
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Impact-friendly robust control design with task-space
quadratic optimization

Yuquan Wang and Abderrahmane Kheddar
CNRS-University of Montpellier, LIRMM, Interactive Digital Humans group, Montpellier, France.

Email: {yuquan.wang, kheddar}@lirmm.fr

Abstract—Almost all known robots fear impacts. Unlike hu-
mans, robots keep guarded motions to near zero-velocity prior to
establishing contacts with their surroundings. This significantly
slows down robotic tasks involving physical interaction. Two
main ingredients are necessary to remedy this limitation: impact-
friendly hardware design, and impact-friendly controllers. Our
work focuses on the controller aspect. Task-space controllers
formulated as quadratic programming (QP) are widely used in
robotics to generate modular and reactive motion for a large range
of task specifications under various constraints. We explicitly
introduce discrete impact dynamics model into the QP-based
controllers to generate robot motions that are robust to impact-
induced state jumps in the joint velocities and joint torques.
Our simulations, validate that our proposed impact-friendly QP
controller is robust to contact impacts, shall they be expected or
not. Therefore, we can exploit it for establishing contacts with high
velocities, and explicitly generate task-purpose impulsive forces.

I. INTRODUCTION

Embedding robots with the capability of generating or
handling impulsive forces (i.e. setting or releasing contacts
with high speed) will increase their performance for a large
variety of tasks or be able to perform new ones. For example,
dynamic parkour in legged locomotion (as recently showcased
by Boston Dynamics), grasping various objects in the fly or
the course of the action, pushing using high impact forces to
fight static friction of objects in assembly or motion, etc. For
this purpose, one needs to deal with two major aspects that
are complementary. First, it is important to have a hardware
that can absorb the impact energy by mechanical design, e.g.
robots having elastic or variable impedance actuators; and for
a given robot, what are the admissible impact ranges. Second,
it is similarly important to design a controller that is robust to
impact uncertainties. Indeed, it is impossible to know precisely
when and where impacts will occur, even if we intentionally
planned it. The reason why this is important is because, even
for low-velocity, impacts duration is typically less than a
millisecond, as suggested in Pashah et al. [1]. Impacts also
result in abrupt change in the velocity and torque which are
then none-derivable with respect to the control time-step, and
hence, non-smooth. Moreover, the dynamics at impact writes
differently and is used together with specific state observers. A
reset map is generally needed to restart the controller from the
current post-impact state.

As presented in Sec. II, there have been several approaches
proposed to deal with impacts in robotics. Some, prevent the
impact to occur by substantially reducing the speed prior to
contacts. We do not consider such approaches as we aim at

achieving high impact-purpose tasks. Therefore, we detail and
compare approaches that are either robust to impact using ded-
icated control strategies, e.g. using hybrid control, or designed
to specifically generate impacts. The literature in robotic impact
is rich in terms of modelling techniques that we borrowed; e.g.
the impact-induced state jumps in joint velocities, joint torques
and the end-effector impulsive forces can be derived from the
algebraic equations given by Zheng and Hemami [2].

Our contribution lies in handling and generating impact tasks
using task-space controllers that are formulated as constraint
optimization quadratic programming (QP) –e.g. the multi-
objective QP controller in Bouyarmane et al. [3], see Sec. III.
QP controllers proved to be very efficient in handling concur-
rently a large number of tasks with various sensors modalities.
We asked ourselves the following question: what changes are
to be made to use these controllers to generate impact-tasks?
First, we designed a simulation of a simple robot commanded
by a QP controller with few common tasks (set-point reaching)
and constraints (torque, joint and velocity limits). Then, we
investigated what happens if, in the course of the reaching
task, the robot encounter an expected wall (an obstacle) set at a
random Cartesian position between the initial robot’s terminal
point and the set-point to reach. This simulation revealed
interesting observations that we report in Sec. III.

In brief, the jump of torques and the absence of contact forces
(in the QP model, as we do not expect any contact), will make
the QP controller instantly infeasible in many contact situations.
This is illustrated in Fig. 1, and the main reason of the controller
infeasibility or misbehavior is that the physical limitations can
be instantly violated (which is not surprising indeed).

Fig. 1: Snapshots of a manipulator crashed with a wall at
0.72 m/s along the normal direction. After the impact the un-
derlying QP controller becomes infeasible due to the violation
of the joint torque limits.

In order to circumvent this, our idea is intuitively simple. We
keep the structure of the task-space QP formalism as commonly

written (e.g. [3]) but we rewrite the constraints that are subject
to jumps in the state, to embed a worst-case impact-aware
strategy so that they remain feasible for a bounded change
in states (velocity, torques). This bounded change is set from
the hardware admissible impact, i.e. from the range of what a
robot can absorb as impact energy by hardware. Our approach
is thoroughly detailed in Sec. V. By doing so, we guarantee
that our QP controller is robust to impacts shall they occur on
purpose with uncertainties on their timing (and even location) or
unexpectedly. Moreover, right after the impact, we can easily
switch to force control by integrating the contact constraints
with admittance task in the QP as in [3].

Using the DART simulator reported in Lee et al. [4], we
incrementally validate the following aspects of our proposed
impact-friendly QP controller, see Sec. VI:
• stabilization of impacts within the robot admissible limits,

in terms of bounded joint velocity and impulsive torques;
• applying impulsive forces higher than the maximal forces

provided by the statics.
The simulation results assess our approach in several impact
scenarios and show that our formulation keeps the QP con-
troller feasible where a usual QP formulation (that is not
impact-aware) would fail. Also the QP controller simulation
is connected to a physics engine that provides the feedback
that is decoupled from the QP controller dynamical model.
This proved to have very high transferability success to real
experiments as reported in [3]. To our best knowledge, our
work is the first to propose a unified task-space QP controller
to generate both kinematic, dynamic and impact tasks.

II. RELATED WORK

Impacts amount to sudden transitions from non-contact
to contact state with relatively high contact velocities. This
leads to state jumps that are not in favor of smooth control
approaches. Thus a commonly used strategy to deal with
impacts is to exploit small contact velocities to avoid peaks
in the robot states and keep use of continuous control laws.
Stanisic and Fernández [5] proposed a sliding-mode controller
to simultaneously stabilize the impact force and the contact
velocity. In the 2D case, Liang et al. [6] and Dupree et al.
[7] proposed Lyapunov controllers to stabilize the transition
between non-contact to contact modes. Recently Salehian and
Billard [8] proposed a local dynamics modulation strategy to
ensure a smooth contact status transition. Along the tangential
and normal direction of the contact surface, the second order
dynamics of the relative position is stabilized. Tarn et al. [9]
and Pagilla and Yu [10] apply a contact transition controller that
regulates to zero, the velocity normal to the surface. The flying
object catching approach proposed by Salehian et al. [11] on
the other hand reduces the relative contact velocity by tracking
the object trajectory and applies a soft catch. Near-zero contact
velocity are not able to touch, push and grasp objects at the
human-level speed. Thus we advocate to explicitly analyze the
influence of the state jumps on the hardware limitations and
re-design the controllers accordingly.

It is not possible for most robots joint motors to react to
large impulsive forces within the impact duration. According
to the experiments reported in Haddadin et al. [12], the variable
stiffness actuator does not help to instantly absorb the impact
energy. It takes up to 0.1 second to react to the same amount
of impulsive torque that is generated within 1 millisecond.
Thus rather than modifying further the mechanical structure
of a robot to accommodate the impacts, we choose for now to
improve the control systems.

Correct and complete impact laws for multiple contact and
impacts are not known for inelastic impacts [13]. Recently in
a flying object batting example, Jia et al. [14] validated that
we can use the closed-form 2D impact dynamics model to
generate the desired impulsive forces. However in 3D cases,
Jia and Wang [15] pointed out that unless the initial sliding
direction could be controlled along certain directions, a closed-
form solution to the impact problem does not exist. Thus we
restrict ourselves to the discrete impact model by Zheng and
Hemami [2] which consists of a set of algebraic equations.

Introducing multiple impacts modeled by non-smooth me-
chanics is equivalent to introducing jumps to the robot states
(e.g. joint velocities and end-effector forces), which in return
requires switching of the constraints or task references. Given
the impact location, Pagilla and Yu [10] modifies the reference
trajectories such that the reference velocity along the surface
normal is zero. Recently, Rijnen et al. [16] proposed to use
two joint-space reference trajectories for dealing with pre-
and post-impact behaviors, switching once from pre- to post-
impact control based on actual impact detection. Using impact
dynamics model and nonlinear optimization, Konno et al. [17]
uses a three-phase optimization problem to generate reference
trajectories as well as the posture at the impact moment to
maximize the impulsive force. All of these methods define the
reference trajectories in the joint space and rely on off-line
computation.

The offline generation of the trajectories compromises reac-
tiveness of a controller, increases the computation and deviates
from the multi-objective controllers that uses real-time sensory
feedback. More importantly, the switching of the reference [10],
[16] or task controllers [17] depends on the impact detection,
which is however not easy to obtain and requires precise and
fast measurements. In general, due to the unknown exact impact
timing, switching controllers that are defined either in task
space or joint space, need to use the set points or references
that are defined for the pre-impact mode during the post-impact
mode for a certain time interval, no matter how small it is.
Undesired misbehavior as such would unfortunately impose the
risk of breaking the hardware limitations of a robot.

Different optimization-based control frameworks have been
introduced to solve the robot redundancy resolution problem,
e.g. hierarchical quadratic programming (HQP) solution pro-
posed by Escande et al. [18] and soft task priorities by Salini
et al. [19]. The contact transitions has not been explicitly and
widely addressed by any of the QP frameworks.

The QP controllers rely on models of the robot itself, i.e.

kinematics and dynamics, and models of the external environ-
ment, e.g. the surface geometry and friction coefficient. Inspired
by the nonlinear optimization trajectory generation method for
impact tasks reported by Konno et al. [17], we introduce the
impact dynamics model presented by Zheng and Hemami [2]
to the QP controller to formulate constraints with respect to
hardware limitations using predictions of state jumps.

Assuming the maximal acceleration/deceleration, Decré et al.
[20] proposed to infer the maximal allowable joint velocity
such that the joint position bounds will be fulfilled. Re-
cently, Del Prete [21] proposed to use the exact time of
constraints saturation compared to the method by Decré et al.
[20]. However in case of unforeseen impacts, the modified
constraints proposed by Decré et al. [20] or Del Prete [21] are
not applicable for treating joint velocity jumps. All of these
methods predict the joint state individually as a linear system,
whereas the impact induced joint velocity jumps are coupled
with each other.

To light of the previous screening, we propose modifications
to the task space QP controllers such that they can safely work
with and exploit impacts for efficient task execution and gen-
erating impulsive forces that could not be achieved otherwise.
Compared to the switching schemes and the contact transition
controllers, we do not rely on the precise contact location nor
the precise impact timing while keeping the reactiveness and
modularity of QP controllers.

III. PROBLEM FORMULATION

In Sec. III-A we recall the discrete impact dynamics model.
Then, in Sec. III-B we formulate a generic QP controller to
explain how it can be jeoperdized at impacts and what needs
to be addressed in order to overcome this.

A. Dynamics model

The dynamic equation of an n degrees of freedom robot
writes:

M(q)q̈ +N(q, q̇) = τ + J>f , (1)

where M(q) ∈ Rn×n denotes the inertia matrix, the vector
N(q, q̇) ∈ Rn gathers both the Coriolis and the gravitation
forces, q ∈ Rn and τ ∈ Rn correspond to the joint position
and the joint torque. In case of an established contact or external
interaction, the contact force f ∈ R3 associated with the
Jacobian J ∈ R3×n is added to(1).

1) Impact dynamics: Let tI be the time when the impact
occurs, and δt its the duration. Assuming that δt is infinitely
small, the joint configuration q(tI) keeps constant along tI +
δt. As a consequence, the gravity and the Coriolis terms are
assumed to be constant during δt, see more details in Konno
et al. [17] and Zheng and Hemami [2]. The joint torque τ is
also assumed to be constant. As stated by Haddadin et al. [12],
the motor needs way more time to change the joint torque than
the impact duration that is less than 1 millisecond.

Integrating (1) over the impact duration δt, we can obtain
the following:

M(q)δq̇ = J>f̄δt, (2)

where the joint velocity jump δq̇ = q̇(tI + δt) − q̇(tI). The
integral of constant N(q, q̇) and τ vanishes as δt is infinitely
small, however the same does not hold for the impulsive contact
force. We denote the average impulsive contact force over δt
as f̄ .

2) Definitions: In view of the discrete impact dynamics
model (2) and the invertability of the matrix M(q), we can
obtain:

δq̇ = M−1J>f̄δt. (3)

Assuming that the planar contact surface normal ~n and the
restitution coefficient cRes are known, the post-impact contact
point velocity is given by:

ṗ+ = −cResP~nṗ
− +N~nṗ

−,

where we used the superscript “+” and “−” to denote the post-
and pre-impact entities, the projector and null-space projector
are defined as: P~n = ~n~n> and N~n = I−P~n. The sign of cRes
depends on the post-impact status: rebounce(−) or sticking(+),
which is difficult to predict. We conservatively assume that the
rebounce will happen anyway and take the negative sign. Thus
as long as ṗ− is known, we can estimate to the contact point
velocity jump:

δṗ = ṗ+ − ṗ− = −(1 + cRes)P~nṗ
−. (4)

Using the kinematics Jδq̇ = δṗ and (3), we can express f̄ as
a function of the contact point velocity jump δṗ:

f̄ =
1

δt
(JM−1J>)−1δṗ. (5)

In view of (5) we can define the equivalent mass of the robot
at the contact point p, which is in essence the ratio between
the force f̄ and the velocity jump δṗ:

Meq = (JM−1J>)−1. (6)

In some literatures, e.g. Ruspini and Khatib [22], Meq is also
referred to as the operational space inertia matrix.

B. A generic QP controller

Given multiple control objectives, the QP controller is able
to find the local optimal solution if there is a feasible search
space that is defined by the equality and inequality constraints.
Without loss of generality, we detail the constraints formulation
with respect to hardware limitations that are defined on the joint
acceleration space.

1) Joint position limits: In view of the constraint q ≤
q(tk) ≤ q̄, we can use the Euler backward to approximate
the derivative and back step until the joint acceleration:

q̈(tk) ≤ q̄ − q(tk−1)− q̇(tk−1)∆t

∆t2

−q̈(tk) ≤ −
q − q(tk−1)− q̇(tk−1)∆t

∆t2
,

(7)

where ∆t denotes the sampling period.

2) Joint velocity limit: Applying the same procedure for the
constraint: q̇ ≤ q̇(tk) ≤ ˙̄q, we have the following two:

q̈(tk) ≤
˙̄q − q̇(tk−1)

∆t
and − q̈(tk) ≤ −

q̇ − q̇(tk−1)

∆t
. (8)

3) Joint torque limit: In view of the robot dynamics (1), the
constraint takes the following form:

M(q)q̈ ≤ τ̄ + J>f −N(q, q̇)

−M(q)q̈ ≤ −(τ + J>f −N(q, q̇))
, (9)

where we need to leave M(q) on the left side to avoid matrix
inversion that would otherwise change the polytope on q̈.

4) QP formulation: In line with the state of the art QP
controllers, e.g. the task space QP by Bouyarmane et al. [3],
we simultaneously optimize multiple objectives by minimizing
a weighted sum while fulfilling equality and inequality con-
straints:

min
q̈

q̈>Qq̈ +
∑
i∈Io

wi‖efi‖2

s.t. Joint position and velocity constraints: (7− 8),

Joint torque constraints: (9),

(10)

where for each task in the set Io we expand the error norm as:

‖efi‖2 = q̈>Qfi q̈ + Pfi q̈.

The joint velocities q̇ appear in (i) the joint position, (ii)
velocity and (iii) motor torque constraints (7-9). The external
force appears in the bounds of the polytope defined by M(q)q̈
in (9). Due to the instant change of the joint velocities δq̇
(defined later in (22)) and the impulsive force f̄ defined by (5),
the feasibility of constraints (7-9) are compromized as the
current constraints formulations are not aware of δq̇ and f̄ .

If the constraints (7-9) were violated, we would not fulfil
the hardware limits of a robot. In such cases, the optimality of
the task execution is a none sense. Therefore the generic QP
controller (10) needs to be aware of impacts when they are to
occur intentionally or not.

IV. IMPACT ROBUST QP CONTROLLER

Bearing in mind that the feasibility of the joint position,
velocity and motor torque constraints are compromized by
the impact induced state jumps, we re-write the kinematics
(joint velocity and position) constraints and impulsive joint
torque constraints in Sec. IV-A and Sec. IV-B respectively. In
Sec. IV-C, we present the post-impact task-space force con-
troller. In Sec. IV-D, we introduce the predicted joint velocity
jumps δq̇ as an additional decision variables to formulate a new
QP controller.

A. Joint position and velocity constraints under state jumps

In order to analyze the kinematics constraints with respect to
the future impacts, we need the Euler forward approximation

q̇(tk) =
q(tk+1)− q(tk)

∆t
, (11)

which allows us to re-write the joint position constraint (7) and
joint velocity constraint (8) as:

q̈(tk) ≤ q̄ − q(tk+1) + q̇(tk+1)∆t

∆t2

−q̈(tk) ≤ −
q − q(tk+1) + q̇(tk+1)∆t

∆t2

−q̈(tk) ≤
˙̄q − q̇(tk+1)

∆t

q̈(tk) ≤ −
q̇ − q̇(tk+1)

∆t

. (12)

In a conservative view, suppose that the impact will happen
at the next control step (i.e. when sending the current QP
output to the robot). One needs to use the post-impact velocities
q̇+(tk+1) to re-write the bounds of (12). Using (11) and the
definition of the post-impact joint velocity, we can express
q̇+(tk+1) as:

q̇+(tk+1) = q̇−(tk+1) + δq̇(tk+1)

= q̇(tk) + q̈(tk)∆t+ δq̇(tk+1),
(13)

and:
q+(tk+1) = q(tk) + q̇(tk)∆t, (14)

where we use the fact that the pre- and post-impact joint
positions are the same. Then we can use (13) and (14) to
rewrite the right hand side of (12) such that the new constraints
formulation explicitly depend on the joint velocity jumps δq̇:

q̈(tk) ≤ q̄ − q
+(tk+1) + q̇+(tk+1)∆t

∆t2

=
q̄ − q(tk) + q̈(tk)∆t2 + δq̇(tk+1)∆t

∆t2

−q̈(tk) ≤ −
q − q+(tk+1) + q̇+(tk+1)∆t

∆t2

= −
q − q(tk) + q̈(tk)∆t2 + δq̇(tk+1)∆t

∆t2

−q̈(tk) ≤
˙̄q − q̇+(tk+1)

∆t

=
˙̄q − q̇(tk)− q̈(tk)∆t− δq̇(tk+1)

∆t

q̈(tk) ≤ −
q̇ − q̇+(tk+1)

∆t

= −
q̇ − q̇(tk)− q̈(tk)∆t− δq̇(tk+1)

∆t

(15)

Removing q̈(tk) from both sides of (15), we can find a
set of constraints that explicitly depends on δq̇(tk+1) with a
straightforward physical meaning in view of joint position and
velocity bounds:

−δq̇(tk+1) ≤ q̄ − q(tk)

∆t

δq̇(tk+1) ≤ −
q − q(tk)

∆t

, (16)

δq̇(tk+1) ≤ ˙̄q − q̇(tk)

−δq̇(tk+1) ≤ −
(
q̇ − q̇(tk)

). (17)

In view of the reciprocal definition of (3), we can obtain:

δτ = J>f̄ =
Mδq̇

δt
.

Due to the appearance of δt in the denominator, disturbance of
δq̇ lead to much bigger disturbance of the impulsive torque
δτ . Likewise we can find ∆t in the denominator of the
joint position constraint (16). Thus we come to an important
observation of the constraint violation order:

δτ (20) ≺ q̇ (17) ≺ q (16) , (18)

where the impulsive joint torque constraint (20) is to be
introduced in Sec. IV-B.

B. Impulsive joint torque constraints under state jumps

Using the statics relation δτ = J>f̄ and the impulsive force
f̄ defined by (5) , we define the impulsive joint torque as:

δτ =
1

δt
J>(JM−1J>)−1︸ ︷︷ ︸

J†
M

δṗ,

where we defined the weighted pseudo-inverse J†M . Expanding
δṗ defined by (4), we can express δτ as a function of the
decision variable q̈ of the original QP controller:

δτ =
1

δt
J†Mδṗ

= −cRes + 1

δt
J†MP~nṗ

−(tk+1)

= −cRes + 1

δt
J†MP~nJ(q̇(tk) + q̈(tk)∆t).

(19)

In view of the impulsive torque bounds δτ ≤ δτ ≤ δτ̄ , we can
obtain the following constraint defined on the joint acceleration
space:

J†MP~nJ q̈(tk) ≥ δτ

cRes + 1
− J†MP~nJ q̇(tk)

δt

δτ̄

cRes + 1
− J†MP~nJ q̇(tk)

δt
≥ J†MP~nJ q̈(tk).

. (20)

where we need to constrain J†MP~nJ q̈(tk) as a whole due to
the same reason for (9).

C. Contact transition

By fulfilling the modified joint position, velocity and im-
pulsive torque constraints (16), (17) and (20), the new QP
controller allows the robot to apply safely the maximal ad-
missible contact velocity. Upon the detection of an impact,
the QP controller is enhanced with an admittance control task
without specific modifications to stabilize the contact force; and
eventually regulates the post-impact force to a desired value,
see details in Bouyarmane et al. [3]. We do not need to limit
the desired contact force f∗ or clamp the contact velocities.

Moreover, the contact force is subscribed within the friction
cone to avoid non-desired slippage. We can approximate the
friction cone with a generation matrix K and predict the contact
force by

fQP = Kλ,

where fQP ∈ R3, K ∈ R3×Nc and λ ∈ RNc denotes the weight
of the generation matrix K. Each column ki of K corresponds
to a generating vector of the friction cone, which is visualized
in Fig. 2. Empirically we can choose Nc = 4 for each contact
point if the contact surfaces are accurately modeled. We use

n

k3

k2

k1 k 4

fQP

μ d3

p

‖f QP−f ∗‖=‖K λ−f ∗‖

ef=f−f QP

Measurement

Admittance
Task

fQP

f

Motion
Task

(p∗ , ṗ∗ , p̈∗
)

Fig. 2: The left sub-figure shows that each supporting vector
ki = n − µdi, where n and µ denote the surface normal
direction and the friction coefficient. There is a schematic view
of the task space force control in the right sub-figure.

the weights λ as part of the decision variables. We associate
the search space of λ and q̈ through the modified torque limit
constraint (9):

M(q)q̈ − J>Kλ ≤ τ̄ −N(q, q̇)

−M(q)q̈ + J>Kλ ≤ −(τ −N(q, q̇))
. (21)

Given the desired force f∗, we minimize the following error

eλ = fQP − f∗ = Kλ− f∗,
by adding ‖eλ‖2 to the QP objectives such that the QP
controller can infer the optimal fQP with respect to the robot
dynamics, constraints and objectives. Then simultaneously we
use fQP as a set-point to define the error for an admittance task
which regulates the contact point motion based on the following
error:

ef = f − fQP,

where f denotes the measured force which is visualized
in Fig. 2. At time step k, the QP controller infers the fQP to be
used at time step k+1 for the admittance task. In this way, the
admittance task would track the force fQP which is compatible
to the rest of the control objectives, e.g. contact maintenance,
rather than f∗. Likewise the admittance task generates the set
point (p∗, ṗ∗, p̈∗) for the motion tracking task which enables
two separate set of stiffness parameters for force tracking and
motion tracking separately.

D. Robust QP controller formulation

We propose to introduce δq̇(tk+1) as additional decision
variables for a QP controller. In view of (3), (4) and (5), we
can predict δq̇(tk+1) as:

δq̇(tk+1) =M−1 J>(JM−1J>)−1︸ ︷︷ ︸
J†
M

δṗ(tk+1)

=− (c̄Res + 1)M−1J†MP~nJ q̇
−(tk+1)

=− (c̄Res + 1)M−1J†MP~nJ(q̇(tk) + q̈(tk)∆t),
(22)

where we apply the upper bound of cRes ∈ [cRes, c̄Res].

Using (21) and (22), we can relate λ and δq̇ to q̈ respectively.
Using the decision variables:

x = [q̈(tk), δq̇(tk+1) ,λ(tk)]>

we can conclude the following impact-robust QP controller:

min
x

x>Qx+
∑
i∈Io

wi‖efi‖2

s.t. Joint position and velocity constraints: (7− 8),

Contact force within the friction cone: λ ≥ 0,

Joint velocity jump prediction δq̇(tk+1) : (22) ,

Joint limits on δq̇(tk+1) : (16− 17) ,

Impulsive torque constraints:(20) ,

Joint torque constraints: (21),

. (23)

where the gray high-lighted parts are added compared to the
original QP controller (10). The combination of (20) and (21)
allows us to bound the torque and the impulsive torque.

In practice it is difficult to detect the exact moment tI
when the impact happens. The QP controller (23) optimizes
the robot configurations such that the modified constraints (16-
17) and (20) are always fulfilled, shall an impact happens or
not.

Despite that the proposed QP controller enables dynamic
contact transition at a contact velocity significantly higher
than the motion generated by an impedance or admittance
controllers, the modified constraints set would restrict the
robot motion as if the impact was about to happen in the
next step. Therefore if there does not exist a planned contact
or absolutely zero possibility of an impact, we can use the
original QP controller (10). In order to make the motion less
conservative, we can remove these additional constraints when
we are confident enough to be far from any contact.

V. IMPACT EXPLOITATION

Exploiting impacts enables higher robot performances for a
large variety of explosive tasks. One can maximize the contact
velocity vn along the desired direction by adding −υ̇vn to the
objective of (23), where vn denotes the magnitude of vn:

υvn =
1

2
v>n vn.

When we are in need of impulsive forces, we can maximize
the momentum: P =

∫ δt
0
fdt, or simply as P = f̄δt using the

average force f̄ defined by (5). Maximizing the the average
impulsive force is equivalent to maximizing the momentum P .
Using the definition of the equivalent mass (6), we define the
equivalent momentum along the contact surface normal as:

P = Meqvn = (JvnM
−1J>vn

)−1Jvn q̇.

We can measure the magnitude of P with the quadratic term

fP =
1

2
P>P

whose gradient is available through straightforward differenti-
ation:

ḟP = P>Ṗ = v>nM
>
eq (Ṁeqvn +Meqv̈n)

= v>nM
>
eq (ṀeqJvn

q̇ +Meq(J̇vn
q̇ + Jvn

q̈))

= v>nM
>
eqMeqJvn︸ ︷︷ ︸
PP

q̈ + v>nM
>
eq (ṀeqJvn

+MeqJ̇vn
)q̇︸ ︷︷ ︸

CP

.

(24)
Note that the constant CP is independent of the optimization
variables. Therefore we only need to add −ḟP to the objective
of the QP controller (23) without explicitly expanding CP .

VI. SIMULATION

We use simulations powered by the DART1 physics engine to
validate the proposed QP controller (23). DART simulates im-
pulse with the numerical implementation proposed by Stewart
and Trinkle [23] except for the circumscribed friction cone.

Due to space limitation, we present the results of contacts
with a coefficient of restitution equals to 0.8 and a friction
coefficient equals to 0.7, despite the proposed QP is able to
work with different combinations. All the simulation code are
written in Python and publicly available2. The interested readers
are welcome to reproduce the results or modify the proposed
QP controller.

In order to analyze the QP controller’s constraints violation
in a tractable way, and regardless of the complexity of the robot
kinematics and dynamics, we choose a 6 degrees of freedom
KR5 robot shown in Fig. 1. The QP controller generates joint
acceleration commands at 200 Hz using close-loop feedback
including joint configurations and forces. The impact duration
δt is set to 0.005 s.

We compare the original QP controller (10) and our proposed
impact-aware QP controller (23) with the same task: crashing
a wall without knowing its exact location (and hence, the time
of contact). The contact surfaces of both the palm and the wall
are planar.

The results presented in Sec. VI-A, validate that despite
the lack of knowledge by our QP controller on the impact,
the modified constraints always meet the hardware limits. The
figures from Sec. VI-B prove that we can stabilize the impact
while regulating the post-impact contact force to a desired
value. The simulation results presented in Sec. VI-C reveal
that if we need impulsive forces beyond the limit inferred from
the statics relation, we can maximize the impulsive force with
task (24).

A. Feasibility comparison

In order to compare the original QP controller (10) and our
proposed QP controller (23), we generate energetic impacts by
maximizing the robot contact velocity to collide with a wall.
The normal direction of the wall is known to the robot, i.e.
the contact surface, but not the exact location of the wall.
Determining the exact time of impact is far from being an easy

1https://dartsim.github.io/
2https://github.com/wyqsnddd/pyQpController

task in practice. Thus we consider that the time of impact is
not known to the robot.

On top of different constraint specifications, both of the QP
controllers have the same set of tasks: a (3DoF) orientation task
that fixes the orientation of the terminal point to fit the wall’s
surface normal, a (2DoF) translation task that constrains the
robot end-effector to slide on a planar surface and a (1DoF)
velocity task that maximizes the velocity along the normal
direction of the contact surface.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [s]

−0.5

0.0

0.5

Contact velocity [m/s]

Fig. 3: Contact velocity generated by the original QP con-
troller (10). The impact moments are highlighted with light
red color.

Starting from the original (i.e. generic) QP controller (10),
we can observe four impacts in Fig. 3 from the jumps of end-
effector velocities. Due to the high contact velocities, each of
them produces a rebounce. In Fig. 4, the joint torques (solid
lines) violate the impulsive torque limits at each impact. How-
ever in all of these impact events, we can use the conservative
predictions of the impulsive torques (dashed lines) to predict the
constraints violation. Due to the constraints violation order (18),
the impulsive torque constraints (20) would be violated prior
to the violation of (16-17). Therefore we skip the figures for
the modified joint velocity and position constraints (16-17) as
the QP controller is already not feasible.

We apply the same colliding task with our proposed QP con-
troller (23) and plot the contact velocities in Fig. 5. Thanks to
the modified constraints the proposed QP controller computes
the maximal feasible contact velocity 0.155 m/s.

We can find the corresponding joint torques in Fig. 6, where
the impulsive torques are within the pre-defined bounds. At the
same time, the QP solver exploited the hardware potential as
we can tell that the prediction of δτ 3 is sliding along the lower
bound during the task execution between [0, 0.81] s. However
there is indeed a gap between the predicted impulsive torque
and its prediction in Fig. 6 due to the conservative computation.

B. Impact Stabilization

From Fig. 7 we can tell that the proposed QP controller
established a contact with contact velocity vn = 0.156 m/s and
regulated the post-impact impulsive force to the desired contact
force f∗ = 57 N using simulated force feedback.

Compared to Sec. VI-A, the QP controller replaced the
maximal contact velocity task with the admittance control task
upon the detection of an impact. However the impact timing is

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [s]

-500.0

0.0

500.0

Violation of δτ

Impulse joint torque constraints [Nm]

Upper bound: δτ
Lower bound: δτ
Predicted: δτ0

Torque: τ0

Predicted: δτ1

Torque: τ0

Predicted: δτ2

Torque: τ2

Predicted: δτ3

Torque: τ3

Predicted: δτ4

Torque: τ4

Predicted: δτ5

Torque: τ5

Fig. 4: The impulsive torque bounds are violated due to impacts.
However we can predict the violation with the predictions that
are plotted in dashed lines.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [s]

0.00

0.05

0.10

0.15 vn = 0.155m/s

Contact velocity [m/s]

Fig. 5: Contact velocity generated by our proposed QP con-
troller (23). Compared to Fig. 3, the controller (23) uses the
same parameters for all the tasks and constraints. However
the QP solver slows down the contact velocity based on the
admissibility constraints (20).

not important thanks to the fact that the feasibility is always
guaranteed by the modified joint constraints. For instance,
during the simulation corresponding to Fig. 5, the QP controller
was not aware of the impact during the entire process. We can
tell that the joint torques shown in Fig. 6 increased until the
maximal joint torque (25 Nm) after the impact. Indeed, the
robot is trying to reach the desired end-effector velocity while
actually sticking on a fixed wall.

C. Maximal Impulsive Force

In the vicinity of the contact surface, an admittance or
impedance control law generates motions with near-zero con-
tact velocity. The proposed QP controller on the other hand is
able to generate motions that maximize the impulsive force via
task (24). In Fig. 8, the impulsive force f̄ reached 599.04 N

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Time [s]

-200.0

-150.0

-100.0

-50.0

0.0

50.0

Predicted δτ3 slides along δτ

Impulsive joint torque constraints [Nm]

Upper bound: δτ
Lower bound: δτ
Predicted: δτ0
Torque: τ0
Predicted: δτ1
Torque: τ0
Predicted: δτ2
Torque: τ2
Predicted: δτ3
Torque: τ3
Predicted: δτ4
Torque: τ4
Predicted: δτ5
Torque: τ5

Fig. 6: The impulsive torque bounds are fulfilled while our
proposed QP controller (23) is using the maximal feasible
contact velocity as the predicted impulsive torque δτ 3 slides
along the lower bound τ 3.

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.00

0.05

0.10

0.15

Contact velocity [m/s]

0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0

100

200

300

400

500
Contact force fx [N]

f

fQP

f∗

Fig. 7: The contact force f (green line) is stabilized to the
desired value f∗ = 57 N (blue line). After the contact, the
red line indicates that the QP controller assigned fQP = f∗ for
the admittance task depending on feasibilities of the constraints
and the optimality of each of the other tasks.

which is not achievable by the control law based on statics.

VII. CONCLUSION

For a large variety of explosive tasks such as fast grasping,
catching, pushing vividly, hitting strongly... the robots must
be designed to not fear impact. In order to make possible a
robot to generate task-purpose impacts, we need first to design
a robust hardware that allows high energy transfer, but this
is not sufficient. Indeed, we show that task-space closed-loop
controller that write as quadratic programs to embed both tasks

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time [s]

0.00

0.05

0.10

0.15

Contact velocity [m/s]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time [s]

0

200

400

600

599.04 N

Contact force fx [N]

f

fQP

f∗

Fig. 8: The QP controller achieved 599.04 N impulsive force
f̄ via task (24). The post-impact admittance force control
presented in Sec. IV-C is not applied since fQP determined
by the QP solver is zero during the entire process.

objectives and constraints, will fail when subsequent jumps
occur in the robot state (namely joint velocities and torques).
It is easy to incorporate admissible impact ranges from the
hardware into the QP controllers. Yet, this is not sufficient. We
propose to enhance them with a formulation that allow the QP
control framework as they write nowadays to deal in a stable
and robust way to jumps in the state inherent to impacts.

Rather than slowing down to near-zero contact velocity or
tracking pre-defined joint space trajectories, our proposed QP
formulation is able to find the maximal feasible contact velocity
based on predictions of the state jumps in joint velocities and
torques using the discrete impact dynamics model without any
reset map and by keeping closed feedback loop. The idea is
to incorporate possible changes in the states jumps as decision
variable and modulate the speed at a the worst case assuming
the contact to occur in the next iteration. Although conservative
by nature, this impact-aware QP control proved to be simple to
implement. Through a series of simulations we assessed that it
indeed enables impact stabilization and is able to maximize the
impulsive force that would not be achieved otherwise. To the
best of our knowledge, this is the first unified task-space QP
controller that generates kinematic, dynamic and impact tasks.

As future work, we intent to achieve real experiments. The
first problem we face is the unavailability of the admissible
impact range data for all the robots we have in hands. This
already shows that almost all robots were not designed for such
a perspective.

ACKNOWLEDGMENTS

The first author is partially supported by the National Natural
Science Foundation of China (U1613216) and Shenzhen Fun-
damental Research Grant (JCYJ20180508162406177) through
the Chinese Univ. of Hong-Kong, Shenzhen. He gratefully
acknowledge the support.

REFERENCES

[1] S Pashah, M Massenzio, and E Jacquelin. Prediction of
structural response for low velocity impact. International
Journal of Impact Engineering, 35(2):119–132, 2008.

[2] Yuan-Fang Zheng and Hooshang Hemami. Mathemati-
cal modeling of a robot collision with its environment.
Journal of Field Robotics, 2(3):289–307, 1985.

[3] Karim Bouyarmane, Kevin Chappellet, Joris Vaillant, and
Abderrahmane Kheddar. Quadratic programming for mul-
tirobot and task-space force control. IEEE Transactions
on Robotics, 2019. doi: 10.1109/TRO.2018.2876782.

[4] Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz,
Sumit Jain, Yuting Ye, Siddhartha S Srinivasa, Mike
Stilman, and C Karen Liu. Dart: Dynamic animation and
robotics toolkit. The Journal of Open Source Software, 3
(22):500, 2018.

[5] Ranko Zotovic Stanisic and Ángel Valera Fernández.
Simultaneous velocity, impact and force control. Robotica,
27(7):1039–1048, 2009.

[6] Chien-Hao Liang, Shubhendu Bhasin, Keith Dupree, and
Warren E Dixon. A force limiting adaptive controller for
a robotic system undergoing a noncontact-to-contact tran-
sition. IEEE Transactions on Control Systems Technology,
17(6):1330–1341, 2009.

[7] Keith Dupree, Chien-Hao Liang, Guoqiang Hu, and War-
ren E Dixon. Adaptive lyapunov-based control of a robot
and mass–spring system undergoing an impact collision.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 38(4):1050–1061, 2008.

[8] Seyed Sina Mirrazavi Salehian and Aude Billard. A
dynamical system based approach for controlling robotic
manipulators during non-contact/contact transitions. IEEE
Robotics and Automation Letters, 2018.

[9] Tzyh-Jong Tarn, Yunying Wu, Ning Xi, and Alberto
Isidori. Force regulation and contact transition control.
IEEE Control Systems, 16(1):32–40, 1996.

[10] Prabhakar R Pagilla and Biao Yu. A stable transition con-
troller for constrained robots. IEEE/ASME transactions on
mechatronics, 6(1):65–74, 2001.

[11] Seyed Sina Mirrazavi Salehian, Mahdi Khoramshahi, and
Aude Billard. A dynamical system approach for softly
catching a flying object: Theory and experiment. IEEE
Transactions on Robotics, 32(2):462–471, 2016.

[12] Sami Haddadin, Alin Albu-Schäffer, and Gerd Hirzinger.
Requirements for safe robots: Measurements, analysis and
new insights. The International Journal of Robotics
Research, 28(11-12):1507–1527, 2009.

[13] David E Stewart. Rigid-body dynamics with friction and
impact. SIAM review, 42(1):3–39, 2000.

[14] Yan-Bin Jia, Matthew Gardner, and Xiaoqian Mu. Bat-
ting an in-flight object to the target. The International
Journal of Robotics Research, 0(0):0278364918817116,
0. doi: 10.1177/0278364918817116. URL https://doi.org/
10.1177/0278364918817116.

[15] Yan-Bin Jia and Feifei Wang. Analysis and computation

of two body impact in three dimensions. Journal of
Computational and Nonlinear Dynamics, 12(4):041012,
2017.

[16] Mark Rijnen, Eric de Mooij, Silvio Traversaro, Francesco
Nori, Nathan van de Wouw, Alessandro Saccon, and
Henk Nijmeijer. Control of humanoid robot motions with
impacts: Numerical experiments with reference spreading
control. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 4102–4107. IEEE,
2017.

[17] Atsushi Konno, Tomoya Myojin, Takaaki Matsumoto,
Teppei Tsujita, and Masaru Uchiyama. An impact dynam-
ics model and sequential optimization to generate impact
motions for a humanoid robot. The International Journal
of Robotics Research, 30(13):1596–1608, 2011.

[18] Adrien Escande, Nicolas Mansard, and Pierre-Brice
Wieber. Hierarchical quadratic programming: Fast online
humanoid-robot motion generation. The International
Journal of Robotics Research, 33(7):1006–1028, 2014.

[19] Joseph Salini, Vincent Padois, and Philippe Bidaud. Syn-
thesis of complex humanoid whole-body behavior: a focus
on sequencing and tasks transitions. In Robotics and
Automation (ICRA), 2011 IEEE International Conference
on, pages 1283–1290. IEEE, 2011.

[20] Wilm Decré, Ruben Smits, Herman Bruyninckx, and
Joris De Schutter. Extending itasc to support inequality
constraints and non-instantaneous task specification. In
Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on, pages 964–971. IEEE, 2009.

[21] Andrea Del Prete. Joint position and velocity bounds in
discrete-time acceleration/torque control of robot manipu-
lators. IEEE Robotics and Automation Letters, 3(1):281–
288, 2018.

[22] Diego Ruspini and Oussama Khatib. Collision/contact
models for the dynamic simulation of complex environ-
ments. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, volume 82. Citeseer, 1997.

[23] David E Stewart and Jeffrey C Trinkle. An implicit time-
stepping scheme for rigid body dynamics with inelastic
collisions and coulomb friction. International Journal for
Numerical Methods in Engineering, 39(15):2673–2691,
1996.

