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Abstract—This paper investigates the influence of different
joint space and orientation representations on the approximation
of the forward kinematics. We consider all degrees of freedom
in three dimensional space SE(3) and in the robot’s joint space
Q. In order to approximate the forward kinematics, different
shallow artificial neural networks with ReLU (rectified linear
unit) activation functions are designed. The amount of weights
and bias’ of each network are normalized. The results show that
quaternion/vector-pairs outperform other SE(3) representations
with respect to the approximation capabilities, which is demon-
strated with two robot types; a Stanford Arm and a concentric
tube continuum robot. For the latter, experimental measurements
from a robot prototype are used as well. Regarding measured
data, if quaternion/vector-pairs are used, the approximation error
with respect to translation and to rotation is found to be seven
times and three times more accurate, respectively. By utilizing a
four-parameter orientation representation, the position tip error
is less than 0.8% with respect to the robot length on measured
data showing higher accuracy compared to the state-of-the-art-
modeling (1.5%) for concentric tube continuum robots. Other
three-parameter representations of SO(3) cannot achieve this,
for instance any sets of Euler angles (in the best case 3.5% with
respect to the robot length).

I. INTRODUCTION
In general, computing the forward kinematics (FK) of a

robot with rigid-links is straightforward. The kinematics of a
concentric tube continuum robot (CTCR), which is composed
of multiple concentric, pre-curved super-elastic tubes being ro-
tated and translated w.r.t. each other, is characterized by highly
non-linear behavior due to the elastic interactions between the
tubes [5]. A CTCR is depicted in Fig. 1. Common model-
based approaches [29, 9] are based on the theory of special
Cosserat rods and are solved numerically. Additional factors,
e.g. friction or tube tolerances, are commonly not considered
due to even higher computational load and modeling effort.
Thus, determining the FK of a CTCR is more challenging.

Rather than using a model-based approach to the FK, ma-
chine learning techniques can be applied in order to compute
values of a function that reflects poses from specified values
of the joint space. Neural networks are widely used due to
their universal approximation ability. A feedforward network
(FFN) can approximate a continuous function in a compact
set [7, 11, 16, 17]. Therefore, neural networks can be applied
in order to approximate the FK. Reinhart and Steil [28] as
well as Nguyen et al. [22] consider robots with rigid-links
while Phung et al. [25] utilize a robot with flexible-links.

Fig. 1. Compliant reaction of a concentric tube continuum robot during a
motion sequence while interacting with a potato chip. Its intrinsic compliance
results from the highly non-linear characteristic of its forward kinematics.

The approximation of the FK of a continuum robot being
inherently compliant and flexible such as CTCR is investigated
by Bergeles et al. [3] and by Grassmann et al. [14].

Robotic applications and publications regarding neural net-
works are mostly focused on classification. Such tasks are
not very sensitive to the actual output, since small distur-
bances are unlikely to cause a shift in class. In contrast,
any deviation of the output increases the approximation error.
Furthermore, outputs are influenced by the inputs and by
the smoothness of the continuous function as well. Learning
methods [12, 26, 27, 30] and robot specific FFN architectures
[13, 22, 21] are investigated so far. It is our hypothesis that
the joint space and orientation representation has a significant
impact on input-output characteristics of the FFN being the
desired approximation. To the best of our knowledge, this
effect has not been investigated thus far. Exploring and finding
suitable inputs and outputs can be beneficial in order to make
FFN a more efficient tool in robotic applications. Lastly,
studies on FK approximation are mostly restricted to positions
neglecting orientations, which can be a major drawback for
applications in real-world scenarios.

In this work, we investigate the impact of different joint
space and orientation representations on learning the FK using
FFN. For this purpose, effects and influences are investigated
on a robot with rigid-links, i.e. Stanford Arm, and on a
kinematically more complex robot, i.e. CTCR with three tubes.
All six degrees of freedom (DOF) w.r.t. SE(3) as well as all
6-DOF w.r.t. the robot joint space are considered. In particular,
the following contributions are made:
• Influence of different joint space and orientation repre-

sentations in SO(3) on learning the FK are empirically



studied indicating that advantageous representations are
mandatory even for low dimensional problems.

• The pose in SE(3) consisting of tip position and orien-
tation is learned with no simplifications.

• A simple and effective transformation leads to a fast sam-
pling method considering inequalities and, furthermore,
positively affects the approximation results due to its
capability of removing linear correlations.

• As minor contribution a new representation of cylindrical
joints is introduced.

II. METHODS

In this section, our utilization of artificial neural networks is
briefly described. We state different representations of SO(3)
and provide the approximation errors used as performance
criteria. Finally, we formulate three different joint space rep-
resentations.

A. Artificial Neural Networks

Feedforward networks are utilized, which are a special type
of artificial neural networks. Figure 2 depicts the architecture
of a FFN and shows its notation. Such a FFN can approximate
a smooth function in a compact set [16, 7, 11]. Therefore,
it can approximate the FK. Note that a radial basis function
(RBF) network could be utilized. However, Flake [10] states
that RBF networks are greatly troubled by the curse of
dimensionality because a single RBF unit covers only a small
local region of the input space.

The ReLU (rectified linear unit) activation function ϕ(x) =
max (0, x) is used in the hidden layer. It is advantageous
over the commonly applied tanh activation function, in terms
of computational efficiency and fast training. In order to
approximate a function, linear activation functions are used for
the output layer. The weights of the ReLU activation functions
are initialized by HE-initialization [15], whereas the weights
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Fig. 2. Shallow fully connected feedforward network for the computation
of the forward kinematics. The weight ωl

n,m denotes the weight for the
connection between the mth artificial neuron in the (l − 1) th layer to the
nth neuron in the lth layer. The bias bln denotes the nth bias in the lth layer.
The activation aln with l 6= 0 denotes the output of the nth artificial neuron
in the lth layer, whereas a0n denotes the input of the artificial neural network.

of the linear activation functions and all biases in the FFN are
initialized with a uniform distribution.

The Adam optimizer [18] with mini-batch size of Nbs = 128
is utilized in order to optimize weights ω and biases b of the
FFN. The batches are randomly extracted from the training
set Stra in each epoch Nep. Using the Adam optimizer, we
experimentally observe that neither under- nor over-fitting
occurred and, furthermore, that the Adam optimizer converges
much faster than a vanilla gradient-descent optimizer. Its
individual adaptive learning rates and the adaptive estimation
of lower-order moments of the gradients maybe cited as a
cause for the described observations. It is worth mentioning,
according to LeCun et al. [20] second-order optimizers are
impractical in almost all useful cases.

B. Parameterization of SO(3)

a) Euler Angles: A robot’s end-effector orientation is
commonly represented in terms of a minimal number of
parameters, typically three angles. A set of three valid angles
with appropriate restrictions are Euler angles. The restriction is
needed in order to have a unique representation [19]. There are
twelve different sets of Euler angles, each having singularities
depending on the sequence. Therefore, all twelve sequences of
Euler angles are empirically studied in this paper. Throughout
this paper, Diebels [8] compact notation for Euler angles is
used in order to indicate the rotation sequences. For instance
123, which is equivalent to rotating a vector about the fixed
x-axis (1st-axis), followed by a rotation about the fixed y-axis
(2nd-axis), followed by a rotation about the fixed z-axis (3rd-
axis). Hence, 123 is sometimes referred as XYZ.

b) Vectorial Parameterization: For a given strictly in-
creasing smooth scalar function f(ϑ) defined in the semi-open
interval ]−ϑ, ϑ] with f(0) = 0 and ϑ > 0, the orientation
displacement can be expressed as [6]

r = f(ϑ)n, (1)

where n = (nx, ny, nz)
T and ϑ are, respectively, the unit

vector and the rotation of an equivalent angle/axis represen-
tation of orientation. While there exist multiple possibilities,
the discussion in [2] shows that two subclasses of vectorial
parameterization, namely f (ϑ) = µ tan (ϑ/µ) and

f (ϑ) = µ sin (ϑ/µ) (2)

have interesting properties, where µ ∈ N \ {0}. We are inter-
ested in the latter subclass (2). We chose the sine function due
to the fact that it is bounded between ±1. Furthermore, we set
µ = 4 because in this case (2) is a strictly increasing smooth
scalar function for all considered angles, i.e. 0 ≤ ϑ < 2π.

Using basic algebraic transformations, angle ϑ and axis n
in (1) with (2) and µ = 4 can be calculated. This leads to

ϑ = 4arcsin

(
||r||2
4

)
and (3)

n =
r

||r||2
, (4)

where the unit vector n can only be recovered if ϑ 6= 0 rad,
which is equal to ||r||2 6= 0.



c) Quaternions: We briefly review quaternions and pro-
vide the formulae in order to compute the orientation angle ϑ
and the fixed axis n. In addition, we compare the rotational
approximation error in terms of unit quaternions.

A unit quaternion is a hypercomplex number denoted by

ξ = η + ε1ı+ ε2+ ε3k (5)

with the property η2 + ε21 + ε22 + ε23 = 1. The quaternionic
units ı,, and k satisfy Hamilton’s rule ı2 = 2 = k2 = −1
and ık = −1. A unit quaternion ξ defined by

ξ = cos (ϑ/2) + (nxı+ ny+ nzk) sin (ϑ/2) (6)

represents an orientation. This representation of SO(3) is
singularity-free and global [31]. Its double coverage property
of SO(3), also known as antipodal property, i.e. ξ and −ξ
represent the same orientation, can be solved by applying
ξ′ = sign(η)ξ, where sign(η) gives the sign of η and sign(0)
is +1 by definition.

Using (6), we can easily determine the orientation angle

ϑ = 2arccos (sign(η)η) (7)

and the fixed axis of the orientation

n =
sign(η)√
ε21 + ε22 + ε23

(ε1, ε2, ε3)
T
. (8)

Note that n can be computed if and only if η2 6= 1 and ε21 +
ε22 + ε23 6= 0.

d) Mapping between Quaternions and Vectorial Param-
eterization: The coefficients of a quaternion (5) can be ex-
pressed in terms of (1) and (2). This leads to

η = cos

(
2 arcsin

(
||r||2
4

))
= 1− 1

8
||r||22 and (9)

εi =
1

8
ri

√
16− ||r||22 for i ∈ {1, 2, 3} , (10)

where ri are components of (1). For both (9) and (10) we take
advantage of the double-angle formulae for sine and cosine
functions and only consider the special case µ = 4. Combining
(9) with (10) and rearranging for ri yields

ri =
4 sign(η)√

2 + 2η sign(η)
εi for i ∈ {1, 2, 3} , (11)

where sign(η) is added in order to avoid zero division.
e) Four-Parameter Angle-Axis Representation: The

angle-axis representation is commonly defined as (1) with
f (ϑ) = ϑ. Therefore, the commonly used angle-axis
representation has three parameters. However, we construct
and use a four-dimensional version including the unit vector
n and the rotation ϑ. This four-parameter representation
(ϑ,n) = (ϑ, nx, ny, nz) serves as comparison to quaternions
being also a four-parameter representation.

C. Approximation Error: Cartesian Space

Here, we describe the approximation error for the FK. The
translational error et is given by

et =

√(
tx − t̂x

)2
+
(
ty − t̂y

)2
+
(
tz − t̂z

)2
, (12)

where ti and t̂i are the positions along the corresponding
Cartesian axis. The hat symbol is used to denote an ap-
proximated value computed by an artificial neural network.
Otherwise it is the ground truth value, i.e. test set Stest. The
rotational error eϑ is considered as

eϑ = min {2 arccos (ηη̂ + ε1ε̂1 + ε2ε̂2 + ε3ε̂3) ,

2 arccos (ηη̂ − ε1ε̂1 − ε2ε̂2 − ε3ε̂3) } , (13)

which respects the antipodal property of quaternions. The
rotational error (13) computes the shortest distance between
the quaternions ξ and ξ̂. It can be derived from (7), where its
argument is the quaternionic multiplication between ξ and the
quaternionic conjugate of ξ̂. If the vectorial parameterization
is used, ξ̂ = η̂+ ε̂1ı+ ε̂2+ ε̂3k for (13) is determined by (9)
and (10), where r̂ is computed by an artificial neural network.
If one of the twelve Euler angles’ is applied, a mapping from
respective Euler angles to quaternion is used, see Diebel [8] for
reference. Note that to satisfy the property η̂2+ε̂21+ε̂

2
2+ε̂

2
3 = 1,

the quaternion ξ̂ must be normalized.

D. Various Joint Space Representations of a CTCR

The 6-DOF of a CTCR are composed of translations,
denoted βi, and axial rotations, denoted αi, of each tube. The
subscript i refers to the respective tube. These 6-DOF can be
seen as a composite of three lower pair connections, more
specifically a composite of three 2-DOF cylindrical joint. The
translations βi are interdependent with the inequalities

0 ≥ β3 ≥ β2 ≥ β1 and (14)
0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1, (15)

where Li is the overall length of the ith tube. In the following,
we describe various representations of the ith cylindrical joint.
Figure 3 shows the notation and gives a visual aid.
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Fig. 3. Tubes of a concentric tube continuum robot can be rotated, denoted
αi, and translated, denote βi, w.r.t. each other. The joint space representation
in cylindrical form (17) and polar form (19) can be visualized as cylindrical
coordinate system and Argand diagram on the complex plane, respectively.



a) Simple Form: A way to describe joints is

qi = {αi, βi} , (16)

which is commonly used. Regarding neural network applica-
tions, Bergeles et al. [3] use this joint space representation
given by (16) in order to compute the kinematics of a CTCR.

b) Cylindrical Form: In order to achieve higher accuracy,
Grassmann et al. [14] subdivide the joint space Q into a
rotational joint space A and a translational joint space B.
Afterwards, they take advantage of the fact that the elements
of A denoted by αi ∈ S1 being a 1-sphere can be defined as a
circle. The transformation by means of trigonometric functions
leads to their proposed cylindrical joint representation

γi = {γ1,i, γ2,i, γ3,i} = {cos (αi) , sin (αi) , βi} , (17)

which describes the ith tube as a triplet. From (17) follows

αi = atan2 (γ2,i, γ1,i) , (18)

which gives the unambiguous correct value of αi in the
respective quadrants.

c) Polar Form: A minor disadvantage of (17) is that the
number of parameters increases. In order to avoid this, we
propose a novel cylindrical joint representation given by

δi = {δRe,i, δIm,i}
= {(k − βi/Li) cos (αi) , (k − βi/Li) sin (αi)} , (19)

where k > 0 is a hyper-parameter in order to avoid zero radius
if βi is zero. Note that βi ≤ 0 and 0 ≤ −βi/Li ≤ 1. Similar
to (18), the correct rotary joint αi can be obtained by

αi = atan2 (δIm,i, δRe,i) . (20)

By rearranging (19) and solving for βi, the translational joint

βi = Li

(
ki −

√
δ2Im,i + δ2Re,i

)
(21)

can be recovered as well. Due to the fact that term ki−βi/Li
of (19) is always positive, the solution in (21) is unique.
Moreover, atan2 in (20) is influenced neither by ki > 0 nor
by βi ≤ 0.

III. DATA ACQUISITION

Here we give a brief overview of the testbed and the used
robots. Moreover, we provide equations for time efficient
sampling considering inequalities, which is also suitable for
scaling.

A. Experimental Setup

In order to compare the effects of joint space representations
on the approximation accuracy, we generate and acquire data
for a serial kinematic manipulator and a CTCR. We selected
these two robot types for our study as their joint space exhibits
similar characteristics, i.e. a composition of translational and
rotational joints. Furthermore, both robot types have 6-DOF
in task space and 6-DOF in joint space. More importantly,
the Stanford Arm has relatively simple kinematics, which can
be described by the concatenation of multiple transformation

matrices, while the CTCR is a more kinematically complex
robot due to highly non-linear behavior between its flexible
tubes. Roughly speaking, both robot types lay on the opposite
side of the spectrum of the kinematic modeling complexity.
In order to bound the amount of data, the joint spaces are
restricted, see Table I and Table II.

Positions and quaternions are considered as the ground truth
values for the comparison. The method proposed by Bar-
Itzhack [1] is used in order to convert a rotation matrix to
a quaternion. If one of the twelve Euler angles’ is applied,
a mapping from quaternion to respective Euler angles is
utilized, see Diebel [8] for reference. To determine the vector
parametrization r and the four-parameter angle-axis represen-
tation (ϑ,n), we apply Eq. 11 and Eq. 7-8, respectively.

TABLE I
SIMULATED STANFORD ARM.

Restricted joint space Denavit-Hartenberg parameters [23]

i min max α in ◦ d in mm θ in ◦ a in mm

1 −90◦ 90◦ −90 412.50 q1 0
2 −45◦ 45◦ 90 153.67 q2 0
3 0.5m 0.75m 0 q3 −90 0
4 −90◦ 90◦ −90 0 q4 0
5 −25◦ 25◦ 90 0 q5 0
6 −90◦ 90◦ 0 262.89 q6 0

TABLE II
FULL AND CONSTRAINED JOINT SPACE OF A CTCR.

Simulation: full joint space Real robot: constrained joint space

αi in ◦ βi in mm αi in ◦ βi in mm

i min max min max min max min max

1 −180 180 −205 0 −60 60 −144 0
2 −180 180 −164 0 −60 60 −115 0
3 −180 180 −115 0 −60 60 −81 0

TABLE III
TUBE PARAMETERS OF THE CTCR.

Parameter Set of tubes

Term Symbol Unit Tube 1 Tube 2 Tube 3
(innermost) (middle) (outer)

Length, overall L mm 370 305 170
Length, straight Ls mm 325 205 70
Curvature κx m−1 15.8 9.27 4.37
Diameter, outer Do mm 0.4 0.9 1.5
Diameter, inner Di mm 0.3 0.7 1.2
Young’s Modulus E GPa 50 50 50
Poisson’s ratio ν 1 0.3 0.3 0.3

a) Stanford Arm: It consists of two revolute joints,
followed by a prismatic joint, followed by three intersecting
revolute joints. Paul [23] describes its FK. The Denavit-
Hartenberg parameters are listed in Table I. For this robot, we
generate S = 500,000 joint space/end-effector pair samples in
simulation.

b) CTCR: It consists of three tubes. Mechanical prop-
erties and geometrical parameters of the CTCR are listed in
Table III. The geometrically exact model proposed by Rucker
et al. [29] is applied in order to compute its FK. For the CTCR
in simulation S = 500,000 joint-space/end-effector pose pair
samples are generated.



c) Real CTCR Prototype: Similar to the CTCR in sim-
ulation, it consist of three tubes (mechanical properties and
geometrical parameters are listed in Table III). The CTCR
prototype is depicted and described in Fig. 4. We gathered
S = 94,000 measured data with the CTCR prototype. The
testbed consists of a 6-DOF sensor attached at the distal tip of
the CTCR prototype, and an electromagnetic tracking system
(AURORA, Northern Digital Inc., ON, Canada). The tracking
system provides positions and quaternions.
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Fig. 4. CTCR prototype has three carriers each consisting a tube and a motor
for rotation. Motors for translation are attached at the back cover. Six equal
motors (DCX 16 L, Maxon Motor AG, OW, Switzerland) are controlled with
a motion control board (DCM4163, Galil Motion Control, CA, USA).

B. Sampling for CTCR

Samples of a given robot’s joint space are generated from
a uniform random distribution U . This is straightforward for
the Stanford Arm as no dependencies between the joint values
exist. In contrast, sampling the joint space of a CTCR requires
consideration of the inequalities in (14) and (15).
A is a 3-torus T3 and can be described as a cube, where

the opposite sides of this cube are pasted together. Note the
property of S1 has to be considered, i.e. αi = αi + 2πk for
k ∈ N. Taking into account the independence of the rotational
parameters αi among each other, sampling in the rotational
joint space A is straightforward, i.e. the pth value can be
computed by α(p)

i = U ]αi,min;αi,max].
Due to the inequalities (14) and (15), the translational pa-

rameters βi are interdependent. Nevertheless, all valid configu-
rations in B fulfilling (14)-(15) and are within a parallelepiped.
Furthermore, the edges of the parallelepiped intersecting the
origin define the bases of the parallelepiped. Hence, an affine
transformation MB between an unit cube and parallelepiped
can be found, which is given by

MB =

β1,min − β2,min β2,min − β3,min β3,min
0 β2,min − β3,min β3,min
0 0 β3,min

 , (22)

where the columns of MB are the bases of the parallelepiped
and βi,min are the minimum translation value and negative
overall tube length Li of the respective tube. Figure 5 provides
additional visual aid. Drawing samples out of the unit cube via
U3 [0; 1] and, afterwards, applying (22) can be used for time
efficient sampling in B.

Note that (22) is not unique. A second affine transformation

MB,2 =

β1,min 0 0
β1,min β2,min − β1,min 0
β1,min β2,min − β1,min β3,min − β2,min

 (23)

can be inferred from the used sampling method by Burgner-
Kahrs et al. [4]. The pattern for n tubes can be easily seen
from (22) and (23) leading to a upper triangular matrix and
lower triangular matrix, respectively.
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IV. FORWARD KINEMATICS

In the following, the approximation of the FK is evaluated.
The aim is to investigate the influence of different orientation
and joint space representation on the FK for the two robot
types.

The measured data set S = 94,000 is divided in training
set Stra = 90,000 and test set Stest = 4000. The model-based
data set S = 500,000 is divided in training set Stra = 490,000
and test set Stest = 10,000. According to [14], no validation
set Sval is needed if the Adam optimizer [18] is applied. The
performance of the FFN w.r.t. the chosen representations are
measured by the median error of eϑ given by (13) and of et
given by (12) on the respective unseen test set Stest at epoch
Nep = 500. Respective Stra is only utilized for training.

A. Fully Connected Feedforward Network

The input layer expects a joint description q defined by (16),
(17), or (19) with k = 1. Moreover, we apply different scaling
to the joint space representations, which is listed in Table IV.
These normalizations are considered such that the inputs are
defined in an interval [−1, 1] or [0, 1]. The output layer learns
Euler angles, vectorial parameterization (1) with (2) for µ = 4,
four-parameter angle-axis representation (ϑ,n), or quaternions
ξ. Therefore, poses are represented by [r, t], [(ϑ,n) , t], or
[ξ, t]. Neither orientation nor position t of the pose are scaled.
The unit of t is meter whereas the unit of rotation depending
on the considered representation is one or radian. For instance,
the unit of quaternion ξ is one and the unit of Euler angles are
radian. In order to have almost the same amount of parameters,
i.e. weights ω and biases b, along different used FFN, we
compute the number of parameters, i.e. the complexity C of
the FFN, and adjust the number of activation functions in the
hidden layer. Table V lists the applied architecture and learning
parameters.



TABLE IV
APPLIED SCALING FOR THE JOINT SPACE REPRESENTATION.

Legend1 Description of the scaling

—– qi (I) No scaling is applied to the joints of the Stanford Arm.
—– qi (II) Each joint is scaled via the maximum value, cf. Table I.
—– γi (IV) Rotary joints of the Stanford Arm are transformed by

means of trigonometric functions similar to (17).
—– γi (V) Rotary joints are transformed by means of trigonomet-

ric functions, whereas the prismatic joint is scaled by
0.75m.

—– αi, βi (I) No scaling is applied to the joints of the CTCR.
—– αi, βi (II) Each joint of the CTCR is scaled by the absolute value,

i.e. αi,max and βi,min, cf. Table II.
—– αi, βi (III) αi is scaled by αi,max whereas βi is transformed into an

unit cube utilizing the inverse of (22).
—– γi (IV) The cylindrical form γi is applied, see (17).
—– γi (V) Rotary joints of the CTCR are transformed by means

of trigonometric function similar to (17) while βi is
transformed by the inverse of (22).

—– δi (VI) The polar form δi is used, which is given by (19).
1Notation in the legend used in Fig. 6, Fig. 7, and Fig. 8.

All FFN were implemented in Tensorflow 1.9, running on
a 64-bit Linux operating system, on a computer with a Xeon
3.60GHz× 8 processor.

B. Results

In Fig. 6 and Fig. 7 courses of eϑ with model-based data
are presented. Figure 8 shows courses of eϑ with measured
robot data. For the sake of compactness, the compact notation
[8] for Euler angles indicating the rotation sequences is used,
e.g. 123, and the minimum errors eϑ,min as well as et,min are
reported in Table VI. The minimum errors of all different joint
space representations for a particular orientation representation
for the respective robot are highlighted (bold font). Regarding
CTCR with [ξ, t] and γi, we achieve a median error of
et = 1.94mm and eϑ = 3.48◦ on measured data. By applying
M−1B onto γi, et = 2.02mm and eϑ = 1.64◦ have been
determined. While et = 1.79mm and eϑ = 1.46◦ are achieved
if αi, βi(III) is used. In the best case for ξ, eϑ = 1.46◦ and
et = 1.79mm being less then 0.87% w.r.t. the robot length
of 205mm are achieved. eϑ = 1.43◦ and et = 1.62mm have
been determined w.r.t. (ϑ,n). Thus, a relative error of 0.79%
w.r.t. the robot length is achieved.

TABLE V
FEEDFORWARD NETWORKS FOR FORWARD KINEMATIC APPROXIMATION.

Architecture with ReLU Training with Adam optimizer2 Weights & bias3

Nip Nh Nop Nbs Nep λ C

6 100 6 128 500 3× 10−5 1306
6 93 7 128 500 1× 10−5 1309
9 81 6 128 500 3× 10−5 1302
9 77 7 128 500 1× 10−5 1316

11 68 7 128 500 1× 10−5 1299
11 72 6 128 500 1× 10−5 1302

2 Beside of learning rate λ and following the notation in [18], it is
further parametrized with β1 = 0.9, β2 = 0.999 and ε = 1× 10−8.

3 The complexity C is the sum of all weights and bias in the neural
network. For this shallow neural network it can be computed by
C = (1 +Nip)Nh + (1 +Nh)Nop.

C. Discussion

For both robot types, we can conclude that all Euler angles
as well as vectorial parametrization are unfavorable orientation
representations. All FFN with this orientation representation
as part of their output generalize poorly and the improvement
saturates quickly, which can be observed in Fig. 6, Fig. 7,
and Fig. 8. eϑ and et are mainly influenced by the selected
orientation representation. The performance of Euler angles
highly depends on the chosen sequences. For instance most
sequences with repeated axis of rotation, e.g. 121, perform
poorly. The chosen sequence of elementary rotation has dif-
ferent singularities [8]. Poor performances resulting from the
decrease in inputs cannot be cited as a reason because all
complexities C of the FFN are normalized, cf. Table V.
Remarkably, the used vectorial parametrization with (2) and
µ = 4 performs poorly, although it is constructed in order
to avoid singularities due to the fact that the first quarter of
the sine-function is bijective. According to Stuelpnagel [31], it
should be noted that none of the representations of SO(3) with
three parameters can be both global and nonsingular. From
Stuelpnagel’s [31] statement as well as from the results, we
hypothesize that none of the three-parameter representation of
SO(3) including vectorial parameterization (1) and all sets of
Euler angles are suitable for machine learning applications.
However, γi and utilizing M−1B clearly shows an increase of
accuracy w.r.t. the unfavorable orientation representation.

In comparison, utilizing quaternions, errors eϑ and et are
noticeably smaller regardless of the joint space representation
and robot type. In some cases, the approximation is better by
utilizing (ϑ,n). However, if ϑ = 0, an arbitrary axis n can
be chosen being undesirable in machine learning application.
Note that quaternions automatically squash values of SO(3)
between −1 and 1, which is suitable for a FFN.

Regarding the Stanford Arm, the accuracy of conventional
kinematic modeling approaches [24] are not readily achiev-
able with neural networks. However, the results reveal that
advantageous joint space and orientation representations such
as quaternions are mandatory even for low dimensional appli-
cations. We are confident that with our investigations, higher
dimensional machine learning applications in robotics can be
improved.

In contrast to our previous work [14], here we use a 20
times smaller learning rate λ, 23% fewer learnable parameters
(previous complexity C = 1707), and a slightly different
version of eϑ. Moreover, the previous unit of the position t is
millimeter instead of meter. We observe that approximating
the FK of a CTCR with Euler angles is not achievable if
the unit of t is millimeter. Furthermore, this difference in
scaling may reinforce the effect observed by us [14], where
γi outperformed untransformed αi and βi. By comparing the
course of αi, βi(I) with γi(IV), this effect cannot be observed
in Fig. 8. However, in Fig. 7 joint space representation γi
outperforms all variants of αi, βi if more data is used during
the training. Note that the workspace has been enlarged.

Regarding δi, all FFN approximate the FK worse due to the



TABLE VI
BEST ACHIEVED RESULTS ON THE RESPECTIVE TEST SET STEST AMONG ALL APPLIED JOINT SPACE REPRESENTATIONS FOR DIFFERENT ORIENTATION.

robot4 error5 121 123 131 132 212 213 231 232 312 313 321 323 vp6 ξ (ϑ,n)

sStA eϑ,min 13.6 6.6 41.5 32.6 14.8 6.6 29.6 42.4 5.5 20.7 5.5 25.1 7.1 4.0 5.5
sStA et,min 43.3 32.7 55.0 54.8 42.3 33.0 52.7 58.8 26.9 46.4 26.9 45.8 32.8 15.2 22.3

sCTCR eϑ,min 18.0 15.7 29.7 30.7 16.9 15.5 23.5 23.7 15.5 20.8 15.5 21.9 15.4 9.0 9.1
sCTCR et,min 13.4 13.8 14.6 14.3 13.3 12.9 13.4 14.0 11.7 13.3 11.8 12.9 12.5 7.6 7.8
rCTCR eϑ,min 50.4 11.7 10.3 10.3 21.0 10.2 10.3 13.2 10.3 10.3 11.4 32.2 10.3 1.4 1.4
rCTCR et,min 7.7 7.4 7.2 7.2 7.7 7.3 7.2 7.6 7.4 7.2 7.4 7.5 7.2 1.8 1.6

4 sStA: Stanford Arm, sCTCR: concentric tube continuum robot in simulation, rCTCR: real robot prototype.
5 Approximation error at Nep = 500 is the smallest median error among all joint space representations. et,min in mm and eϑ,min in ◦.
6 vp: vector parametrization.

interconnections of δi, cf. (19). Hence, δi is a disadvantageous
joint space representation concerning machine learning appli-
cation due to the non-linear correlation between αi and βi.
However, from a mathematical point of view, it can be seen
that δi is suitable for the inverse kinematics, cf. (20) and (21).
Moreover, the parameter ki in (19) can be further improved.

Using the cylindrical form γi for both robot types, the
accuracy and convergence can be drastically improved. Trans-
forming the inputs can be seen as preprocessing on the
inputs leading to a functional link network, see Flak [10] for
reference. Including γi explicitly as inputs into the FFN is
beneficial instead of forcing the network to learn a potentially
difficult-to-model concept. This can result in simpler FFN with
lower complexity C that can lead in an overall shorter training
time and more accurate approximation.

In comparison with a state-of-the-art model-based approach
for CTCR [29], we achieve almost twice better accuracy w.r.t.
the relative error et of 0.87% and 0.79% by utilizing four-
parameter representations, whereas our range of actuation is
50% larger regarding the maximum translation. Even when
incorporating external loading, e.g. 6-DOF sensor, a minimal
tip error of 2.91mm and 1.5% w.r.t. the robot length is
reported by Rucker et al. [29]. Note that a FFN can account
for effects which are challenging to model, such as friction.
However, a FFN cannot model hysteresis because it is a path
dependent and dynamic phenomenon.

Furthermore, the accuracy can be improved by transforming
the translational joint space B into a unit cube via the inverse
of (22), i.e. M−1B . This can be clearly seen from the results
w.r.t. both CTCR. The accuracy is increased and the conver-
gence is faster, which can be seen in the course of αi, βi(III)
and γi(V) in Fig. 7 and in Fig. 8. Even for unfavorable orienta-
tion representations, an increase of accuracy can be observed.
This is probably due to the following three reasons. First,
the space spanned by the input regarding βi may be better
covered by an unit cube than by a (scaled) parallelepiped.
Roughly said, the parallelepiped has unused space, cf. Fig. 5.
Second, the FFN does not need to implicitly approximate
the inequalities in (14) and (15), which obviously cannot be
adequately modeled by the FFN. Third and more importantly,
the inequalities can be modeled as a transformation given
by MB, which is a linear transformation. Hence, βi are
linear correlated, which is generally an undesirable property
of an input. In this case LeCun et al. [20] suggest to use
principal component analysis (PCA) in order to remove linear

correlations in inputs. The present results and the previous
analysis, cf. Fig. 5, indicate that the translational joint space
B can be uncorrelated if (22) is applied. As a consequence,
we found a simple and effective transformation capable of
decorrelating the translational joint space B leading to an
improvement in accuracy and acceleration of the convergence.
It can also be used as fast sampling method.

V. CONCLUSIONS

In this paper, we considered the problem of accurate
kinematics calculation of robot types with cylindrical joints,
especially the Stanford Arm and a concentric tube contin-
uum robot. Artificial neural networks with different pose and
joint space representations have been applied in order to
approximate the forward kinematics with model-based and
measured experimental data. By analyzing the influence of
different pose and joint space representations, we observe
that four-parameter orientation representations achieve at least
three times higher accuracy, in comparison with other SO(3)
representations. Hence, we suggest the use of singularity free
quaternion/vector-pairs for SE(3) representation in machine
learning applications. Learning the forward kinematics of the
Stanford Arm reveals that advantageous joint space and orien-
tation representations are mandatory even for low dimensional
applications. Moreover, the approximation error in translation
and orientation can be further reduced by utilizing the pre-
sented affine transformation MB to the translational joint space
B of a concentric tube continuum robot. In future work we
intend to study the influence of different representations on
the inverse kinematics as well.

Overall, we proved our hypothesis that the joint and orien-
tation representation has a major impact on the effectiveness
of learning the forward kinematics. It has yet to proven that
this observation can be generalized to other robot types.
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