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Abstract—Tracking 6D poses of objects from videos provides
rich information to a robot in performing different tasks such
as manipulation and navigation. In this work, we formulate
the 6D object pose tracking problem in the Rao-Blackwellized
particle filtering framework, where the 3D rotation and the 3D
translation of an object are decoupled. This factorization allows
our approach, called PoseRBPF to efficiently estimate the 3D
translation of an object along with the full distribution over the
3D rotation. This is achieved by discretizing the rotation space in
a fine-grained manner, and training an auto-encoder network to
construct a codebook of feature embeddings for the discretized
rotations. As a result, PoseRBPF can track objects with arbitrary
symmetries while still maintaining adequate posterior distribu-
tions. Our approach achieves state-of-the-art results on two 6D
pose estimation benchmarks.

I. INTRODUCTION

Estimating the 6D pose of objects from camera images, i.e.,
3D rotation and 3D translation of an object with respect to
the camera, is an important problem in robotic applications.
For instance, in robotic manipulation, 6D pose estimation of
objects provides critical information to the robot for planning
and executing grasps. In robotic navigation tasks, localizing
objects in 3D provides useful information for planing and
obstacle avoidance. Due to its significance, various efforts have
been devoted to tackling the 6D pose estimation problem from
both the robotics community [7, 4, 43, 40] and the computer
vision community [32, 21, 12].

Traditionally, the 6D pose of an object is estimated using
local-feature or template matching techniques, where features
extracted from an image are matched against features or
viewpoint templates generated for the 3D model of the object.
The 6D object pose can then be recovered using 2D-3D
correspondences of these local features or by selecting the best
matching viewpoint onto the object [7, 11, 12]. More recently,
machine learning techniques have been employed to detect key
points or learn better image features for matching [2, 18].
Thanks to advances in deep learning, convolutional neural
networks have recently been shown to significantly boost the
estimation accuracy and robustness [15, 44, 30, 38, 43],

So far, the focus of image-based 6D pose estimation has
been on the accuracy of single image estimates; most tech-
niques ignore temporal information and provide only a single
hypothesis for an object pose. In robotics, however, temporal
data and information about the uncertainty of estimates can
also be very important for tasks such as grasp planning or
active sensing. Temporal tracking in video data can improve

Fig. 1. Overview of our PoseRBPF framework for 6D object pose tracking.
Our method leverages a Rao-Blackwellized particle filter and an auto-encoder
network to estimate the 3D translation and a full distribution of the 3D rotation
of a target object from a video sequence.

pose estimation [28, 5, 17, 8]. In the context of point-cloud
based pose estimation, Kalman filtering has also been used to
track 6D poses, where Bingham distributions have been shown
to be well suited for orientation estimation [36]. However,
unimodal estimates are not sufficient to adequately represent
the complex uncertainties arising from occlusions and possible
object symmetries.

In this work, we introduce a particle filter-based approach
to estimate full posteriors over 6D object poses. Our ap-
proach, called PoseRBPF, factorizes the posterior into the
3D translation and the 3D rotation of the object, and uses
a Rao-Blackwellized particle filter that samples object poses
and estimates discretized distributions over rotations for each
particle. To achieve accurate estimates, the 3D rotation is
discretized at 5 degree resolution, resulting in a distribution
over 72× 37× 72 = 191, 808 bins for each particle (elevation
ranges only from -90 to 90 degree). To achieve real time per-
formance, we pre-compute a codebook over embeddings for all
discretized rotations, where embeddings come from an auto-
encoder network trained to encode the visual appearance of an
object from arbitrary viewpoints at a certain scale (inspired by
[37]). For each particle, PoseRBPF first uses the 3D translation
to determine the center and size of the object bounding box in
the image, then determines the embedding for that bounding
box, and finally updates the rotation distribution by comparing
the embedding value with the pre-computed entries in the



codebook using cosine distance. The weight of each particle is
given by the normalization factor of the rotation distribution.
Motion updates are performed efficiently by sampling from a
motion model over poses and a convolution over the rotations.
Fig. 1 illustrates our PoseRBPF framework for 6D object pose
tracking. Experiments on the YCB-Video dataset [43] and the
T-Less dataset [14] show that PoseRBPFs are able to represent
uncertainties arising from various types of object symmetries
and can provide more accurate 6D pose estimation.

Our work makes the following main contributions:
• We introduce a novel 6D object pose estimation frame-

work that combines Rao-Blackwellized particle filtering
with a learned auto-encoder network in an efficient and
principled way.

• Our framework is able to track full distributions over 6D
object poses. It can also do so for objects with arbitrary
kinds of symmetries, without the need for any manual
symmetry labeling.

The rest of the paper is organized as follows. After discussing
the related work, we present our Rao-Blackwellized particle
filtering framework for 6D object pose tracking, followed by
experimental evaluations and a conclusion.

II. RELATED WORK
Our work is closely related to recent advances in 6D object

pose estimation using deep neural networks. The current trend
is to augment state-of-the-art 2D object detection networks
with the ability to estimate 6D object pose. For instance, [15]
extend the SSD detection network [24] to 6D pose estimation
by adding viewpoint classification to the network. [38] utilize
the YOLO architecture [31] to detect 3D bounding box corners
of objects in the images, and then recover the 6D pose by
solving the PnP problem. PoseCNN [43] designs an end-
to-end network for 6D object pose estimation based on the
VGG architecture [35]. Although these methods significantly
improve the 6D pose estimation accuracy over the traditional
methods [12, 2, 18], they still face difficulty in dealing with
symmetric objects, where most methods manually specify the
symmetry axis for each such object. In contrast, [37] introduce
an implicit way of representing 3D rotations by training an
auto-encoder for image reconstruction, which does not need
to pre-define the symmetry axes for symmetric objects. We
leverage this implicit 3D rotation representation in our work,
and show how to combine it with particle filtering for 6D
object pose tracking.

The particle filtering framework has been widely applied
to different tracking applications in the literature [27, 34,
16, 33], thanks to its flexibility in incorporating different
observation models and motion priors. Meanwhile, it offers
a rigorous probabilistic formulation to estimate uncertainty
in the tracking results. Different approaches have also been
proposed to track the poses of objects using particle filters
[1, 6, 29, 42, 20]. However, in order to achieve good tracking
performance, a particle filter requires a strong observation
model. Also, the tracking frame rate is limited by the particle
sampling efficiency. In this work, we factorize the 6D object

Fig. 2. Illustration of the inputs and outputs of the auto-encoder. Images
with different lighting, background and occlusion are feed into the network
to reconstruct synthetic images of the objects from the same 6D poses. The
encoder generates a feature embedding (code) of the input image.

pose tracking problem and deploy Rao-Blackwellized particle
filters [10], which have been shown to scale to complex
estimation problems such as SLAM [39, 26] and multi-model
target tracking [19, 33]. We also employ a deep neural network
as an observation model that provides robust estimates for
object orientations even under occlusions and symmetries.
Our design allows us to evaluate all possible orientations in
parallel using an efficient GPU implementation. As a result,
our method can track the distribution of the 6D pose of an
object at 20fps.

III. 6D OBJECT POSE TRACKING WITH POSERBPF

The goal of 6D object pose tracking of an object is to
estimate the 3D rotation R and the 3D translation T of the
object for every frame in an image stream. In this section, we
first formulate the 6D object tracking problem in a particle
filtering framework, and then describe how to utilize a deep
neural network to compute the likelihoods of the particles and
to achieve an efficient sampling strategy for tracking.

A. Rao-Blackwellized Particle Filter Formulation

At time step k, given observations Z1:k up to time k, our
primary goal is to estimate the posterior distribution of the 6D
pose of an object P (Rk,Tk|Z1:k), where Rk and Tk denote
the 3D rotation and 3D translation of the object at time k,
respectively. Using a vanilla particle filter to sample over this
6D space is not feasible, especially when there is large un-
certainty over the orientation of the object. Such uncertainties
occur frequently when objects are heavily occluded or have
symmetries that result in multiple orientation hypotheses. We
thus propose to factorize the 6D pose estimation problem into
3D rotation estimation and 3D translation estimation. This idea
is based on the observation that the 3D translation can be
estimated from the location and the size of the object in the
image. The translation estimation provides the center and scale
of the object in the image, based on which the 3D rotation
can be estimated from the appearance of the object inside the
bounding box. Specifically, we decompose the posterior into:

P (Rk,Tk|Z1:k) = P (Tk|Z1:k)P (Rk|Tk,Z1:k), (1)



Fig. 3. Illustration of the computation for the conditional rotation likelihood by codebook matching. Left) Each particle crops the image based on its translation
hypothesis. The RoI for each particle is resized and the corresponding code is computed using the encoder. Right) The rotation distribution P (R|Z,T) is
computed from the distance between the code for each hypothesis and those in the codebook.

where P (Tk|Z1:k) encodes the location and scale of the
object, and P (Rk|Tk,Z1:k) models the rotation distribution
conditioned on the translation and the images.

This factorization directly leads to an efficient sampling
scheme for a Rao-Blackwellized particle filter [10, 39], where
the posterior at time k is approximated by a set of N
weighted samples Xk = {Ti

k, P (Rk|Ti
k,Z1:k), wi

k}Ni=1. Here,
Ti

k denotes the translation of the ith particle, P (Rk|Ti
k,Z1:k)

denotes the discrete distribution of the particle over the object
orientation conditioned on the translation and the images,
and wi

k is the importance weight. To achieve accurate pose
estimation, the 3D object orientation consisting of azimuth,
elevation, and in-plane rotation is discretized into bins of size 5
degree, resulting in a distribution over 72×37×72 = 191, 808
bins for each particle (elevation ranges only from -90 to 90
degrees). At every time step k, the particles are propagated
through a motion model to generate a new set of particles
Xk+1, from which we can estimate the 6D pose distribution.

B. Observation Likelihoods
The observation likelihoods of the two posteriors P (Zk|Tk)

and P (Zk|Tk,Rk) measure the compatibility of the observa-
tion Zk with the object pose at the 3D rotation Rk and the
3D translation Tk. According to the Bayes Rule

P (Zk|Tk,Rk) ∝ P (Rk|Tk,Zk)P (Zk|Tk), (2)

it is sufficient to estimate the likelihood P (Zk|Tk,Rk) by
computing P (Rk|Tk,Zk) and P (Zk|Tk). Intuitively, a 6D
object pose estimation method, such as [15, 38, 43], can be
employed to estimate the observation likelihoods. However,
these methods only provide a single estimation of the 6D pose
instead of estimating a probability distribution, i.e., there is
no uncertainty in their estimation. Also, these methods are
computationally expensive if we would like to evaluate a large
number of samples in the particle filtering.

Ideally, if we can synthetically generate an image of the
object with the pose (Rk,Tk) into the same scene as the

observation Zk, we can compare the synthetic image with the
input image Zk to measure the likelihoods. However, this is
not feasible since it is very difficult to synthesize the same
lighting, background or even occlusions between objects as
in the input video frame. In contrast, it is straightforward to
render a synthetic image of the object using constant lighting,
blank background and no occlusion, given the 3D model of the
object. Therefore, inspired by [37], we apply an auto-encoder
to transform the observation Zk into the same domain as the
synthetic rendering of the object. Then we can compare image
features in the synthetic domain to measure the likelihoods of
6D poses efficiently.

1) Auto-encoder: An auto-encoder is trained to map an
image Z of the target object with pose (R,T) to a synthetic
image Z′ of the object rendered from the same pose, where
the synthetic image Z′ is rendered using constant lighting, and
there is no background and occlusion in the synthetic image.
In this way, the auto-encoder is forced to map images with
different lighting, background and occlusion to the common
synthetic domain. Fig. 2 illustrates the input and output of
the auto-encoder during training. In addition, the auto-encoder
learns a feature embedding f(Z) of the input image.

Instead of training the auto-encoder to reconstruct images
with arbitrary 6D poses, which makes the training challenging,
we fix the 3D translation to a canonical one T0 = (0, 0, z)T ,
where z is a pre-defined constant distance. The canonical
translation indicates that the target object is in front of the
camera with distance z. The 3D rotation R is uniformly
sampled during training. After training, for each discretized 3D
rotation Ri, a feature embedding f(Z(Ri,T0)) is computed
using the encoder, where Z(Ri,T0) denotes a rendered image
of the target object from pose (Ri,T0). We consider the set
of all the feature embeddings of the discretized 3D rotations
to be the codebook of the target, and we show how to compute
the likelihoods using the codebook next.



Fig. 4. Visualization of reconstruction of the RoIs from auto-encoder. Left
is the groundtruth RoI. The other two column show the reconstruction with
shifting and scale change. As it is shown the reconstruction quality degrades
with deviations from groundtruth RoI. This property makes auto-encoder a
suitable choice for computing the observation likelihoods.

2) Codebook Matching: Given a 3D translation hypothesis
Tk, we can crop a Region of Interest (RoI) from the image
Zk, and then feed the RoI into the encoder to compute a
feature embedding of the RoI. Specifically, the 3D translation
Tk = (xk, yk, zk)T is projected to the image to find the center
(uk, vk) of the RoI :[

uk

vk

]
=

[
fx

xk

zk
+ px

fy
yk

zk
+ py

]
, (3)

where fx and fy indicate the focal lengths of the camera,
and (px, py)T is the principal point. The size of the RoI is
determined by zk

z s, where z and s are the canonical distance
and the RoI size in training the auto-encoder, respectively.
Note that each RoI is a square region in our case, which makes
the RoI independent from the rotation of the object.

The RoI is feed into the encoder to compute the feature
embedding f(Zk(Tk)). Finally, we compute the cosine dis-
tance, which is also referred as a similarity score, between the
feature embedding of the RoI and a code in the codebook to
measure the rotation likelihood:

P (Rj
c|Zk,Tk) ∝ φ

( f(Zk(Tk)) · f(Z(Rj
c,T0))

‖f(Zk(Tk))‖ · ‖f(Z(Rj
c,T0))‖

)
, (4)

where Rj
c is one of the discretized rotations in the codebook,

and φ(·) is a Gaussian probability density function centered
at the maximum cosine distance among all the codes in the
codebook for all the particles. In this way, we can obtain a
probabilistic likelihood distribution of all the rotations in the
codebook given a translation. Fig. 3 illustrates the computation
of the rotation likelihoods by the cookbook matching.

Since the auto-encoder is trained with the object being at
the center of the image and at a certain scale, i.e., with the
canonical translation T0, any change in scale or deviation of
the object from the center of the image results in poor re-
constructions (see Fig. 4). Particles with incorrect translations
would generate RoIs where the object is not in the center
of the RoI or with the wrong scale. Then we can check the

reconstruction quality of the RoI to measure the likelihood
of the translation hypothesis. We utilize this property to
compute the translation likelihood P (Zk|Tk). Intuitively, if
the translation Tk is correct, the similarity scores in Eq. (4)
for rotation Ri that is close to the ground truth rotation would
be high. Specifically, P (Zk|Tk) is computed as the sum of the
probability density P (Rj

c|Tk,Zk) for all the discrete rotations.

C. Motion Priors

Motion prior is used to propagate the distribution of the
poses from the previous time step k − 1 to the current time
step k. We use a constant velocity model to propagate the
probability distribution of the 3D translation:

P (Tk|Tk−1,Tk−2) = N (Tk−1 + α(Tk−1 −Tk−2),ΣT) ,
(5)

where N (µ,Σ) denotes the multivariate normal distribution
with mean µ and covariance matrix Σ, and α is a hyper-
parameter of the constant velocity model. The rotation prior
is defined as a normal distribution with mean Rk−1 and fixed
covariance ΣR:

P (Rk|Rk−1) = N (Rk−1,ΣR) , (6)

where we represent the rotation R using Euler angles. Then
the rotation prior can be implemented by a convolution on the
previous rotation distribution with a 3D Gaussian kernel.

D. 6D Object Pose Tracking Framework

The tracking process can be initialized from any 2D object
detector that outputs a 2D bounding box of the target object.
Given the first frame Z1, we backproject the center of the
2D bounding box to compute the (x, y) components of the
3D translation and sample different zs uniformly to generate
a set of translation hypotheses. The translation T1 with the
highest likelihood P (Z1|T) is used as the initial hypothesis
and P (R|T1,Z1) as the initial rotation distribution.

At each following frame, we first propagate the N particles
with the motion priors. Then the particles are updated with
the latest observation Zk. Specifically, for each particle, the
translation estimation Ti

k is used to compute the RoI of the
object in image Zk. The resulting RoI is passed through the
auto-encoder to compute the corresponding code. For each
particle, the rotation distribution is updated with:

P (Rk|Ti
k,Z1:k) ∝ P (Rk|Ti

k,Zk)P (Rk|Rk−1), (7)

where P (Rk|Ti
k,Zk) is the rotation distribution defined in

Eq. (4), and P (Rk|Rk−1) is the motion prior. Finally, we
compute the posterior of the translation P (Ti

k|Z1:k) with

P (Ti
k|Z1:k) ∝

∑
Rk

P (Zk|Ti
k,Rk)P (Rk|Ti

1:k−1,Z1:k−1),

(8)
and use it as the weight wi of this particle. The systematic
resampling method [9] is used to resample the particles
according to the weights w1:N . Our 6D object pose tracking
framework is shown in Fig. 5.
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Fig. 5. We propose PoseRBPF, a Rao-Blackwellized particle filter for 6D object pose tracking. For each particle, the orientation distribution is estimated
conditioned on translation estimation, while the translation estimation is evaluated with the corresponding RoIs.

Some robotic tasks require the expectation of the 6D pose
of the object from the particle filter for decision making. The
expectation can be represented as (TE

k ,R
E
k ). The translation

expectation can be computed simply by averaging the trans-
lation estimations T1:N

k for all the N particles due to the
uni-modal nature of translation in the object tracking task.
Computing the rotation expectation RE

k is less obvious since
the distribution P (Rk) might be multi-modal and simply
performing weighted averaging over all the discrete rotations
is not meaningful. To compute the rotation expectation, we
first summarize the rotation distribution for all the particles
by taking the maximum probability for every discrete rotation,
resulting in rotation distribution P (RE)k. The rotation expec-
tation RE

k is then computed by weighted averaging the discrete
egocentric rotations within a neighborhood of the previous
rotation expectation RE

k−1 using the quaternion averaging
method proposed in [25].

Performing codebook matching with the estimated RoIs also
provides a way to detect tracking failures. We can first find
the maximum similarity score among all the particles. Then
if maximal score is lower than a pre-defined threshold, we
determine it is a tracking failure. Algorithm 1 summarizes our
Rao-Blackwellized particle filter for 6D object pose tracking.

E. RGB-D Extension of PoseRBPF

PoseRBPF can be extended to use depth measurements
for computing the observation likelihoods. With the RGB
image ZC

k and the additional depth measurements ZD
k , the

observation likelihood in Eq. (2) can be rewritten as:

P (Zk|Tk,Rk) = P (ZC
k ,Z

D
k |Tk,Rk)

∝ P (Rk|Tk,Z
C
k )P (ZC

k |Tk)P (ZD
k |Tk). (9)

Note that the auto-encoder only uses the RGB image. There-
fore, P (Rk|Tk,Z

C
k ,Z

D
k ) = P (Rk|Tk,Z

C
k ). To compute the

likelihood with the depth image P (ZD
k |Ti

k) for a translation
hypothesis Ti

k, we first render the object with pose (Ti
k,R

∗
k),

where R∗k = arg max
Rk

P (Rk|Ti
k,Z

C
k ) from the color image.

input : Zk, (T1:N
k−1, P (R)1:Nk−1)

output: (T1:N
k , P (R)1:Nk )

begin
{wi}Ni=1 ← ∅ ;

(T̄1:N
k , P (R̄)1:Nk )← Propagate(T1:N

k−1, P (R)1:Nk−1);

for (T̄i
k, P (R̄)ik) ∈ (T̄1:N

k , P (R̄)1:Nk ) do
P (R̄)ik ← Codebook Match(Zk, T̄

i
k) ∗ P (R̄)ik;

wi ← Evaluate(Zk, T̄
i
k, P (R̄i

k));
end
(T1:N

k , P (R)1:Nk )←
Resample(T̄1:N

k , P (R̄)1:Nk , {wi}Ni=1);

end
Algorithm 1: 6D Object Pose Tracking with PoseRBPF

By comparing the rendered depth image ẐDi
k with the depth

measurements ZD
k , we first estimate the visibility mask V̂ i

k =
{∀p, ẐDi

k (p)−ZD
k (p) < m}, where p indicates a pixel in the

image and m is a small positive constant margin to account for
sensor noises. Therefore, the rendered pixel p with depth less
than ZD

k (p) +m is determined as visible. With the estimated
visibility mask, the visible depth discrepancy between the two
depth maps is computed as:

∆i
k(ẐDi

k ,ZD
k , V̂

i
k , τ) = avg

p∈V̂ i
k

(
min

( |ZD
k (p)− ẐDi

k (p)|
τ

, 1
))
,

(10)
where τ is a pre-defined threshold for each object. For every
particle, we compute its depth score sid = vik(1−∆i

k), where
vik is the visibility ratio of the object, i.e., the number of visible
pixels according to the visibility mask divided by the total
number of pixels rendered. Finally, we compute P (ZD

k |Ti
k) as

φ′(sid), where φ′(·) is a gaussian probability density function
centered at the maximum depth score among all the particles.



TABLE I
EFFECT OF THE NUMBER OF PARTICLES ON FRAME RATE IN TRACKING.

Number of particles 50 100 200 400
Frame rate (RGB) 20.3 11.5 6.1 3.1
Frame rate (RGB-D) 14.8 9.5 5.0 2.8

IV. EXPERIMENTS

A. Datasets

We evaluated our method on two datasets: the YCB Video
dataset [43] and the T-LESS dataset [14].

YCB Video dataset: The YCB video dataset contains RGB-
D video sequences of 21 objects from the YCB Object and
Model Set [3]. It contains textured and textureless household
objects put in different arrangements. Objects are annotated
with 6D object poses and two metrics are used for quantitative
evaluation. The first metric is ADD, which is the average
distance between the corresponding 3D points on the object at
groundtruth pose vs the predicted pose. The second metric is
ADD-S, which is the average distance between the closest
point between the 3D model of the object at groundtruth
and the model of the object at the predicted pose. ADD-S
is designed for symmetric objects, since it focuses on shape
matching, rather than exact pose matching.

T-LESS: This dataset contains RGB-D sequences of 30 non-
textured industrial objects. Evaluation is done on 20 test
scenes. The dataset is challenging because the objects do
not have texture and they have various forms of symmetries
and occlusions. We follow the evaluation pipeline in SIXD
challenge and used Visible Surface Discrepancy errvsd [13]
to evaluate the quality of the pose estimation. Visual surface
discrepancy is computed as mean average of the distance
between the visible points. The metric is the recall of correct
6D poses where errvsd < 0.3 with tolerance 20mm and
visibility of more than 10%.

B. Implementation Details

The auto-encoder is trained for each object separately for
150, 000 iterations with batch size of 64 using the Adam
optimizer with learning rate of 0.0002. The auto-encoder is
optimized with the L2 loss on the N pixels with largest
reconstruction errors. Larger Ns are more suitable for textured
objects to capture more details. We use N = 2000 for textured
objects and N = 1000 for non-textured objects. The training
data is generated by rendering the object at random rotation
and superimposed at random crops of the MS-COCO dataset
[22] at resolution 128× 128. In addition to the target object,
three additional objects are sampled at random locations and
scales to generate training data with occlusions. The target
object is positioned at the center of the image and jittered with
5 pixels, the object is sampled uniformly at scales between
0.975 and 1.025 with random lighting. Color is randomized in
HSV space and we also add Gaussian noise to pixel values to
reduce the gap between the real and synthetic data. The images
are rendered online for each training step to provide a more

Fig. 6. Rotation Coverage Percentile comparison between PoseRBPF and
PoseCNN for scissors and foam brick. Foam brick has 180◦ planar rotation
and scissors is an asymmetric object.

diverse set of training data. The architecture of the network
is described in [37]. It consists of four 5 × 5 convolutional
layers and four 5 × 5 deconvolutional layers for the encoder
and the decoder, respectively. The standard deviations used
to compute observation likelihoods in Eq. (4) are selected
between 0.03 and 0.1. The codebook for each object is pre-
computed offline and loaded during test time. Computation of
observation likelihood is done efficiently on a GPU. Table I
shows the frame rate at which PoseRBPF can process images.

C. Results on YCB Video Dataset

Table II shows the pose estimation results on the YCB video
dataset, where we compare with the state-of-the-art methods
for pose estimation using RGB images [43, 40] and RGB-
D images [43, 41]. We initialize PoseRBPF using PoseCNN
at the first frame or after the object was heavily occluded.
On average, this happened only 1.03 times per sequence. As
can be seen, our method significantly improves the accuracy
of 6D pose estimation when using 200 particles. Note that
our method handles symmetric objects such as 024 bowl,
061 foam brick much better. One of the objects on which
PoseRBPF performs poorly is 036 wood block, which is
caused by the difference in texture of the 3D model of the
wooden block and the texture of the wooden block used in
the real images. In addition, the physical dimensions of the
wooden block are different between real images and the model
contained in this dataset. Another observation is that with the
increase in the number of particles, the accuracy improves
significantly because with more samples the variations in scale
and translation of an object are covered much better.

It has been shown in the context of robot localization
that adding samples drawn according to the most recent



TABLE II
RESULTS ON YCB VIDEO DATASET

RGB RGB-D

PoseCNN [43] DOPE [40]
PoseRBPF
50 particles

PoseRBPF
200 particles

PoseRBPF++
200 particles PoseCNN+ICP [43] DenseFusion [41]

PoseRBPF
200 particles

objects ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S
002 master chef can 50.9 84.0 - - 56.1 75.6 58.0 77.1 63.3 87.5 69.0 95.8 - 96.4 90.5 95.1

003 cracker box 51.7 76.9 55.9 69.8 73.4 85.2 76.8 87.0 77.8 87.6 80.7 91.8 - 95.5 88.2 93.0
004 sugar box 68.6 84.3 75.7 87.1 73.9 86.5 75.9 87.6 79.6 89.4 97.2 98.2 - 97.5 92.9 95.5

005 tomato soup can 66.0 80.9 76.1 85.1 71.1 82.0 74.9 84.5 73.0 83.6 81.6 94.5 - 94.6 90.0 93.8
006 mustard bottle 79.9 90.2 81.9 90.9 80.0 90.1 82.5 91.0 84.7 92.0 97.0 98.4 - 97.2 91.9 96.3
007 tuna fish can 70.4 87.9 - - 56.1 73.8 59.0 79.0 64.2 82.7 83.1 97.1 - 96.6 91.1 95.3
008 pudding box 62.9 79.0 - - 54.8 69.2 57.2 72.1 64.5 77.2 96.6 97.9 - 96.5 85.8 92.0
009 gelatin box 75.2 87.1 - - 83.1 89.7 88.8 93.1 83.0 90.8 98.2 98.8 - 98.1 96.3 97.5

010 potted meat can 59.6 78.5 39.4 52.4 47.0 61.3 49.3 62.0 51.8 66.9 83.8 92.8 - 91.3 68.7 77.9
011 banana 72.3 85.9 - - 22.8 64.1 24.8 61.5 18.4 66.9 91.6 96.9 - 96.6 74.2 86.9

019 pitcher base 52.5 76.8 - - 74.0 87.5 75.3 88.4 63.7 82.1 96.7 97.8 - 97.1 86.8 94.2
021 bleach cleanser 50.5 71.9 - - 51.6 66.7 54.5 69.3 60.5 74.2 92.3 96.8 - 95.8 86.0 93.0

024 bowl 6.5 69.7 - - 26.4 88.2 36.1 86.0 28.4 85.6 17.5 78.3 - 88.2 25.5 94.2
025 mug 57.7 78.0 - - 67.3 83.7 70.9 85.4 77.9 89.0 81.4 95.1 - 97.1 90.9 97.1

035 power drill 55.1 72.8 - - 64.4 80.6 70.9 85.0 71.8 84.3 96.9 98.0 - 96.0 93.9 96.1
036 wood block 31.8 65.8 - - 0.0 0.0 2.8 33.3 2.3 31.4 79.2 90.5 - 89.7 20.1 89.1

037 scissors 35.8 56.2 - - 20.6 30.9 21.7 33.0 38.7 59.1 78.4 92.2 - 95.2 76.1 85.6
040 large marker 58.0 71.4 - - 45.7 54.1 48.7 59.3 67.1 76.4 85.4 97.2 - 97.5 92.0 97.1
051 large clamp 25.0 49.9 - - 27.0 73.2 47.3 76.9 38.3 59.3 52.6 75.4 - 72.9 48.5 94.8

052 extra large clamp 15.8 47.0 - - 50.4 68.7 26.5 69.5 32.3 44.3 28.7 65.3 - 69.8 40.3 90.1
061 foam brick 40.4 87.8 - - 75.8 88.4 78.2 89.7 84.1 92.6 48.3 97.1 - 92.5 81.1 95.7

ALL 53.7 75.9 - - 57.1 74.8 59.9 77.5 62.1 78.4 79.3 93.0 - 93.1 80.8 93.3

Fig. 7. Visualization of estimated poses on the YCB Video dataset (left) and T-LESS dataset (right). Ground truth bounding boxes are red, green bounding
boxes are particle RoIs, and the object models are superimposed on the images at the pose estimated by PoseRBPF.

observation can improve the localization performance [39].
Here, we applied such a technique by sampling 50% of the
particles around PoseCNN predictions and the other 50% from
the particles of the previous time step. Our results show that
such a hybrid version, PoseRBPF++, further improves the pose
estimation accuracy of our approach. Fig. 7 illustrates the 6D
pose estimation on YCB Video dataset. Depth measurements
contain useful information to improve the pose estimation
accuracy. By comparing the depth of the object rendered at the
estimated pose and the depth image (explained in Sec III-E),
our method achieves the state-of-the-art performance. The
comparison between RGB and RGB-D versions of PoseRPBF
shows using depth information with the same number of par-
ticles improves the accuracy of estimated poses significantly.
Note that depth information is only used during inference and
the encoder takes only the RGB images.
D. Results on T-LESS Dataset

Table III presents our results on the T-LESS dataset. T-
LESS is a challenging dataset because objects do not have

texture and objects are occluded frequently in different frames.
We compared our method with [37] which uses a similar
auto-encoder, but does not use any temporal information. We
evaluated both using ground truth bounding boxes and the
detection output from RetinaNet [23] that is used in [37]. Our
tracker uses 100 particles, and is reinitialized whenever the
observation likelihood drops below a threshold. The results
show that the recall for correct object poses doubles by
tracking the object pose rather than just predicting object
pose from single images in the RGB case. With additional
depth images, the recall can be further improved by around
76%, and PoseRBPF outperforms refining [37] with ICP by
28%. For the experiments with ground truth bounding boxes,
rotation is tracked using the particle filter and translation is
inferred from the scale of the ground truth bounding box.
This experiment highlights the viewpoint accuracy. In this
setting, recall increases significantly for all the methods and
the particle filter consistently outperforms [37], which shows
the importance of temporal tracking for object pose estimation.



Fig. 8. Visualization of rotation distributions. For each image, the distribution over the rotation is visualized. The lines represent the probability for rotations
that are higher than a threshold. The length of each line is proportional to the probability of that viewpoint. As can be seen, PoseRBPF naturally represents
uncertainties due to various kinds of symmetries, including rotational symmetry of the bowl, mirror symmetry of the foam brick, and discrete rotational
symmetries of the T-LESS objects on the right.

TABLE III
T-LESS RESULTS: OBJECT RECALL FOR evsd < 0.3 ON ALL PRIMESENSE

TEST SCENES

Without GT 2D BBs
With GT 2D BBs

Object
RGB RGB-D

SSD RetinaNet RetinaNet RetinaNet RetinaNet
[37] [37] PoseRBPF [37] + ICP PoseRBPF [37] PoseRBPF

1 5.65 8.87 27.60 22.32 61.30 12.33 80.90
2 5.46 13.22 26.60 29.49 63.10 11.23 85.80
3 7.05 12.47 37.70 38.26 74.30 13.11 85.60
4 4.61 6.56 23.90 23.07 64.50 12.71 62.00
5 36.45 34.80 54.40 76.10 86.70 66.70 89.80
6 23.15 20.24 73.00 67.64 71.50 52.30 97.80
7 15.97 16.21 51.60 73.88 88.00 36.58 91.20
8 10.86 19.74 37.90 67.02 84.00 22.05 95.60
9 19.59 36.21 41.60 78.24 86.00 46.49 77.10
10 10.47 11.55 41.50 77.65 74.30 14.31 85.30
11 4.35 6.31 38.30 35.89 62.60 15.01 89.50
12 7.80 8.15 39.60 49.30 71.00 31.34 91.20
13 3.30 4.91 20.40 42.50 42.10 13.60 89.30
14 2.85 4.61 32.00 30.53 50.10 45.32 70.20
15 7.90 26.71 41.60 83.73 76.60 50.00 96.60
16 13.06 21.73 39.10 67.42 83.80 36.09 97.00
17 41.70 64.84 40.00 86.17 78.40 81.11 87.00
18 47.17 14.30 47.90 84.34 81.10 52.62 89.70
19 15.95 22.46 40.60 50.54 61.80 50.75 83.20
20 2.17 5.27 29.60 14.75 55.00 37.75 70.00
21 19.77 17.93 47.20 40.31 72.70 50.89 84.40
22 11.01 18.63 36.60 35.23 63.80 47.60 77.70
23 7.98 18.63 42.00 42.52 82.40 35.18 85.90
24 4.74 4.23 48.20 59.54 83.20 11.24 91.80
25 21.91 18.76 39.50 70.89 77.70 37.12 88.70
26 10.04 12.62 47.80 66.20 85.00 28.33 90.90
27 7.42 21.13 41.30 73.51 68.00 21.86 79.10
28 21.78 23.07 49.50 61.20 79.30 42.58 72.10
29 15.33 26.65 60.50 73.04 86.30 57.01 96.00
30 34.63 29.58 52.70 92.90 80.10 70.42 77.00

Mean 14.67 18.35 41.67 57.14 73.16 36.79 85.28

Fig. 7 shows the 6D pose estimation of PoseRBPF on several
T-LESS images.

E. Analysis of Rotation Distribution

Unlike other 6D pose estimation methods that output a
single estimate for the 3D rotation of an object, PoseRBPF
tracks full distributions over object rotations. Fig. 8 shows
example distributions for some objects. There are two types
of uncertainties in these distributions. The first source is the
symmetry of the objects resulting in multiple poses with sim-
ilar appearances. As expected, each cluster of the viewpoints

corresponds to one of the similarity modes. The variance for
each cluster corresponds to the true uncertainty of the pose.
For example for the bowl, each ring of rotations corresponds
to the uncertainty around the azimuth because the bowl is
a rotationally symmetric object. Different rings show the
uncertainty on the elevation.

To measure how well PoseRBPF’s capture rotation uncer-
tainty, we compared PoseRBPF estimates to those of PoseCNN
assuming a Gaussian uncertainty with mean at the PoseCNN
estimate. Fig. 6 shows this comparison for the scissors and
foam brick objects. Here, the x-axis ranges over percentiles
of the rotation distributions, and the y-axis shows how often
the ground truth pose is within 0, 10, or 20 degrees of one
of the rotations contained in the corresponding percentile. For
instance, for the scissors, the red, solid line indicates that 80%
of the time, the ground truth rotation is within 20 degrees
of an rotation taken from the top 20% of the PoseRBPF
distribution. If we take the top 20% rotations estimated by
PoseCNN assuming a Gaussian uncertainty, this number drops
to about 60%, as indicated by the lower dashed, red line. The
importance of maintaining multi-modal uncertainties becomes
even more prominent for the foam brick, which has a 180◦

symmetry. Here, PoseRBPF achieves high coverage, whereas
PoseCNN fails to generate good rotation estimates even when
moving further from the generated estimate.

V. CONCLUSION

In this work, we introduced PoseRBPF, a Rao-
Blackwellized particle filter for tracking 6D object poses.
Each particle samples 3D translation and estimates the
distribution over 3D rotations conditioned on the image
bonding box corresponding to the sampled translation.
PoseRBPF compares each bounding box embedding to
learned viewpoint embeddings so as to efficiently update
distributions over time. We demonstrated that the tracked
distributions capture both the uncertainties from the symmetry
of objects and the uncertainty from object pose. Experiments
on two benchmark datasets with house hold objects and
symmetric texture less industrial objects show the superior
performance of PoseRBPF.
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