
novel robot behaviors and tasked raters with assigning a scale
to each valence pair and compared those ratings to our model
predictions and conclude.

II. RELATED WORK

Research in social robotics and human-robot interaction has
explored how affect is displayed in human-robot interaction
tasks; the focus, however, has largely been on human affect.
For example, [17] explored how robots are perceived by
different age groups, such as the elderly.

More relevant to our work are [24] and [26], both of
which use facial expressions of the human participants to
predict how the humans perceive robot intelligence and age,
respectively. As in their work, we use multimodal features, but
the features we focus on are derived from the robot and not the
participants. Also related to our work is [15] which examined
how empathy in a robot's speech can be interpreted by people;
here we consider affects and modalities beyond speech. In
particular, our work connects to multimodal aspects of human-
robot interaction and learning, including grounded semantics
[33, 16], engagement [3, 21], establishing common ground
[5], interpreting intent behind robot movements [13], as well
as learning verbal behaviors and action demonstrations [17].
We also relate to recent work [4] that focused on displaying
curiosity in robots as a precursor to learning tasks, whereas
here we extend our focus beyond just curiosity and look into
many possible affective displays.

From [10] we took the importance of including face and
movement information, which they showed made “a robot
more compelling to work with.” In [29] they showed that
audio data was the most signi�cant feature in a robot's ability
to model ”contingency” (the ability to detect an effect on
the environment from its own actions). [31] also employed
a multimodal approach in predicting between seven basic
emotions, as well as overall valence and arousal in a robot.
Their �ndings showed that movement was a better predictor
than the LED light-strip which had been placed on the robot.
Moreover, we approached our classi�cation task by attempting
more simple and powerful classi�cation methods (e.g., see
[22]), but found in our results that neural networks worked best
to classify our data, as in the �ndings of [11], which calls for
a more diverse and complex model of human emotion, which
we attempt to address, at least in part here.

III. D ATA

In this section, we explain the data we collected and offer
some analysis of that data. Our goal in this data collection is
to better understand how people interpret the affective display
of Cozmo as it performs its pre-scripted animations, and how
those interpretations differ from what we understood to be the
animation designer's intent.

A. Data Collection

For each of Cozmo's 940 available, pre-scripted animations,
we recorded video and audio of the robot's behavior. For each
recording, we position Cozmo in a starting position where

Fig. 1. Three example frames of a video recording of Cozmo for abored
animation.

it faced the camera, then initiated the animation. We kept the
camera as close to Cozmo as possible while still recording the
animations from within a single camera position (i.e., for some
animations, Cozmo moved around, requiring wider camera
coverage). An example of three frames derived from one of
these video recordings is in Figure 1: though Cozmo does
not appear to move, its eyes have the appearance of looking
around and portraying boredom.

We then posted these recordings (i.e., containing the audio
and video) on Amazon Mechanical Turk with the following
instructions for the workers: You will be shown a video of
a small robot. Please describe what the robot is doing in the
video, and provide a selection of the emotions that you think
the robot is displaying (in this paper we only focus on the
resulting emotion labels). Following [28], we used the follow-
ing 16 emotions:interest, alarm, confusion, understanding,
frustration, relief, sorrow, joy, anger, gratitude, fear, hope,
boredom, surprise, disgust, desire. Taking note from [1] that
there is no mutual exclusivity between emotions, we allowed
workers to be able to select any number of these emotionss,
thereby not constraining the number of emotions they could
assign. However, we did not give them a free-form input so as
to keep the task within reasonable constraints.1 Each worker
was paid $1.00 to describe and label 10 randomly assigned
videos and could repeat the process for another set, if they
desired. The emotion check boxes were arranged randomly.2

Each animation recording was labeled by two workers.
As explored in [7] and [18], culture and language can

in�uence the valence of equivalent emotions and may have
skewed our workers' labels. However, one barrier to accepting
our task was that workers had to demonstrate �uency in
written English; also, according to [14], on the days we
collected labels, the majority of our workers were based in the
United States.3 Additionally, studies demonstrating a cultural
in�uence on emotional experience and representation are not
conclusive, as noted in [20].

We gathered 1,870 labeled recordings (to ensure that each

1Though see [27] which showed that non-linguistic speech utterances can
be interpreted categorically.

2Due to an oversight, about half of the tasks ended up not being randomly
arranged, but the distribution of labels for those versus the ones that were
randomized did not show any signi�cant difference.

3On December 17, 2018, 71% of workers were in the United States, 22.92%
were in India, and 5.21% were from other countries. On January 16, 2019,
75% of workers were in the United States, 12.50% in India, and 12.50% from
other countries.












