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before packing is executed. In the QOP variant, each object
must be packed before the next item is revealed (Fig. 1).

We present a practical framework for solving NDOP and
QOP problems that uses a combination of an offline planner
and a packing policy verifier. A packing policy is represented
by a set of possible packing plans, each of which consists of
a set of packing locations and a directed acyclic graph (DAG)
of their dependencies. The verifier will verify or disprove
the feasibility of a policy under all permutations of arrival
orders. We present a verification algorithm that uses pruning
techniques, and in practice can check feasibility quickly even
for a large number of objects and packing plans. However,
in some cases exponential behavior is observed. We prove
that the worst-case solution complexity of NDOP and QOP is
O(n!) and even feasibility verification for a polynomial-sized
NDOP policy is NP-complete, via reduction from SAT.

Nevertheless, the solver is practical for small numbers
of items, and even using an incomplete offline planner, it
guarantees that a solution, when found, is feasible for all object
orderings. Several packing heuristics are also introduced to im-
prove scalability of the approach, and experiments demonstrate
that our approach can be realistically applied to irregular 3D
shapes with item sets of size up to 10.

II. RELATED WORK

Packing algorithms have been studied extensively both for
their theoretical interest and practical applications in ship-
ping, manufacturing, and 3D printing. The vast majority of
work considers rectilinear objects. State-of-the-art exact al-
gorithms for the offline 2D and 3D bin packing problem use
branch-and-bound approaches [15, 16]. Because exact methods
have worst-case exponential complexity, heuristic methods
and metaheuristic approaches have been developed, such as
the Bottom-Left [1] and Best-Fit-Decreasing heuristics [12].
Heuristics are the only practical methods available for irregular
shape packing (a.k.a. nesting [7]), since the freedom to rotate
leads to a continuously infinite search space. Metaheuristic
optimization methods [9, 13] simultaneously optimize the
placements of all items, and constructive heuristics incremen-
tally place items according to some scoring function [14, 20].

In the offline setting, the item set and packing order can be
controlled. Most classical versions do not formulate interde-
pendence between items (i.e., items appear and then “float” in
their planned locations), which means ordering is irrelevant.
This is a reasonable assumption for some scenarios like sheet
metal cutting, but one should consider additional constraints
when packing containers in practice. Prior work has enforced
clearance of boxes along axis-aligned loading directions in 3D
bin-packing by ensuring no previously-placed item lies along
an extruded prism along at least one face of the box [5].
Recent work has also formulate collision-checking between
the loading mechanism (human hand, forklift, robot hand, etc.)
and already-placed items [19]. Stability constraints [6, 14, 19]
also impose dependency on the packing order. Due to these
dependencies, if the item arrival order does not match the
planned order, the plan might not be successfully executed.
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Fig. 2. Examples of plans that are infeasible for arrival order ABCD: (a)
unstable, (b) items C and D collide with B along the loading direction, (c)
and the path for the robot manipulator to grasp and load item D is infeasible.
In (d), although ABCD is feasible, the prefix requirement is violated because
the sub-plan ABC is unstable.

In the online setting, an arbitrary item is presented to the
algorithm, which then chooses a packing location [18]. Neither
the item set nor the packing order are controllable, and often
the item geometry can also be arbitrary as well. There are no
guarantees that a given container can be packed, so the typical
formulation casts the problem as an optimization of the num-
ber of containers or the container height. Competitive ratios
are known for various online algorithms in the 1D and 2D
rectilinear bin packing settings [11, 18], but to our knowledge,
no results are known for irregular shapes. In contrast, NDOP
and QOP seek guaranteed packing in a single container when
the item set is known, which is more appropriate for fulfillment
applications. Our NDOP and QOP solvers can handle irregular
shapes, and we prove that when they successfully return a
policy, the answer is correct.

III. PROBLEM FORMULATION

Let I = fug,...,v,0 be a set of n items. Item v; has some
geometry A; R?, and we wish to pack all items into a
container volume C'  R?. Here d = 2 or 3 is the dimension
of the workspace. The offline packing problem is to compute
a feasible packing plan given Ay, ..., A, and C. Such a plan
is defined as follows:

Definition 1: A packing plan P consists of an ordering
o1n = (01,...,0,) and a tuple of transforms 7i., =
(T1,...,Ty), in which o; 2 f1,...,ng specifies that v, is
the j’th item to be placed, and T; 2 SE(d) specifies the target
location (pose) of v;.

An ordering must be a permutation on n elements, and is
hence an element of the symmetric group .S,

Definition 2: A packing plan is feasible when it, and all
prefix plans, satisfy certain constraints, as shown in Fig. 2
and defined in the below section.

The prefix feasibility requirement means that for all 7 < n,
the ordering oy.; with the corresponding items in locations
To,,- .., T, must also satisfy the feasibility constraints. For
example, we cannot require two blocks to be placed simulta-
neously on either ends of a see-saw when stability is violated
with only a single block (Fig. 2.d).



A. Constraint formulation

In our formulation, the feasibility of a packing plan requires
satisfying the following three constraints. For readability, for
the ordering o1., let us denote the sequence number s; of
the i’th item to be the ordinal index in which it appears, i.e.,
So; = J and o, = 1.

a) Non interference: All items do not overlap but can
touch (1) and all items lie entirely inside the container (2):

T;A; \T;A; = ; forall i,j with i 6 j, (1)
T;A; C for all 4. 2)

denotes a set’s interior.

b) Equilibrium: To prevent “floating* items and unbal-
anced stacks, the equilibrium constraint requires that each
intermediate packing be stable under gravity and frictional
contact (Fig. 2.a). An item is allowed to make contact with the
container walls and previously placed items. We model these
as a set of contact points, and require that there exist feasible
forces at each contact point that respect Coulomb friction.

¢) Manipulation feasibility: Each item in the packing
plan must be loadable by a manipulator without disturbing
previously packed items (Figs. 2.b and 2.c). We consider a
robot gripper R and a top-down loading direction. In the
packing plan, an item is also given a grasp transform T,
such that the combined geometry of the :th item and the robot
while grasped is A; [ T¢R. The swept volume of the item
and robot while loading is SV; = ab  T;(A; [ TgR), where
a = (0,0,0) and b = (0,0, h), with h some “safe” height
greater than the height of the container. This constraint states
that, for all items %, the swept volume cannot intersect any
previously-placed items (3) or the container walls 9C' (4):

Here

SV; \T;A; = ; forall js.t s; <s, 3)
SV, \aC = ;. @)

B. Nondeterministic problems

Definition 3 (NDOP): The nondeterministically ordered
packing problem asks whether there exists a feasible packing
plan for every ordering o1.,, 2 S,,.

To define QOP, we need to define the concept of a feasible
packing policy as follows:

Definition 4: A packing policy is a function 7 that takes
as arguments the identities and locations of previously packed
items (75, , ..., T, ,) and the next item o; to be packed, and
returns the location T, of the next packed item.

Definition 5: A packing plan is generated by a packing
policy m and an ordering 01., 2 S, via the recursive ap-
plication of the policy: T,,, = 7((),01), T», = 7((15,),02),
v Ty = 7(Tyyy ooy T 1), On)-

Definition 6: A packing policy is feasible if for all item
orders 01.,, 2 Sy, the generated packing plan is feasible.

Since a packing policy is deterministic, we can also write
the policy as a function of the prior order of the objects:

7((o1,...,05 1),05) (Lo, - Ts;_1)05).  (5)

A policy can also be viewed as a tree with depth n and each
node has n ¢ branches on level ¢. This gives a total of
Y opey n1/h= O(n n!) nodes altogether.

Definition 7 (QOP): The quasi-online packing problem
asks to compute a feasible packing policy.

The main difference between NDOP and QOP is that with
QOP, the items are revealed in sequence, and the location
chosen for an item is fixed and may not be changed thereafter.
QOP is at least as hard as NDOP, because any solution to QOP
is also a solution to NDOP (but the converse does not hold).

C. Container optimization variants

Above we have stated these packing problems in their
decision versions. We also consider container optimization
variants, which assume a set of possible containers C and a
cost function cost : C ¥ R, and are stated as follows:

Offline: Find the container C' 2 C with minimum cost
that yields a feasible packing plan for item set 1.
Nondeterministically-ordered: Find the container C' 2 C
with minimum cost that yields a feasible packing plan
for any ordering of item set I.

Quasi-online: Find the container C' 2 C with minimum
cost that yields a feasible packing policy for item set I.

The container set is typically discrete, such as a set of avail-
able boxes, but could also be continuous, such as a varying
height. This formulation can express the classical bin-packing
problem, where C contains a container with 1 bin, a container
with 2 bins, and so on, and cost measures the number of bins.

NDOP and QOP are adapted rather easily into discrete
container optimization algorithms by enumerating containers
in order of non-decreasing cost until a successful packing
policy is found.

IV. METHOD

We make use of an offline robot packing planner [19] with
a small amount of modification. The responsibility of the
offline planner is to generate a feasible packing plan given
the constraints outlined above, while our key contributions
are novel methods to invoke the planner and to validate plans
under permutations of item orders.

A. Offline planner

The offline planner is required to accept some number of
fixed items and a partial packing sequence for the remaining
items. Its interface takes the form

P Ofﬂine-Pack(o{ffed, PP g ?fﬁtk (©6)

producing either a feasible plan P = ( 01:p,, T1:,) or “failure.”
The inputs alfj”d specify that j items of the prior plan PP"°"
should be kept in their previous positions, and ¢!, are a

J
sequence of £k j > O items that should be placed next.
The remaining n

k items can be placed in arbitrary order.
Specifically, the result must satisfy oq.; = a{fj@d, Oje1: k =

fized
1

oy, and each fixed transform 7} for j 2 o3/’ matches

the corresponding transform in PP7éT,












Fig. 9. An NDOP solution for packing 5 items in container 5.
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Fig. 10. Distribution of the solution container for offline / NDOP container
optimization and various itemset sizes. Most small instances can be packed in
any order, but with more items the variability in order requires larger boxes.

the five containers. In the 2-5 category, 250 item sets of
each size are included. The results for the NDOP planner,
running in container optimization mode, are summarized in
Tab. I, and Fig. 9 illustrates a solution. As might be expected,
the running time and the number of offline planner calls
increases with the number of items, but we do not observe
the exponential running time of worst-case instances. Other
experiments suggest the dependency minimization heuristic
reduces mean and maximum running times by approximately
20% and 50%, respectively.

Observe also that the success rate drops with increasing
numbers of items, as the 10-item offline plans tend to be
tightly packed even in the largest container. Note that it
is not known whether an NDOP solution exists in these
instances, so we cannot determine whether the solver is failing
incorrectly. Fig. 10 shows the distribution of the minimum-
cost container found. In cases with 5 or fewer items, NDOP
often successfully packs in the same box as the offline planner.
Observe that with 5 items, approximately 5% of test cases
require container 5, even though they can be packed offline in
containers 1-4. Fig. 11 illustrates an example of such a case.

Performance results for QOP in container 5 are given in
Tab. II, with a representative solution shown in Fig. 12. Up
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Fig. 11. A failure case for packing 5 items in container 3. The offline planner
solves for the arrival order in (a) but fails on the order in (b) because there
is insufficient remaining space for the fifth item.

TABLE II
QOP PLANNING RESULTS IN CONTAINER 5

Items Success (%) Time (mean / max, s) # planner calls (mean / max)
2-5 99.4 224/ 1,520 1.4/43
5 97.0 65.1 /5,800 2.1/ 46
10 43.7 2,850 / 85,478 45.8 /5,363
SN~———— 7’
N
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Fig. 12. A QOP solution for 4 items in container 5. Due to the matching

heuristic, only four plans are needed (one for each item placed last).

to 5 items, the success rates are quite similar to NDOP, but
the maximum running times and number of offline planner
calls tend to be significantly larger. Other experiments suggest
that employing the matching heuristic improves average and
maximum running time by over 50%, which explains the
surprising result that QOP is faster than NDOP on average.
QOP struggles with 10 items, with a long-tailed distribution:
24 instances could not be solved within a 24-hour cutoff.

VII. CONCLUSION

This paper formulated two novel packing problems with
nondeterministic item ordering and presented practical solvers
that handle irregular 3D shapes and item sets up to size 10.
This work opens up several interesting theoretical and practical
questions, such as the minimal number of plans needed to
guarantee NDOP coverage, whether complete QOP algorithms
exist for rectilinear items, whether efficiency gains are possible
with multiple identical items, and whether restrictions on item
shape can overcome exponential worst-case complexity.

Additional problem variants would be interesting to study in
future research. A nondeterministic formulation only addresses
worst-case order, but in the case where additional containers
can be chosen to contain overflow items, it may be more
appropriate to consider probabilistic formations and expected
cost, particularly if there is probabilistic knowledge about the
item ordering. It may also be worth considering a k-buffered
quasi-online variant, in which the packer has a “buffer”
that can hold up to k items before packing in the ultimate
container [4, 8]. A similar variant might allow items to be
repacked using & hands.
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