moreover, the relationship between the friction wrench and the
normal to the limit surface, which defines the motion direction,

sets the following constraint between the angular velocity at
the contact and the linear velocity:

= (rc)Qé

Wy_c my

Given the friction wrench on the object from the support
contact, we can find the object velocity as:

Vopj = bJ.B W, , B = Diag(1,1,(rc)”?), be R (2)
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Here, J. maps the object velocity from the support contact
frame to the object frame.

B. Generalized Friction Cone

The friction between the pusher and the object can be
modelled with the Coulomb friction law. Erdmann [8] in-
troduced the concept of generalized friction cone (W) as
a representation of the local friction cone at a contact in
the object frame. The generalized friction cone for a pusher
modelled with multiple point contacts is the convex hull of
the generalized friction cones for each constituent contact [7].

Wpusher = {Epusher = Gp '?p | ?p € FCpusher} 3)

Here, G, is the jacobian that maps the local contact forces
(f,) at the pusher to the object frame. Wpysher is the unit wrench
corresponding to unit force/s ?p inside the friction cone/s at
the pusher constituent contact/s.

Now, with the approaches for contact modelling set, we look
into formulating the mechanics of pushing in a plane.

C. Mechanics of Pushing

The motion of the object in the plane of motion evolves
following the net wrench acting on it. Under the quasi-static
assumption, which is appropriate for slow pushing operations,
the inertial forces on the object are negligible and there is
force balance:

Wsypport T Wpusher + MG = 0 “4)

Here, (4) is written in the object frame located at the center
of gravity. Wsupporr is the friction wrench provided by the
support contact, Wpysher i the wrench exerted by the pusher, m
is the mass of the object, g is the gravitational component in
the plane of motion. G (G = J.. ) is the jacobian that maps
the support contact wrench from the contact frame (usually
located at the center of pressure) of the support surface to the
object frame. So, Wgypport = G - we and (4) becomes:

ﬂcNGc'ﬁc+Gp'fp+mg:0 )]



D. Stable Pushing in a Plane

Lynch and Mason [21] studied pushing motions for which
the pusher sticks to the object when pushing on a horizontal
surface, which they referred to as Stable Pushing. For stable
pushing, force at the pusher lies inside the friction cone in the
local contact frame.

For a general planar case, such a condition for a stable push
can be written as:

NG -we +Gp - fo+mg =0, fp € FCpusher

For a given object motion to be possible with a stable push, the
pusher needs to be able to provide a wrench that balances the
net wrench produced by the friction wrench from the support
contact and the gravitational force in the plane. Using (3) we
can rewrite the previous equation as:

_/J’CNGC “We —mg = kﬁpusher

Epusher € Wpusher ) ke IR+

Here, k is the magnitude of the pusher force. To know
if an object motion can be achieved with a stable push, we

simply need to check if the net required wrench falls inside
the generalized friction cone of the pusher.

(6)

_/J/CNGC CWe — mg € Wpusher (7)

From a planning and control perspective, rather than query-
ing if pushes are stables pushes or not, the bound on the set
of object motions possible with stable pushes is more useful.
This is in fact the motivation for the motion cone concept that
we study in the next section.

IV. MOTION CONE FOR PLANAR PUSHING

The motion cone is the set of objects motions that can
be produced while keeping the pusher contact sticking. In an
abstract sense, it is the motion equivalent of the generalized
friction cone of the pusher.

Problem: Find the set of object motions for which the
net required wrench can be balanced by a wrench inside the
generalized friction cone of the pusher.

This is equivalent to finding a set of object motion for which
constraint (6) holds true. Rewriting,

7,LLCNGC CWe —mg = kﬁpushera Epusher € Wpushera ke IRJF

Gc CWe = Epusher + g

— N N ®)
Epusher € Wpusher ) ke IR+

Using (2) we can map the support contact wrench w, to the
object velocity v.5;. Hence, to find a motion cone, we first
find the set of support contact wrenches (w,) that satisfy (8)
and then map this wrench-set (W) to the set of object twists.
We denote this object twist-set, i.e. the motion cone, by f/;bj.

The presence of an external force, (such as the gravitational
force) other than the pusher force, in the plane of motion
complicates the mechanics and the structure of the motion
cone. To explain this effect in detail, we will first consider the
case of pushing an object on a horizontal surface where there
is no such additional force.
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Fig. 4: To make a push inside the gravity-free motion cone
stable in the gravity plane, the unit grasp wrench can be scaled
such that the net pusher wrench required for the desired push
falls inside/on the generalized friction cone of the pusher.

A. Motion Cone for Pushing on a Horizontal Surface

For the case of pushing on a horizontal plane, g = O.
For an object on a flat support surface with uniform pressure
distribution on the support (as is Fig. 3- case (a) and (b)), the
contact frame coincides with the object frame, which makes
Je, jc, and G, identity matrices. Then we can write (6) as:

. — Lap b +
7MCNwC - kwpusher y Wpusher € Wpusher 5 kelR
_kwpusher _

we = W ; Wpusher € Wpusher (9)

The set of valid support contact wrenches is the negative
of the generalized friction cone of the pusher, i.e, W, =
—Wusher- By mapping WC through (2), we get the motion
cone ‘Z)bj L

Note that for the case of pushing on a horizontal surface,
W, and f/Obj are convex polyhedral cones. Moreover, they are
independent of the support normal force, i.e, the weight of the
object (mg), and friction at the support surface (p).

For a more general pushing tasks however, g # 0. From
(8) we can see that, unlike for horizontal pushing, the system
parameter (i) and force magnitudes (k and N) influence the
direction vectors of the wrench-set WC. In the next section
we will focus on the case shown in Fig. 3-(c) — pushing an
object in a parallel-jaw grasp in the plane of gravity. There
the gravitational force is not zero in the plane of motion and
the jacobians J, J., and G, are not always identity matrices
as the support (finger) contact location changes in the object
frame as the object is pushed in the grasp. The case shown in
Fig. 3-(b) is same as the case (c) except the jacobians J., J.,
and G, are always identity matrices. The case shown in Fig. 3-
(d) is same as the case (c) except that only a part of the
gravitational force acts in the plane of motion and not all of
the gravitational force as in the case (c).

B. Stable Pushing and Motion Cone in the Gravity Plane

For a case similar to Fig. 3-(c), but in a gravity-free world,
we can exploit the simplification of the (8) and compute a
convex polyhedral motion cone similar to that in the horizontal
pushing case, but while taking the non-identity jacobians

"Mason [22]] defined the motion cone in terms of pusher twists which is a
linear jacobian transform of the motion cone V. However, we will keep it
in the object twist space.



Fig. 5: A depiction of the process for constructing a wrench-set (W,). The intersection of the limit surface with the sum of
the scaled generalized friction cone of the pusher and the gravitational wrench defines the wrench-set W-.

J., jc, and G, into consideration. We will refer to this motion
cone as a gravity-free motion cone in the later discussions.

From (7) we can see that the gravitational wrench (mg) on
the object can pull the net required wrench in or out of the
generalized friction cone of the pusher. Some of the motions
in the gravity-free motion cone may not be stable pushes in
the gravity plane, while for some object motions outside the
gravity-free motion cone, the gravitational force on the object
can be exploited to make them stable pushes.

Theorem 1. Any push inside the gravity-free motion cone can
also be made a stable push in the gravity plane by increasing
the grasping force above a minimum force threshold.

Proof. For a motion inside a gravity-free motion cone, the
support/grasp wrench direction lies inside the generalized
friction cone of the pusher, ie., Gc - We € Wiusher. We can
always find a magnitude (u./N) with which the support/grasp
wrench direction needs to be scaled so that the net wrench (the
vector sum of the gravitation wrench and the support/grasp
wrench) is just inside the generalized friction cone of the
pusher. For a given ., we can analytically find the bounds on
N needed to pull the net wrench inside the generalized friction
cone of the pusher. Fig. 4 shows the graphical interpretation
of this proof. O

Theoretically, we can make any motion in the gravity-
free motion cone a stable motion in the gravity case by
changing the grasping force. With increased grasping force,
more motions in a gravity-free motion cone are stable in
the gravity plane. For infinite grasping force, the gravity-free
motion cone coincides with the motion cone in the gravity
plane. However, practically it is not possible for a gripper to
provide arbitrarily high grasping force. We need to find the
motion cone for a fixed grasping force.

V. MOTION CONE IN THE GRAVITY PLANE FOR FIXED
GRASPING FORCE
In this section we find the object motion cone in the gravity
case for a given grasping force and friction parameters.
A. Analytical Computation
Rewriting (8),

G. w,=

Eo_
Wpusher + _79

— e N weN
Epusher € Wpusher ) ke IR+

(10)
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Fig. 6: A graphical illustration for the construction of the
motion cone (f/gbj) from the wrench-set (WC). The motion
cone is defined by the set of the surface normals to the limit
surface where the wrench-set intersects the limit surface. We
propose polyhedral approximation (Vo) to the motion cone
for computational efficiency.

For a known Wyusher € Whusher» (10) is a set of three linear
equalities with 4 unknowns, w, € R? and k. However, we
know that w, = [f,, f,,m,]7 is a unit wrench that satisfies
the ellipsoidal limit surface constraint:

& & + ﬂ =1
1 1

YT T Goe

(1D
Constraints (10) and (11) can be solved together analytically
to find w, and k. Specifically, after substituting f,, f,, and
my from (10) into (11), (11) becomes a quadratic equation in
k. Solving this quadratic equation for k € IR™* gives a unique
solution for k. Substituting this value for &k in (10) makes (10)
a set of three linear equalities with three unknowns [f,, f,. 7]
which can be solved for a unique solution.

For prehensile pushing in the gravity plane, the relationship
between V~Vc and Wiusher is not linear as in the gravity-free
case. To find wrench-set Wc, we need (0 SWeep Wpysher OVET
the boundary of Wyyser and solve (10) and (11) iteratively.
Fig. 5 is the depiction of the process involved in solving the
constraints (10) and (11) together for computing the wrench
cone W,. Fig. 6 shows the graphical representation of the
computation in (2) that maps the wrench-set W. to the motion
cone Vop;.

W, and ffobj are not polyhedral cones as in the gravity-free
case, but rather can be best characterized as cones defined
by low-curvature surfaces that intersect all in a point and
pairwise in lines. Fig. 7 shows the wrench cone and motion
cone computed analytically for one particular grasp-pusher
configuration.
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Fig. 7: (top) The grasp-pusher configuration used for the
experimental validation of the motign cone. (bottom) ~The
analytically computed wrench cone (W), motion cone (Vyp;),
and polyhedral approximation to the motion cone (V o) for
the above configuration and 45 N grasping force. Note that
the surfaces defining the motion cone (‘Z)bj) are curved.

B. Polyhedral Approximation to the Motion Cone

As an object is pushed in a grasp, the position of finger
contacts in the object frame change, and consequently G and
the motion cone ffobj also change. We need to compute the
motion cone iteratively as the object moves in the grasp.

As the boundary surfaces of the motion cone have low
curvatures, we propose a polyhedral approximation (V g) of
the motion cone for its efficient computation. Each edge of
the polyhedral approximation of the motion cone is the object
motion corresponding to each edge of the generalized friction
cone of the pusher. Fig. 6 and Fig. 7 show the polyhedral
approximation of the motion cone.

Procedure to compute polyhedral motion cone:

1. Solve (10) and (11) simultaneously to get W, for Wpysher
corresponding to every edge of Wigher.

2. Define the set of w, computed in step 1 as the genera-
tors/edges of the support/grasp wrench-cone W.

3. Map W, to the object twist space using (2) to get the
polyhedral approximation Vo; of the motion cone.

C. Experimental Validation of the Motion Cone

We use a manipulation platform equipped with an industrial
robot arm, a parallel-jaw gripper, a feature in the environment
that act as pusher, and a Vicon system for object tracking.

To evaluate the experimental validity of the motion cone
in the gravity plane, we collected data for the slip observed
at the pusher contact for 2000 randomly sampled pushes. We
used the rectangular prism object listed in Table [I| and the
grasping force was set to 45 N. Fig. 7 shows the grasp-pusher
configuration used for the experiments. Due to kinematic
constraints of the robot and the workspace, we limit the
sampled pushes to a small space of [0 mm-10 mm, —5 mm-
5 mm, —35°- 35°] in [X, Z, 0y].

e Sticking
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Fig. 8: We carried out 2000 random prehensile pushes in the
configuration shown in Fig. 7 and characterized them by the
slip observed at the pusher contact. The motion cone above is
the same polyhedral motion cone (anj) computed in Fig. 7,
but shown in a different orientation for better visualization. (a)
No slipping was observed for most of the pushes inside the
polyhedral approximation of the motion cone, (b) Most of the
pushes for which the slipping was observed are outside the
motion cone.

Fig. 8 shows that the polyhedral approximation of the
motion cone captures most of the pushes for which the pusher
contact sticks to the object. Most of the pushes that slip, fall
outside the cone.

VI. PLANNING IN-HAND MANIPULATIONS VIA
MOTION CONES

In this section we demonstrate the application of motion
cones for planning in-hand manipulations with stable prehen-
sile pushes. The problem formulation is similar to the one
presented in our recent work [3]]. We assume that an object
is grasped in a parallel-jaw gripper and manipulated in the
gravity plane by pushing against features in the environment.
We assume the following physical properties of the system:

+ Object geometry and mass.

+ Initial and goal pose of an object in a grasp, specified by
the locations of each finger contacts.

+ Gripping force.

+ Set of pusher contacts, specified by their geometries and
locations in the object frame.

+ Coefficient of friction at all contacts.

In [3], we present a planning framework where at the high-
level, a T-RRT*-based architecture samples different object
poses in the grasp. At the low level, a rejection check is
implemented using a constraint similar to (7) to evaluate if the
sampled configuration can be reached using a stable prehensile
push. We adopt the same high-level T-RRT*-based planning
approach in this paper, but without the low-level rejection
check. Rather, the planner always grows the tree towards the
sampled pose as best as possible using the motion cones at
the nearest node to the sampled pose.

The high-level planning framework is based on T-RRT* -
an optimal sampling based method developed for planning on
configuration space cost-maps [4} [16].

For selective exploration, the TRRT* framework relies on a
transition test that filters the sampled configurations to prefer
exploration in low configuration-cost regions. We define the



configuration cost as the distance from the goal. The transition
test softly constrains the stochastic exploration towards the
goal grasp, while allowing the flexibility to explore high-cost
transitions if they are necessary to get the object to the goal.

For effective connections, the T-RRT* algorithm uses the
underlying RRT* [17] framework to make and rewire the
connections in the tree at every step such that the cost of
the nodes is reduced when possible. We define the cost of a
node as the sum of the cost of the parent node and the cost of
the push to reach the sampled node from the parent node. The
cost of a push is 0.1 if the parent node uses the same pusher
as the child and 1 otherwise. With our node cost definition, the
planner generates pushing strategies that prefer fewer pusher
switch-overs to push the object to the desired pose.

Algorithm 1 : In-Hand Manipulation Planner

iHPUt > Qinit, 9goal
output : tree T

T <« initialize tree(qinit)
generate_motionCones(T, qim-t)
while 04 ¢ T or Co8t(¢goqr) > cost threshold do
Grand < sample random configuration(C)
Qparent < find nearest neighbor(7, ¢ and)
Gsample < take unit step(¢parent, drand)
if qsample ¢ T then
if transition test(¢parent; ¢sample, 7) then
Gnew < motionCone_push(gparents ¢sample)
if transition test(gparent, Gnew, 7 ) and
grasp maintained(gye,,) then
q*parent — OptimEdge(T, Anews Qparent)
add new node(7, gnew)
add new edge(q* parents Gnew)
generate_motionCones(7, gnew)
rewire tree(T, Anews q*parent)

Let ¢ denote a configuration of an object, i.e., the pose of the
object in the gripper frame, which is fixed in the world. In this
paper, we are considering planar manipulations in a parallel-
jaw grasp, so the configuration space C is [X, Z,0,] € R,
i.e., the object can translate in the grasp plane (X Z) and rotate
about a perpendicular (Y') to the grasp plane.

Algorithm [I] shows our in-hand manipulation planner. Let
Ginit and qgoq; be an initial and desired pose of the object in
the gripper frame respectively. The planner initiates a tree 7
with ¢;,;: and generates motion cones at g;t.

While the desired object pose is not reached within some
cost threshold, a random configuration (gqnq) is sampled.
A nearest configuration (¢parent) tO Grand in the tree 7 is
found and an unit-step object pose (¢sampic) towards grand
is computed. Using the transition test, the planner evaluates if
moving in the direction of gsqmpie from gpgrent is beneficial or
not. If it is beneficial, the motionCone_push routine computes
an object configuration (gpew) closest to gsqampie that can be
reached using the motion cones at gpqrent. It is further checked
if moving towards gne., is beneficial and if g, is an object

configuration at which the grasp on the object is maintained.
If both the criteria are satisfied, ¢, iS added to the tree
such that the local cost of ¢, and the nodes near ¢, are
lowered if possible. The motion cones are generated for every
new node added to the tree.

Two important routines in Algorithm [I] particularly for this
paper, are generate_motionCones and motionCone_push.

generate_motionCones computes polyhedral motion cones for
a given object configuration in the grasp using the procedure
listed in Section V-B. At every node, we will have the same
number of motion cones as that of pushers.

motionCone_push finds an object pose closest to the desired
sampled pose (gsqampie) that can be reached. This computation
is done using the motion cones at the parent node (¢parent)-
If the object twist needed from the parent node pose to the
sampled pose is already inside any of the motion cones, the
sampled pose can be directly reached. If the required object
twist is outside all the motion cones, a twist that is inside one
of the motion cones and closest to the desired twist is selected.

The use of motion cones for fast low-level unit-step propa-
gation of the system and T-RRT*-based framework for high-
level planning allows us to explore the configuration space
of different object poses in the grasp and generate pushing
strategies for the desired in-hand manipulation.

VII. REGRASP EXAMPLES AND EXPERIMENTAL RESULTS

We evaluate the performance of our planner with examples
of a parallel-jaw gripper manipulating a variety of objects.
The initial pose of an object in the gripper is treated as
[X,Z,0y] = 10,0,0]. Table [ lists the goal poses (in
[mm, mm, deg.]) for different examples. While there are
no comparable available algorithms that can solve the type
of regrasps we are interested in, we provide comparisons
with our own implementations of the same high-level planner
paired with different algorithms to solve the mechanics of
prehensile pushing. These include sampling with rejection by a
feasibility check for stable pushing [3]], and a complementarity
formulation (MNCP) that allows both sticking and slipping at
the pusher contact [2]. We compare the performance in terms
of planning time and the quality of the solutions. The planning
times in Table [[I] are the median times over 10 trials. All the
computations are done in MATLAB R2017a on a computer
with Intel Core i7 2.8 GHz processor.

TABLE I: Physical properties of the experimental objects

Shape Material | Dim [L, B, H] (mm) | Mass (g)
square prism Al 6061 100, 25, 25 202
rectangular prism | Delrin 80, 25, 38 113
T-shaped ABS 70, 25, 50 62

TABLE II: Planning times (sec.) for approaches using motion
cone, stable check [3] and MNCP [2] for unit-step propagation

Manipulation Goal Planning | Planning | Planning

[X, Z,0y] Time | Time [3] | Time [2]
Horz. offset (low p) 20, 0,0 0.45 2.83 592.8
[X, Z,0y] Regrasp | 15, -13, 45 0.67 2.54 17684
T-shaped 25,17.5,0 0.54 0.82 32657
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Flg. 9: Simulation and experimental run for a pushing strategy
to regrasp the aluminum object with low friction pushers. In
the simulation figure (top), the finger and pusher contacts are
shown in green and magenta color respectively.
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Fig. 10: A pushing strategy for [ X, Z, 0y ] regrasp. In simu-
lation, the direction of gravity remains constant in the pusher
frame, because in reality, the pushers are fixed features.

In all the examples below, we assume three line pushers on
the object, one on each side faces of the object parallel to the
Z axis and one under the object parallel to the X axis. We
use high friction line pushers, except in the first example.

1) Regrasping an object offset to the center: In this exam-
ple, the goal is to regrasp the square prism horizontally 20
mm offset from the center. We use low friction pushers first.
Kolbert et al. [18]] showed that for a similar setting, if the
object is pushed horizontally in the grasp it slides down as it
moves sideways in the grasp. For the low-friction pushers, our
planner generates a strategy where the object is first pushed
up using the bottom pusher and then the side pusher is used
to virtually keep the object stationary while the fingers slide
up and along the length of the object as seen in Fig. 9. This
plan is similar to the one found in [2} 3].

When we replace the pushers with high-friction pushers
(pushers with rubber coating), the planner detects that the
desired object twist lies inside the motion cone for the side
pusher at the initial grasp pose, i.e, simply pushing from the
side is a valid pushing strategy.

2) Regrasp in [X,Z,0y]: The goal in this example is
to regrasp the rectangular prism requiring twist in all three
dimensions [X, Z,f0y]. Similar to [3], our planner finds a

Pushes 1 -7

I Initial grasp
-4 40 0

Object X Posmon (mm)

Pushes 8 - 21

D
=)

Ob_]ect Z Position (mm)
=)

i

60 40 20

Fig. 11: Simulated motion of the object in the grasp for a
pushing strategy to manipulate T-shaped object. Snapshots of
the experimental run are is shown in Fig. 2

strategy to achieve the regrasp using only one pusher. In fact,
as we can see in Fig. 10, the pushing strategy our planner
comes up with is more direct and seems to avoid unnecessary
object motions seen in the strategy shown in [3]-Fig.1.

3) Manipulating a non-convex object: In this example, the
goal is to regrasp a T-shaped object. The goal pose is such
that a greedy approach to push the object directly towards the
goal will result in losing the grasp on the object. Our planner
comes up with a pushing strategy that respects the geometric
constraints of the problem as shown in Fig. 11.

VIII. DISCUSSION

The motion cone is the set of possible motions (twists) of an
object pushed in a plane. It also describes the set of motions of
the pusher that yield sticking behavior. It abstracts away the
complex dynamics of frictional pushing and provides direct
bounds in the action (or effect) space for pushing tasks.

In this paper we extend the concept of motion cones to a
general set of planar pushing tasks with external forces such
as the gravitational force in the plane of motion. We show
that the motion cone for a general planar push is defined as
a cone with low-curvature faces, and propose a polyhedral
approximation for efficient computation.

We demonstrate the use of motion cones as the propagation
step in a sampling-based planner for in-hand manipulation.
Combining a T-RRT*-based high level planning framework
and a motion cone-based dynamics propagation, the planner
builds in-hand manipulation strategies with sequences of con-
tinuous prehensile pushes in a fraction of a second.

The motion cone provides a direct knowledge of the set
of reachable configurations. Such a structure of reachable
volumes could enable planning through regions/volumes of
configuration space [1} 23 26l 27]]. Moreover, motion cones, as
bounds on pusher actions or as bounds on the object motions,
have an adequate form to be incorporated into trajectory op-
timization frameworks to plan pushing strategies. We believe
that the extension and application of motion cones to more
general settings provides new opportunities for fast and robust
manipulation through contact.
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