
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Robot Packing with Known Items and
Nondeterministic Arrival Order

Fan Wang
Department of Electrical and Computer Engineering

Duke University, Durham, NC 27708, USA
Email: fan.wang2@duke.edu

Kris Hauser
Department of Electrical and Computer Engineering

Duke University, Durham, NC 27708, USA
Email: kris.hauser@duke.edu

Abstract—This paper formulates two variants of packing
problems in which the set of items is known but the arrival
order is unknown. The goal is to certify that the items can
be packed in a given container, and/or to optimize the size or
cost of a container so that that the items are guaranteed to be
packable, regardless of arrival order. The Nondeterministically
ordered packing (NDOP) variant asks to generate a certificate
that a packing plan exists for every ordering of items. Quasi-
online packing (QOP) asks to generate a partially-observable
packing policy that chooses the item location as each subsequent
item is revealed. Theoretical analysis demonstrates that even the
simple subproblem of verifying feasibility of a packing policy
is NP-complete. Despite this worst-case complexity, practical
solvers for both NDOP and QOP are developed, and experiments
demonstrate their application to packing irregular 3D shapes
with manipulator loading constraints.

I. INTRODUCTION

Interest in warehouse automation has grown rapidly with
the growth of e-commerce and advances in robotics. Given
the rapid progress in the field of robotic manipulation, the
prospect of fully autonomous picking and packing robots
is becoming increasingly likely in the near future [3], but
relatively little attention has been paid to robotic packing.
Packing algorithms have the potential to optimize containers
and packing plans for both human and robot packers. In the
current state of practice in fulfillment centers, human workers
select containers and pack items largely according to intuition.
Heuristic algorithmic assistance based on item bounding box
dimensions may be employed, but these lead to conservatively
large containers. When containers are chosen too small, items
need to be repacked, causing delays and reducing efficiency.
When containers are too large, excess material is wasted and
shipping costs are increased.

A large variety of packing problems have been studied, in-
cluding the bin and strip packing problem, knapsack problem,
container loading problem, nesting problem, and others. In an
offline setting, the items and container(s) are known, and a
plan can place the items in arbitrary order [16]. In an online
setting, the items are not known a priori and need to be placed
as they arrive [18]. We consider a robot packing setting which
addresses packing problems with the additional constraints that
items must be loaded with a collision-free robot path, and that
intermediate piles of items must be stable against gravity.

This paper introduces two nondeterministic formulations
of robot packing problems that lie between the offline and

A B

C

ABC, BAC CAB, CBA

A B

C

ACB BCA

A
B CA

B
C

(a) Nondeterministically ordered packing (NDOP)

A

A

AB

AB
C

B C

B C

B

A
B C

C

BC

B C

A
C

A

A

C

B

C

A

A B

(b) Quasi-online packing (QOP)

Fig. 1. Feasible solutions for a 2D, 3-item instance of (a) NDOP and (b)
QOP. All 3! = 6 possible arrival orders are collision-free, loadable from top-
down, and yield intermediate piles that are stable under gravity. In QOP, an
item is never moved after it is placed.

online settings. These formulations are practical for automated
warehouses where the ultimate item set (e.g., shopping cart)
is known, but some distinct, uncontrollable component of the
packing system controls the item arrival order. For example,
in Amazon’s automated fulfillment centers, shelving units
containing individual items are carried by thousands of mobile
robots to several picking stations, and the order in which
shelves arrive at a given station is controlled by a complex
algorithm that is tuned to maximize delivery throughput for
shelving units. In cases where item deliveries are human-
controlled, it may be even less practical for an algorithm to
dictate the arrival order. Hence, to guarantee that the items
can fit in a given container, a packing planner should certify
the validity of a plan under all possible arrival orders. In the
NDOP variant, the feasibility of the container is verified under
all nondeterministic orders, but the arrival sequence is revealed



before packing is executed. In the QOP variant, each object
must be packed before the next item is revealed (Fig. 1).

We present a practical framework for solving NDOP and
QOP problems that uses a combination of an offline planner
and a packing policy verifier. A packing policy is represented
by a set of possible packing plans, each of which consists of
a set of packing locations and a directed acyclic graph (DAG)
of their dependencies. The verifier will verify or disprove
the feasibility of a policy under all permutations of arrival
orders. We present a verification algorithm that uses pruning
techniques, and in practice can check feasibility quickly even
for a large number of objects and packing plans. However,
in some cases exponential behavior is observed. We prove
that the worst-case solution complexity of NDOP and QOP is
O(n!) and even feasibility verification for a polynomial-sized
NDOP policy is NP-complete, via reduction from SAT.

Nevertheless, the solver is practical for small numbers
of items, and even using an incomplete offline planner, it
guarantees that a solution, when found, is feasible for all object
orderings. Several packing heuristics are also introduced to im-
prove scalability of the approach, and experiments demonstrate
that our approach can be realistically applied to irregular 3D
shapes with item sets of size up to 10.

II. RELATED WORK

Packing algorithms have been studied extensively both for
their theoretical interest and practical applications in ship-
ping, manufacturing, and 3D printing. The vast majority of
work considers rectilinear objects. State-of-the-art exact al-
gorithms for the offline 2D and 3D bin packing problem use
branch-and-bound approaches [15, 16]. Because exact methods
have worst-case exponential complexity, heuristic methods
and metaheuristic approaches have been developed, such as
the Bottom-Left [1] and Best-Fit-Decreasing heuristics [12].
Heuristics are the only practical methods available for irregular
shape packing (a.k.a. nesting [7]), since the freedom to rotate
leads to a continuously infinite search space. Metaheuristic
optimization methods [9, 13] simultaneously optimize the
placements of all items, and constructive heuristics incremen-
tally place items according to some scoring function [14, 20].

In the offline setting, the item set and packing order can be
controlled. Most classical versions do not formulate interde-
pendence between items (i.e., items appear and then “float” in
their planned locations), which means ordering is irrelevant.
This is a reasonable assumption for some scenarios like sheet
metal cutting, but one should consider additional constraints
when packing containers in practice. Prior work has enforced
clearance of boxes along axis-aligned loading directions in 3D
bin-packing by ensuring no previously-placed item lies along
an extruded prism along at least one face of the box [5].
Recent work has also formulate collision-checking between
the loading mechanism (human hand, forklift, robot hand, etc.)
and already-placed items [19]. Stability constraints [6, 14, 19]
also impose dependency on the packing order. Due to these
dependencies, if the item arrival order does not match the
planned order, the plan might not be successfully executed.

A B

C D

(a)

A

B

C D

(b)

A
B

C D

(c)

A B

C D

(d)

Fig. 2. Examples of plans that are infeasible for arrival order ABCD: (a)
unstable, (b) items C and D collide with B along the loading direction, (c)
and the path for the robot manipulator to grasp and load item D is infeasible.
In (d), although ABCD is feasible, the prefix requirement is violated because
the sub-plan ABC is unstable.

In the online setting, an arbitrary item is presented to the
algorithm, which then chooses a packing location [18]. Neither
the item set nor the packing order are controllable, and often
the item geometry can also be arbitrary as well. There are no
guarantees that a given container can be packed, so the typical
formulation casts the problem as an optimization of the num-
ber of containers or the container height. Competitive ratios
are known for various online algorithms in the 1D and 2D
rectilinear bin packing settings [11, 18], but to our knowledge,
no results are known for irregular shapes. In contrast, NDOP
and QOP seek guaranteed packing in a single container when
the item set is known, which is more appropriate for fulfillment
applications. Our NDOP and QOP solvers can handle irregular
shapes, and we prove that when they successfully return a
policy, the answer is correct.

III. PROBLEM FORMULATION

Let I = {v1, . . . , vn} be a set of n items. Item vi has some
geometry Ai ⊂ Rd, and we wish to pack all items into a
container volume C ⊂ Rd. Here d = 2 or 3 is the dimension
of the workspace. The offline packing problem is to compute
a feasible packing plan given A1, . . . , An and C. Such a plan
is defined as follows:

Definition 1: A packing plan P consists of an ordering
σ1:n = (σ1, . . . , σn) and a tuple of transforms T1:n =
(T1, . . . , Tn), in which σj ∈ {1, . . . , n} specifies that vσj

is
the j’th item to be placed, and Ti ∈ SE(d) specifies the target
location (pose) of vi.
An ordering must be a permutation on n elements, and is
hence an element of the symmetric group Sn

Definition 2: A packing plan is feasible when it, and all
prefix plans, satisfy certain constraints, as shown in Fig. 2
and defined in the below section.

The prefix feasibility requirement means that for all j < n,
the ordering σ1:j with the corresponding items in locations
Tσ1

, . . . , Tσj
must also satisfy the feasibility constraints. For

example, we cannot require two blocks to be placed simulta-
neously on either ends of a see-saw when stability is violated
with only a single block (Fig. 2.d).



A. Constraint formulation

In our formulation, the feasibility of a packing plan requires
satisfying the following three constraints. For readability, for
the ordering σ1:n let us denote the sequence number si of
the i’th item to be the ordinal index in which it appears, i.e.,
sσj

= j and σsi = i.
a) Non interference: All items do not overlap but can

touch (1) and all items lie entirely inside the container (2):

TiA
◦
i ∩ TjA◦j = ∅ for all i, j with i 6= j, (1)

TiAi ⊆ C for all i. (2)

Here ·◦ denotes a set’s interior.
b) Equilibrium: To prevent “floating“ items and unbal-

anced stacks, the equilibrium constraint requires that each
intermediate packing be stable under gravity and frictional
contact (Fig. 2.a). An item is allowed to make contact with the
container walls and previously placed items. We model these
as a set of contact points, and require that there exist feasible
forces at each contact point that respect Coulomb friction.

c) Manipulation feasibility: Each item in the packing
plan must be loadable by a manipulator without disturbing
previously packed items (Figs. 2.b and 2.c). We consider a
robot gripper R and a top-down loading direction. In the
packing plan, an item is also given a grasp transform TG,
such that the combined geometry of the ith item and the robot
while grasped is Ai ∪ TGR. The swept volume of the item
and robot while loading is SVi = ab⊕ Ti(Ai ∪ TGR), where
a = (0, 0, 0) and b = (0, 0, h), with h some “safe” height
greater than the height of the container. This constraint states
that, for all items i, the swept volume cannot intersect any
previously-placed items (3) or the container walls ∂C (4):

SV ◦i ∩ TjAj = ∅ for all j s.t. sj < si, (3)
SV ◦i ∩ ∂C = ∅. (4)

B. Nondeterministic problems

Definition 3 (NDOP): The nondeterministically ordered
packing problem asks whether there exists a feasible packing
plan for every ordering σ1:n ∈ Sn.

To define QOP, we need to define the concept of a feasible
packing policy as follows:

Definition 4: A packing policy is a function π that takes
as arguments the identities and locations of previously packed
items (Tσ1

, . . . , Tσj−1
) and the next item σj to be packed, and

returns the location Tσj
of the next packed item.

Definition 5: A packing plan is generated by a packing
policy π and an ordering σ1:n ∈ Sn via the recursive ap-
plication of the policy: Tσ1

= π((), σ1), Tσ2
= π((Tσ1

), σ2),
..., Tσn

= π((Tσ1
, . . . , Tσn−1

), σn).
Definition 6: A packing policy is feasible if for all item

orders σ1:n ∈ Sn, the generated packing plan is feasible.
Since a packing policy is deterministic, we can also write

the policy as a function of the prior order of the objects:

π((σ1, . . . , σj−1), σj) ≡ π((Tσ1
, . . . , Tσj−1

), σj). (5)

A policy can also be viewed as a tree with depth n and each
node has n − ` branches on level `. This gives a total of∑n
`=1 n!/`! = O(n · n!) nodes altogether.
Definition 7 (QOP): The quasi-online packing problem

asks to compute a feasible packing policy.
The main difference between NDOP and QOP is that with

QOP, the items are revealed in sequence, and the location
chosen for an item is fixed and may not be changed thereafter.
QOP is at least as hard as NDOP, because any solution to QOP
is also a solution to NDOP (but the converse does not hold).

C. Container optimization variants

Above we have stated these packing problems in their
decision versions. We also consider container optimization
variants, which assume a set of possible containers C and a
cost function cost : C → R, and are stated as follows:
• Offline: Find the container C ∈ C with minimum cost

that yields a feasible packing plan for item set I.
• Nondeterministically-ordered: Find the container C ∈ C

with minimum cost that yields a feasible packing plan
for any ordering of item set I.

• Quasi-online: Find the container C ∈ C with minimum
cost that yields a feasible packing policy for item set I.

The container set is typically discrete, such as a set of avail-
able boxes, but could also be continuous, such as a varying
height. This formulation can express the classical bin-packing
problem, where C contains a container with 1 bin, a container
with 2 bins, and so on, and cost measures the number of bins.

NDOP and QOP are adapted rather easily into discrete
container optimization algorithms by enumerating containers
in order of non-decreasing cost until a successful packing
policy is found.

IV. METHOD

We make use of an offline robot packing planner [19] with
a small amount of modification. The responsibility of the
offline planner is to generate a feasible packing plan given
the constraints outlined above, while our key contributions
are novel methods to invoke the planner and to validate plans
under permutations of item orders.

A. Offline planner

The offline planner is required to accept some number of
fixed items and a partial packing sequence for the remaining
items. Its interface takes the form

P ← Offline-Pack(σfixed1:j , P prior, σnextj+1:k) (6)

producing either a feasible plan P = (σ1:n, T1:n) or “failure.”
The inputs σfixed1:j specify that j items of the prior plan P prior

should be kept in their previous positions, and σnextj+1:k are a
sequence of k − j > 0 items that should be placed next.
The remaining n − k items can be placed in arbitrary order.
Specifically, the result must satisfy σ1:j = σfixed1:j , σj+1:k =

σnextj+1:k, and each fixed transform Tj for j ∈ σfixed1:k matches
the corresponding transform in P prior.



A

BC1 D1

C2

C3 D3

D2
C1

C2

C1 D1

C2 ✔ ✘

A B

C1

D1

C2

D2

C3

D3

Fig. 3. A plan and its dependency graph. C2 requires D1 to be
present to maintain the stability constraint, because otherwise the imbalanced
weight on B would cause tipping. Similarly, D2 depends on C1, and so
forth for C3 and D3. This CDG is compatible with orders of the form
AB(C1D1)(C2D2)(C3D3) where the (XY ) denotes either XY or Y X .

The offline planner used here is a constructive, heuristic
method that is easily modified to handle the required changes.
In Sec. V we also consider offline packing heuristics that make
the job of generating a nondeterministic plan easier, but these
are not strictly necessary.

B. Compatibility

A naive algorithm to solve NDOP would compute a pack-
ing plan for all n! orderings. However, the notion of plan
compatibility allows us to validate large numbers of orderings
for lightly-interdependent plans. For example, if we ignored
manipulation feasibility and equilibrium constraints, there is
no sequential dependence between any two items, and hence
all orderings of items would be feasible under the following
policy: when an item arrives, just place it in its planned
location. We define compatibility as follows:

Definition 8 (Compatible ordering): A packing plan P =
(σ1:n, T1:n) is compatible with an ordering σ′1:n if the re-
ordered plan P ′ = (σ′1:n, T1:n) is feasible.

Hence, we can recast the problem of generating a feasible
packing policy as one of generating a set of feasible plans
with sufficient coverage as follows:

Definition 9 (NDOP #2): Compute a set of feasible plans
P1, . . . , Pm such that for any order σ1:n ∈ Sn, there is at
least one plan compatible with σ1:n.

Our NDOP solver formulates a packing policy as a set
of packing plans P1, . . . , Pm along with their associated
constraint dependency graphs (CDGs) G1, . . . , Gm as defined
in Sec. IV-C. An individual packing plan can be used for the
set of orderings that are compatible with its dependency graph.
If the union of the m sets of compatible orderings covers Sn,
then we are done. If not, we find an incompatible ordering
using Alg. 1, and generate a new plan for this ordering.

A QOP solver must address the problem that if any two
plans share the same order prefix, each item location in the
prefix must be the same. Our algorithm uses the same CDG
data structure to calculate compatibility while generating an
optimized policy tree.

C. Constraint dependency graphs

A fundamental data structure that will allow us to verify
compatibility is the constraint dependency graph (CDG). This

structure (Fig. 3) explicitly models the dependencies between
items, so that compatibility can be quickly verified.

Definition 10 (CDG): The CDG of a feasible plan P is a
graph on vertices I that has an edge (u, v) if some feasibility
constraint requires item u to be placed before item v.

We can see that a CDG is a directed acyclic graph (DAG),
because if there were a cycle in the graph, by transitivity
an item on the cycle would need to be placed before itself.
Moreover, a CDG can be replaced by its transitive reduction
with no loss in compatibility information.

To construct a CDG G = (I, E) of a plan P = (σ1:n, T1:n),
we do so in incremental fashion by testing all pairwise
constraints. Observe that there is no edge (σj , σi) ∈ E for
i < j, and we need not add edges (u, σi) for any ancestors of
σi already in the CDG. For each index i in increasing order,
we check all u ∈ σ1:i−1 for a dependency in reverse packing
order. First, if u is an ancestor of σi, it is skipped because σi
is already dependent on u. Next, the manipulation feasibility
constraint of u is checked against σi. If so, we add an edge
(u, σi). If not, we proceed to check equilibrium of the partial
stack that includes σ1:i but omits u and all descendants of u.
If there is no equilibrium solution, we add an edge (u, σi) (see
Fig. 3). It should be noted that there exist scenarios that are
stable if a single predecessor item is removed, but unstable if
multiple predecessors are removed. These examples, however,
are convoluted “multiple see-saw” constructions, and would be
highly unlikely to be generated by an offline packing planner.

An ordering is compatible with a plan P iff it does not
violate any dependency in P ’s CDG. In other words, a feasible
packing plan P with a dependency-free CDG G = (I, ∅) is
compatible with all orderings. More precisely, we can state:

Lemma 1: Let G = (I, E) be the CDG of a feasible
plan P . An ordering σ′1:n is incompatible with P iff there
exists indices u < v such that (σ′v, σ

′
u) ∈ E.

In other words, a compatible ordering obeys all pairwise
ordering constraints specified by the edges of the CDG.

D. Coverage verification
A key subroutine in our algorithm is to verify whether

a set of packing plans P1, . . . , Pm is compatible with all
orderings in Sn, and if not, to generate a counterexample (i.e.,
incompatible ordering). An example is shown in Fig. 4. Let us
reduce this to a combinatorial problem of validating whether
a set of dependency graphs is compatible with all orderings,
and call it DEPSET-COMPAT.

We present a recursive algorithm, which tries assigning each
unassigned vertex v, and recurses on the subset of plans in
which v is a root. There are two base cases:

1) There exists a vertex v that is not a root in any Gi. Then,
any ordering that starts with v is a counterexample.

2) Gi has no edges for some plan Pi. The policy is feasible
because Pi is compatible with all orderings.

To verify faster, we also perform a singleton pruning step:
if a vertex v is a singleton (has no neighbors) in every
G1, . . . , Gm, then v can be safely ignored. This is because v
can be assigned at any point without affecting dependencies.



A

D B

C

A B

DC

A

D
B

C

AB C D

D

B

C

A

AB C

D

A

DB

C

A B C D
G1

G3

G2

G4

P1

P3

P2

P4

Fig. 4. A set of plans P1, . . . , P4 (top) and their dependency graphs
G1, . . . , G4 (bottom). For any ordering beginning with A, there is at least
one plan (P1 or P2) compatible with it. But for any ordering beginning with
BDA, CB, CD, DAC, or DC, no plans are compatible.

Algorithm 1: Verify-CDG-Coverage(I, (E1, . . . , Em))

input : a set of items I
dependency graphs (E1, . . . , Em)

1 if there exists v ∈ I that is not a root in any graph
(I, Ei) then return “v incompatible”;

2 if any Ei is empty, i = 1, . . . ,m then return “all
compatible”;

3 Remove all vertices v from I that are singletons in every
graph (I, Ei), i = 1, . . . ,m;

4 for v ∈ I do
5 Ev ← ();
6 for i = 1, . . . ,m do
7 if v is a root in Ei then
8 Append Ei to Ev , but with v removed;
9 end

10 r ←Verify-CDG-Coverage(I/{v}, Ev);
11 if r =“σ1:j incompatible” then
12 return “v, σ1:j incompatible”
13 end
14 return “all compatible”

The overall algorithm is given a vertex set I and the edge
sets E1, . . . , Em of the CDGs of P1, . . . , Pm as input, and is
listed in Alg. 1. The return value is either “all compatible” or a
subsequence of I that is incompatible with every dependency
graph. Line 1 processes the first base case, and line 3 processes
the second. Line 3 performs the singleton pruning step, and
Lines 4–14 perform the recursion. Lines 5–10 compute the list
Ev of dependency graphs that are compatible with assigning
v at the current step, but with v is removed. In Line 13, the
vertex v is prepended to the counterexample of a recursive
call, because the counterexample is reached after assigning v.

A counterexample can often be found faster by ordering
the vertices in Line 4 using a heuristic. Our approach sorts
the vertices v by the number of plans compatible with the
assignment of v (i.e., have v as a root).

Alg. 2 solves NDOP using this subroutine.

Algorithm 2: NDOP
input : a set of items I
output: a solution set of plans P , or “failure”

1 E ←empty-list;
2 P ←empty-list;
3 while true do
4 r ← Verify-CDG-Coverage(I, E);
5 if r =“all compatible“ then return P;
6 Let σ1:k be the incompatible ordering in r;
7 P ←Offline-Pack(nil, nil, σ1:k);
8 if P =“failure” then return “failure”;
9 Add P to P;

10 Add CDG(P ) to E ;
11 end

E. Quasi-online packing

Due to the need for shared transforms, QOP is not as
amenable to elimination of orderings via compatibility verifi-
cation. A naı̈ve method for QOP would build a policy tree by
enumerating all possible orders and ask for compatible plans.

Specifically, let N be a node in the policy tree at depth k,
which is associated with the feasible plan P = (σ1:n, T1:n).
For all non-placed items σ′k+1 /∈ σ1:k, we could call:

P ′ ← Offline-Pack(σ1:k, P, σ′k+1). (7)

If P ′ =“failure”, then failure is returned. Otherwise, P ′ is
associated with a new child of N in the tree corresponding to
the choice σ′k+1, and the search can proceed recursively. Note
that if σk+1 was already the k + 1’th item in P , replanning
is unnecessary and we can just set P ′ = P . With this check,
only O(n!) calls to the offline planner are needed.

This procedure can be optimized by observing that
all items that are roots of the dependency subgraph
CDG(σk+1:n, (Tσk+1

, . . . , Tσn
)), can reuse P . In fact, all

combinations of roots can reuse P . Moreover, once roots have
been assigned, any newly created children can also reuse it.

To exploit this, our QOP planner performs a depth-first
search while maintaining a list of plans PN compatible with
σ1:k (i.e., all Tj match, for each fixed j ∈ σ1:k). The search
proceeds to enumerate children of σ1:k. For each choice σk+1

and child node C, if at least one plan in P is compatible
with σk+1, replanning is not performed, and the choice Tσk+1

is fixed. If multiple plans are compatible, the value of Tσk+1

that is compatible with the most plans is used. PC is then
set to the set of plans in PN for which σk+1 is a root of the
dependency subgraph, and whose placement of σk+1 matches
Tσk+1

. If no plan is compatible, then Offline-Pack is called
as normal, and PC is set to contain only the newly generated
plan P ′. Moreover, we add P ′ to the sets PA for any ancestor
of C. This enables subsequent siblings, siblings of parents,
etc. to use P ′ and avoid additional planning. Pseudocode is
given in Algs. 3 and 4.



Algorithm 3: QOP-Recurse(N)

input : policy tree node N
1 Let σ1:k be the sequence of packed items in N ;
2 Let PN be the set of compatible plans with N ;
3 Let P be any plan in PN , or nil if PN = ∅;
4 if all σk+1 /∈ σ1:k are roots of P then return “success”;
5 for all items σk+1 /∈ σ1:k do
6 if no plan in PN is compatible with σk+1 then
7 P ′ ←Offline-Pack(σ1:k, P, σk+1);
8 if P ′ =“failure” then return “failure”;
9 PC ← {P ′};

10 C ← add-child(N, σk+1,PC);
11 For all ancestors A of C, add P ′ to PA;
12 else
13 Let Tσk+1

be the location compatible with the
most plans in PN ;

14 PC ← {P ′ ∈ P |P ′ is compatible with Tσk+1
};

15 C ← add-child(N, σk+1,PC);
16 end
17 if QOP-Recurse(C,PC) fails then return “failure”;
18 end
19 return “success”

Algorithm 4: QOP()

1 root← make-node(nil, ∅);
2 if QOP-Recurse(root) is successful then return root;
3 else return “failure”;

F. Analysis

Here we show that NDOP inherits the completeness proper-
ties of the offline planner, but QOP is incomplete. Even when
the offline planner is incomplete, when the NDOP or QOP
result is not “failure”, the solution is correct. We also analyze
the behavior of Verify-CDG-Coverage and demonstrate that it
is NP-complete.

1) Correctness and completeness: NDOP inherits its com-
pleteness from the offline packing planner. To see this, first
observe that whenever NDOP returns a solution (Line 6),
this solution is correct, because for all orderings σ1:n ∈ Sn,
Alg. 1 has shown that the solution contains some plan that is
compatible with σ1:n. Now consider the case where NDOP
returns “failure.” This can only occur when Offline-Pack
returns failure for a partial ordering σ1:k (Line 7). If Offline-
Pack is complete, then there is indeed no solution compatible
with this ordering, and hence NDOP returns failure correctly.
If it is incomplete, then NDOP may return failure incorrectly.

Assuming Verify-CDG-Coverage takes negligible time, the
worst-case running time of NDOP occurs when all n items are
stacked upon one another. In this case, all n! possible orderings
must be examined for feasibility.

Unlike NDOP, QOP is not necessarily complete even if
the offline planner is complete. This is because the offline
planner may commit early to a bad choice because assumes it

A B

C

A

B

C
A

B

C
A

(a) (b) (c) (d)

Fig. 5. An example showing that QOP (Alg 4) is not necessarily complete
even with a complete offline planner. (a) The first recursive call produces a
feasible plan with A placed first. (b) Once item A is placed in the planned
location, the plan is infeasible for order ACB, as shown in (c). On the other
hand, if A was placed as in (d), a feasible QOP solution could result.

B C D E F

A

A B C D E

F

A

B C D E F

F

A B C D E

(a) Verification is O(n!)

B C D E F

A

A B C D E

F

A

B C D E F

F

A B C D E

(b) Verification is O(n2)

Fig. 6. (a) Worst-case behavior of Verify-CDG-Coverage occurs in an
instance with n plans, where n − 1 “books“ are stacked vertically with the
n’th book stacked horizontally on top. Every possible order of k ≤ n items
is compatible with a set of n − k + 1 plans, and a recursion depth of n is
required. (b) With a slightly different stacking, the dependency graphs are
reversed. Only a depth 1 recursion is needed due to the singleton pruning
step, so running time is polynomial.

has control over future item ordering, as illustrated in Fig. 5.
However, if it does return a solution, then this solution is
feasible even if a heuristic offline planner is used.

2) DEPSET-COMPAT is NP-Complete: We observe that
Verify-CDG-Coverage terminates extremely quickly in many
cases, but can exhibit exponential behavior. An example is
shown in Fig. 6.a, in which each of the m = n plans has
one item depending on all other items. At each level ` of the
recursion tree, there are n−` valid CDGs, and all n−` vertices
are valid. Hence, the function is called O(n!) times. In fact,
we prove the following theorem:

Theorem 2: DEPSET-COMPAT is NP-complete.
Proof: The proof is via polynomial time reduction from

3-SAT. A 3-SAT instance consists of n Boolean variables
x1, . . . , xn and a logical expression in disjunctive normal
form, consisting of m clauses

(y11 ∨ y12 ∨ y13) ∧ · · · ∧ (ym1 ∨ ym2 ∨ ym3) (8)

where yij indicates either a variable or its negation, i.e.,
yij = xk or yij = ¬xk. We transform any 3-SAT instance
in this form into the complement of a DEPSET-COMPAT
instance on 2n vertices and up to m dependency graphs. That
is, when 3-SAT has a solution, the DEPSET-COMPAT version
returns an incompatible ordering which corresponds to a 3-
SAT solution, and when 3-SAT has no solution, the DEPSET-
COMPAT version returns “all compatible.” This construction
is illustrated in Fig. 7 for a 2-SAT instance.

Specifically, let I = {v1, . . . , vn, v1, . . . , vn} be the vertex
set. Consider the i’th conjunctive clause in (8). First, if the
same variable and its negation appear in the same clause (e.g.,
x4 ∨ ¬x4 ∨ x6), we drop the clause because it is satisfied via



x y x y

G1 G2 G3

x y

Fig. 7. Illustrating the reduction from SAT. Each clause (upper left) is
converted into a dependency graph (lower left), and a counterexample (lower
right) ordering corresponds to a SAT solution (upper right).

any assignment. Otherwise, we construct a dependency Ei as
follows. If yij = xk for some k, construct an edge (vk, vk).
If yij = ¬xk, construct an edge (vk, vk). In the first case, this
means that if this dependency is violated, then vk will appear
before vk in the ordering. In the second case, the reverse is
true. This is repeated for each j = 1, 2, 3 and i = 1, . . . ,m.

If the DEPSET-COMPAT(I, E1, . . . , Em) instance con-
structed in this way returns an incompatible ordering, we
observe whether each vk appears before vk. If so, we assign
xk ← T , and if not, xk ← F . The variables x1, . . . , xk are
then a solution to 3-SAT. This holds because in every clause
yi1 ∨ yi2 ∨ yi3, the dependency graph Ei is violated in such a
way that makes the clause true.

Conversely, if the 3-SAT instance has a solution
(x1, . . . , xn), the DEPSET-COMPAT instance has an incom-
patible ordering. It is constructed as follows: place vk before
vk if xk = T , and vk before vk if xk = F . This ordering
violates at least one constraint in each dependency graph.

Since each step in the reduction is polynomial time and
NP-complete, DEPSET-COMPAT is NP-hard. It is also in
NP, since a nondeterministic recursion could enumerate all
possible orderings and check their validity in O(mn) time.

What is interesting about this reduction is that DEPSET-
COMPAT is hard even if restricted to seemingly easy classes
of dependency graphs, e.g., separable, bipartite graphs with at
most 3 dependencies! Experimentally, we have observed that
DEPSET-COMPAT problems corresponding to hard 3-SAT
problems (e.g., with clause-to-variable ratio of ∼4.24 [10])
also exhibit exponential complexity when solved via Alg. 1.

V. PLANNING HEURISTICS

Although DEPSET-COMPAT is NP-complete, computation
time of NDOP and QOP is dominated by time spent in the
offline planner, because each plan requires searching over 6D
object pose. The number of plans requested, and hence overall
running time, is greatly dependent on the number of orderings
compatible with previous offline plans. Hence, it would be
beneficial if the offline planner would generate packing plans
that maximize compatibility. We employ some heuristics that
speed up the approach in common scenarios.

A. Dependency minimization heuristic

Constructive packing chooses an item’s location based on
certain placement heuristics, such as deepest-bottom-left-first
(DBLF) [20], or heightmap minimization (HM) [19, 20], to

10 x 7 x 3.25

13.5 x 9.5 x 3.5

13.5 x 11.4 x 4.75

15.5 x 13.5 x 3.5

19.5 x 13 x 6.25

Fig. 8. The dimensions (in inches) of containers 1–5 used in our experiments,
in order of increasing length + girth.

TABLE I
NDOP CONTAINER OPTIMIZATION RESULTS

Items Success (%) Time (mean / max, s) # planner calls (mean / max)

2–5 99.3 73.0 / 1,813 1.3 / 9
5 96.9 94.4 / 1,417 1.6 / 14

10 64.0 1,048 / 33,300 5.2 / 118

maximize packing density. For nondeterministic packing, we
would like to generate plans with few dependencies. We
introduce a dependency count (DC) heuristic that measures the
number of items underneath the item at the given placement
(i.e., number of ancestor nodes in the CDG). Our implemen-
tation uses a heuristic that is a weighted sum of HM and DC.

B. Matching prior placements

In QOP it is beneficial for the offline planner to place as
many “free” items (i.e., those not in σfixed1:j or σnextj+1:k) as
possible in the same location as the prior plan, since this will
maximize the likelihood that the plan is compatible with other
branches in the search tree. To implement this heuristic, when
packing a free item, the location in P prior is checked for
feasibility before any other locations are tested.

C. Container optimization heuristics

During container optimization, it is helpful to limit expo-
nential growth in running time by replacing the infinite loop
in Line 3 of Alg. 2 with a fixed number of iterations, or
break the recursion of QOP after the policy graph has grown
too large. As the containers grow wider / longer, the number
of dependencies decreases because all items will be packable
in fewer layers. With a large enough container, all items are
packable in a single layer. Hence, if there exists a sufficiently
large container, the optimization version will always terminate
with a feasible, but possibly suboptimal solution.

VI. EXPERIMENTS

Our experiments test the NDOP and QOP algorithms with
random item sets of 3D scanned objects from the APC
2015 [17] and YCB [2] datasets (94 objects total). The
containers used in these experiments are the five boxes used in
the Amazon Robotics Challenge 2017 (Fig. 8), and are sorted
by the length + girth metric (length + 2×width + 2×height), a
commonly-used shipping measurement. All experiments were
performed on an Amazon EC2 m5d.12xlarge instance.

Our experiments use three testing datasets in which the
item sets have different size: a) typical shopping carts of 2–
5 items, b) large sets of 5 items, and c) stress tests with 10
items. For each category, we generate 1,000 random item sets
by drawing items at random, and verifying with an offline
planner that there exists is a feasible packing in one of



Fig. 9. An NDOP solution for packing 5 items in container 5.

1 2 3 4 5
0

20

40

60

80

100
Offline
NDOP

Container
1 2 3 4 5

0

10

20

30

40

50
Offline
NDOP

Container
1 2 3 4 5

0
5

10
15
20
25
30
35
40

Offline
NDOP

Container

%
 F

irs
t F

it

2-5 items 5 items 10 items

Fig. 10. Distribution of the solution container for offline / NDOP container
optimization and various itemset sizes. Most small instances can be packed in
any order, but with more items the variability in order requires larger boxes.

the five containers. In the 2–5 category, 250 item sets of
each size are included. The results for the NDOP planner,
running in container optimization mode, are summarized in
Tab. I, and Fig. 9 illustrates a solution. As might be expected,
the running time and the number of offline planner calls
increases with the number of items, but we do not observe
the exponential running time of worst-case instances. Other
experiments suggest the dependency minimization heuristic
reduces mean and maximum running times by approximately
20% and 50%, respectively.

Observe also that the success rate drops with increasing
numbers of items, as the 10-item offline plans tend to be
tightly packed even in the largest container. Note that it
is not known whether an NDOP solution exists in these
instances, so we cannot determine whether the solver is failing
incorrectly. Fig. 10 shows the distribution of the minimum-
cost container found. In cases with 5 or fewer items, NDOP
often successfully packs in the same box as the offline planner.
Observe that with 5 items, approximately 5% of test cases
require container 5, even though they can be packed offline in
containers 1–4. Fig. 11 illustrates an example of such a case.

Performance results for QOP in container 5 are given in
Tab. II, with a representative solution shown in Fig. 12. Up

1

2 3
4

5

(a)

1

2 3

4
5

(b)

Fig. 11. A failure case for packing 5 items in container 3. The offline planner
solves for the arrival order in (a) but fails on the order in (b) because there
is insufficient remaining space for the fifth item.

TABLE II
QOP PLANNING RESULTS IN CONTAINER 5

Items Success (%) Time (mean / max, s) # planner calls (mean / max)

2–5 99.4 22.4 / 1,520 1.4 / 43
5 97.0 65.1 / 5,800 2.1 / 46

10 43.7 2,850 / 85,478 45.8 / 5,363

Fig. 12. A QOP solution for 4 items in container 5. Due to the matching
heuristic, only four plans are needed (one for each item placed last).

to 5 items, the success rates are quite similar to NDOP, but
the maximum running times and number of offline planner
calls tend to be significantly larger. Other experiments suggest
that employing the matching heuristic improves average and
maximum running time by over 50%, which explains the
surprising result that QOP is faster than NDOP on average.
QOP struggles with 10 items, with a long-tailed distribution:
24 instances could not be solved within a 24-hour cutoff.

VII. CONCLUSION

This paper formulated two novel packing problems with
nondeterministic item ordering and presented practical solvers
that handle irregular 3D shapes and item sets up to size 10.
This work opens up several interesting theoretical and practical
questions, such as the minimal number of plans needed to
guarantee NDOP coverage, whether complete QOP algorithms
exist for rectilinear items, whether efficiency gains are possible
with multiple identical items, and whether restrictions on item
shape can overcome exponential worst-case complexity.

Additional problem variants would be interesting to study in
future research. A nondeterministic formulation only addresses
worst-case order, but in the case where additional containers
can be chosen to contain overflow items, it may be more
appropriate to consider probabilistic formations and expected
cost, particularly if there is probabilistic knowledge about the
item ordering. It may also be worth considering a k-buffered
quasi-online variant, in which the packer has a “buffer”
that can hold up to k items before packing in the ultimate
container [4, 8]. A similar variant might allow items to be
repacked using k hands.

ACKNOWLEDGMENTS

The authors thank Weidong Sun and Yifan Zhu for assis-
tance proofreading the paper. This work is supported by an
Amazon Research Award.



REFERENCES

[1] B. Baker, E. Coffman, Jr., and R. Rivest. Orthogonal
packings in two dimensions. SIAM Journal on Comput-
ing, 9(4):846–855, 1980. doi: 10.1137/0209064.

[2] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman,
Kurt Konolige, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M Dollar. Yale-cmu-berkeley dataset for robotic
manipulation research. The International Journal of
Robotics Research, 36(3):261–268, April 2017.

[3] N. Correll, K. E. Bekris, D. Berenson, O. Brock,
A. Causo, K. Hauser, K. Okada, A. Rodriguez, J. M.
Romano, and P. R. Wurman. Analysis and observa-
tions from the first amazon picking challenge. IEEE
Transactions on Automation Science and Engineering,
15(1):172–188, Jan 2018. ISSN 1545-5955. doi:
10.1109/TASE.2016.2600527.

[4] János Csirik and David S Johnson. Bounded space on-
line bin packing: Best is better than first. Algorithmica,
31(2):115–138, 2001.

[5] Edgar den Boef, Jan Korst, Silvano Martello, David
Pisinger, and Daniele Vigo. Erratum to the three-
dimensional bin packing problem: Robot-packable and
orthogonal variants of packing problems. Operations
Research, 53(4):735–736, 2005. doi: 10.1287/opre.1050.
0210.

[6] Jens Egeblad. Placement of two and threedimensional
irregular shapes for inertia moment and balance. Inter-
national Transactions in Operational Research, 16:789 –
807, 06 2009.

[7] Jens Egeblad, Benny K. Nielsen, and Allan Odgaard.
Fast neighborhood search for two- and three-dimensional
nesting problems. European Journal of Operational
Research, 183(3):1249 – 1266, 2007. ISSN 0377-2217.
URL https://doi.org/10.1016/j.ejor.2005.11.063.

[8] Leah Epstein and Elena Kleiman. Resource aug-
mented semi-online bounded space bin packing.
Discrete Applied Mathematics, 157(13):2785–2798,
2009. URL https://www.sciencedirect.com/science/
article/pii/S0166218X09001139.

[9] Oluf Faroe, David Pisinger, and Martin Zachariasen.
Guided local search for the three-dimensional bin-
packing problem. INFORMS Journal on Computing, 15
(3):267–283, 2003.

[10] Jon W. Freeman. Hard random 3-sat problems
and the davis-putnam procedure. Artificial In-
telligence, 81(1):183 – 198, 1996. ISSN 0004-
3702. URL http://www.sciencedirect.com/science/article/
pii/0004370295000518.

[11] Xin Han, Francis YL Chin, Hing-Fung Ting, Guochuan
Zhang, and Yong Zhang. A new upper bound 2.5545 on
2d online bin packing. ACM Transactions on Algorithms
(TALG), 7(4):50, 2011.

[12] D. Johnson, A. Demers, J. Ullman, M. Garey, and
R. Graham. Worst-case performance bounds for simple
one-dimensional packing algorithms. SIAM Journal on

Computing, 3(4):299–325, 1974.
[13] Thomas Kämpke. Simulated annealing: Use of a new

tool in bin packing. Annals of Operations Research, 16
(1):327–332, Dec 1988.

[14] Xiao Liu, Jia-min Liu, An-xi Cao, and Zhuang-le Yao.
Hape3d—a new constructive algorithm for the 3d irregu-
lar packing problem. Frontiers of Information Technology
& Electronic Engineering, 16(5):380–390, May 2015.
ISSN 2095-9230. doi: 10.1631/FITEE.1400421.

[15] Silvano Martello and Daniele Vigo. Exact solution of
the two-dimensional finite bin packing problem. Man-
agement Science, 44(3):388–399, 1998. doi: 10.1287/
mnsc.44.3.388.

[16] Silvano Martello, David Pisinger, and Daniele Vigo.
The three-dimensional bin packing problem. Operations
Research, 48(2):256–267, 2000. doi: 10.1287/opre.48.2.
256.12386.

[17] Rutgers APC RGB-D Dataset. URL http://pracsyslab.
org/rutgers apc rgbd dataset. (Accessed Jan 28, 2019).

[18] Steven S Seiden. On the online bin packing problem.
Journal of the ACM (JACM), 49(5):640–671, 2002.

[19] Fan Wang and Kris Hauser. Stable bin packing of non-
convex 3d objects with a robot manipulator. ArXiv,
(arXiv:1812.04093 [cs.RO]), 2018. URL https://arxiv.
org/abs/1812.04093.

[20] Lei Wang, Songshan Guo, Shi Chen, Wenbin Zhu, and
Andrew Lim. Two natural heuristics for 3d packing with
practical loading constraints. In Byoung-Tak Zhang and
Mehmet A. Orgun, editors, PRICAI 2010: Trends in Ar-
tificial Intelligence, pages 256–267, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.


