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Abstract—In this paper, we introduce “risk contours
map” that contains the risk information of different regions
in uncertain environments. Risk is defined as the proba-
bility of collision of robots with obstacles in presence of
probabilistic uncertainties in location, size, and geometry
of obstacles. We use risk contours to obtain safe paths for
robots with guaranteed bounded risk. We formulate the
problem of obtaining risk contours as a chance constrained
optimization. We leverage the theory of moments and
nonnegative polynomials to provide a convex optimization
in the form of sum of squares optimization. Provided
approach deals with nonconvex obstacles and probabilistic
bounded and unbounded uncertainties. We demonstrate
the performance of the provided approach by solving risk
bounded motion planning problems.

I. INTRODUCTION

Concern for safety is one of the dominant issues that
arises when planning in presence of uncertainties and
disturbances. To ensure safety, one needs to leverage ro-
bust and risk aware approaches to deal with uncertainties.
In this paper, we address risk bounded motion planning
in presence of uncertainties in perception of robots where
we have probabilistic uncertainties in location, size, and
geometry of obstacles. To ensure safety, instead of work-
ing with an ordinary map that shows obstacles and free
regions in the environment, we suggest to build a map,
called ’risk contours”, that shows the risk information
of different regions of the uncertain environment. Risk
is defined as the probability of collision of robots with
obstacles in presence of probabilistic uncertainties. Such
maps can be used to design trajectories for robots to
avoid risky regions and, in general, to plan risk bounded
motions. In risk bounded motion planning, one aims at
designing trajectories whose probability of failure (risk)
is bounded by predefined value (admissible risk level),
({11, 121, 31, [4D.

The problem of risk computation in continuous space
is numerically challenging because it requires multivari-
ate integrals with respect to the probability distributions
of uncertainties over nonconvex sets that describe the
obstacle regions. Such integrals, in general, do not have
any closed form solutions. Given the obstacles and
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probability distribution of uncertainties, one can use
sampling based methods and also Boole’s inequality to
estimate the risk. Sampling based methods like Monte
Carlo techniques ([5], [6], [7]) do not provide any
analytical bounds on the risk. Hence, these approaches
can not be directly used in risk bounded motion planning
where we need strict upper bounds of the risk [4]. Also,
Boole’s inequality provides conservative upper bounds
of the risk in presence of linear convex obstacles. In
([11, [2], [3]) Boole’s inequality is used for risk bounded
motion planning in presence of Gaussian distributions
and convex obstacles. In [8], risk-aware cost is defined
based on Gaussian distributions and logistic function to
characterize the safe distance between the vehicles. In
[4], we propose risk estimation method in presence of
nonconvex regions where polynomial optimizations are
used to provide upper and lower bounds on probability
of violation of nonconvex safety constraints.

In this paper, we introduce “risk contours map” to
model uncertain environments. To the best of our knowl-
edge, this problem has not been addressed before. Risk
contours map shows the risk information of different
regions in uncertain environments. To build such map,
we define the notion of ”A-risk contour” that represents
a set of points in the environment whose risk is less than
or equal to the predefined risk level A. Risk contours
map is a collection of such ”A-risk contours” with
different risk levels A. Note that, we can not directly
use risk estimation techniques like [4] because we need
to look for risk contours in the environment and, at the
same time, their associated risk.

In this paper, we provide a systematic way to construct
risk contours in presence of nonconvex obstacles and
both bounded and unbounded probabilistic uncertainties.
We provide convex optimizations in the form of “sum
of squares” (SOS) optimizations. In SOS optimization,
we look for polynomials whose coefficients satisfy linear
matrix inequalities. SOS optimization has different ap-
plications in control and motion planning of autonomous
systems and robots, (e.g., see [4], [9], [10], [11], [12],
[13], [14]). To obtain SOS optimizations, we leverage
our recent results on “chance constrained optimization”.



In ([15], [16]), building on the theory of moments and
nonnegative polynomials, we provide convex optimiza-
tions to solve chance constrained optimizations. Using
these results, we obtain outer and inner approximations
of ”A-risk contours”.

The outline of the paper is as follows: in Section II,
we cover the notation adopted in the paper and present
preliminary results on moments and SOS optimization;
In section III, we formulate the problem of risk contours
construction and present an illustrative example; Section
IV shows the application of risk contours map in risk
bounded motion planning; Sections V and VI detail the
proposed technique to find outer and inner approxima-
tions of risk contours and provide illustrative examples;
In Section VII, we present numerical results, followed
by some concluding remarks given in Section VIIIL.

II. NOTATION AND PRELIMINARY RESULTS

This section covers notation and some basic defini-
tions used in this paper ([17], [18], [19], [15]).

Polynomials: Let R[z] be the set of real polynomials
in the variables z € R". Given P € R[z], we represent
P as > yn Paz® using the standard basis {z“}aenn
of R[z], and p = {pa}aen~ denotes the polynomial
coefficients and o € N, e.g., o = (a1, ..., ) With «; in
N. Also, let Rq[z] C R[z] denotes the set of polynomials
of degree at most d € N. For example a polynomial
of degree at most d = 2 in z; and z2 (n = 2) can
be represented as P = 37 _ | o,) Parax®] T3° € Ra[z]
where o = (a1,a2) € {[0,0],[1,0],[0,1],[2,0],[L,1],[0,2]}
and p,,q, are coefficients. In general, any given P ¢
Rq[z] has S, q := (d:;") number of coefficients. In this
paper, we use polynomials to represent obstacles and safe
regions [4]. For example the set {(x1,2z2) : 1 — % — 23 >
0} represents a circular-shaped obstacle.

Moments: Given a probability distribution u(x) in
R™ and o € N”, moment of order o of p(z) is defined
as Yai,a0,...,an = Elz]tzy?. 23] = [27 252 2" p(z)dz,
([17], [18], [15]). For example, first and second moments
of a probability distribution in R, i.e., y; = E[z] and
yo = FE[x?], represent the mean and variance of the
distribution. As another example, given n = 2 and
a = 2,y = [yoo, Y10, Yo1, Y20, Y11, Yo2) represents the
moment sequence up to order 2 of a distribution in R2.

Sum of Squares Optimization: Polynomial P(z) :
R™ — R is a sum of squares (SOS) polynomial if it can
be written as a sum of finitely many squared polynomials,
ie., P(x) =7, hj(x)? for some m < oo and h;(x) €
R[z] for 1 < 5 < m, ([17], [18], [19]). SOS condition
is a convex constraint that can be represented as a linear
matrix inequality in terms of coefficients of polynomial,
ie., P(z) € SOS — P(z) = x' Ax, where x is the vector

of standard basis and A is a positive semidefinite matrix
in terms of the coefficients of the polynomial, ([19], [18],
[L7D).

Optimization over nonnegative polynomials involves
a linear cost function in terms of coefficients of poly-
nomials and polynomial nonnegativity constraints, i.e.,
min, ¢'p, st. Plz) > 0on K = {2 : g;j(z) >
0,7 = 1,...,£}, where p is coefficients vector of poly-
nomial P and K is a compact set described by given
polynomials g;(x),j = 1, ..., £. Nonnegativity constraint
”P(x) > 0 on Vx € K” can be relaxed to a convex SOS
constraint "P(z) = ho(z)*+3_;_, hj(z)’g; (z)” (sufficient
condition), ([19], [18], [17]). In this paper, we provide
SOS optimizations to construct risk contours.

III. RisKk CONTOURS

Let x.p»s be an uncertain obstacle defined in terms of
polynomial P as follows [4]:

Xobs(w) :={z € x : P(z,w) < 0} (1

where, yx C R™, w € 2 C R™ are uncertain parameters
with known probability distribution g, (w) and P : R™ x
R™ — R is a given polynomial in x € x and w € 2. In
general, Y,ps(w) represents an nonconvex obstacle with
probabilistic uncertain parameters w, e.g., obstacle with
uncertain size, location, or geometry.

We can represent uncertain safe region as follows:

Xsafe(w) =X Xobs(w) 2)

where, ”—" is the set difference. We define the risk as the
probability of collision with uncertain obstacle. Let A €
[0,1] be the admissible risk level. Then, we define the
”A-risk contour” for uncertain obstacle X ,ps(w) denoted
by C2 as the set of all points in the environment whose
probability of collision with the uncertain obstacle is less
than or equal to A. More precisely,

CTA ={xe€x: Prob,, ) (® € xops(w)) <A} (3)

Computation of such set is hard, because any point
x* in the set C2 should satisfy the “chance constraint”
Prob,,, (z* € xops(w)) = f{wEQ: Plarw)<oy Mo (@)dw < A
Such constraint involves a multivariate integral over a
nonconvex set which is computationally challenging. In
this paper, we provide a systematic numerical procedure
to compute outer and inner approximations of A-risk
contours for given uncertain obstacle and probability
distributions of uncertainties.

Remark 1: Although unsafe obstacles are defined by
just one polynomial, the approach proposed in this paper
can be extended to more complex sets involving multiple
polynomials. This assumption is only done to simplify
the exposition.



Assumption 1: Provided approach deals with both
unbounded and bounded probabilistic uncertainties. In
the case of unbounded uncertainties, we assume that
probability distributions are moment determinate, where
distributions can be completely determined by their
moments [20], e.g, normal distribution can completely
be determined by its first and second moments.

A. Illustrative Example

Consider the following simple illustrative example
where y = [-1,1] and Q = [-1,1]. The set
Xobs(w) = {z €R®:ai+a3—w® <0} represents an
circular-shaped obstacle with uncertain radius w with
uniform probability distribution over [0.3,0.4], i.e., i, =
U[0.3,0.4]. Then, the set {z € x: a7+ 23 —0.4> >0}
represents C2=°, a set of points whose probability of
collision with y.ps(w) is 0, because Prob(w > 0.4) = 0.
Also, the set {z € x:a7+ 235 —0.35° > 0} represents
€275 a set of points whose probability of collision is
less than or equal to 0.5, because Prob(w > 0.35) = 0.5.

IV. RISK BOUNDED MOTION PLANNING USING RISK
CONTOURS MAP

In risk bounded motion planning, we are looking for
a trajectory P(t) between given initial point o € x
and goal point zr € x whose probability of collision
with each obstacle is bounded by given admissible risk
level A, ([11, [2], [3]). More precisely, trajectory P(t)
should satisfy the following constraints:
i) Boundary Conditions: P(0) = zo, P(T) = zr
ii) Chance Constraints: Prob{P(t) € xobs;(wi)} <
A, i=1,..,0, Vt € [0,T], where Xops; (wi), ¢ = 1,...;0
are uncertain obstacles of the form (1).

ceey

To satisfy the chance constraints, we can use risk
contours of obstacles CTAZ_,Z' =1, ..., 0. Hence, the chance
constraints can be replaced by deterministic constraints
as follows:

P(t) € {x € x : N{_1CR Y}, VE€ [0,T) @)

Now, we can use any path planning methods like
RRT* and PRM [21] to find a path satisfying boundary
conditions and deterministic constraint (4).

V. CONVEX OPTIMIZATION FOR OUTER
APPROXIMATION OF RISK CONTOURS

In this section, we provide a systematic numerical
procedure to compute an outer approximation of the A-
risk contour denoted by (fTA for a given uncertain obsta-
cle xops(w) and probability distribution of uncertainties
1w (w). Given the uncertain obstacle and uncertain safe
set, the following holds true for the A-risk contour:

CP = {z € X : Prob,,, () (z € Xobs(w)) < A}
={z € x : Prob,, () (¢ € Xsafe(w)) > 1—A} (5

The main idea is to replace the chance constraint of the
A-risk contour in (5) with a deterministic constraint. For
this, we will replace the ”Prob,,, (z € Xsafe(w)) > 1—A”
with "Pouter () > 1—A” and represent the outer approx-
imation set as C2 = {z € x : Pouter(z) > 1 — A}, where
Pouter : R" — R is a polynomial. To construct the
polynomial P,y (x), we leverage our recent results on
“chance constrained optimization” based on the theory

of moments and SOS polynomials ([15], [16]).
For this purpose, we define the following sets:

Kobs = {(z € x,w € Q) : P(z,w) < 0} (6)
ICSg,fe =Xx X Q- ’Cobs (7)

Note that K. C x x Q and xos C x. Consider the
following SOS optimization.

_ min P (2, w) pte (w)dwd, 8)

PeRy[z,w] J/xxQ
st. P(z,w)—1>0 on {V(z,w) € Ksase}  (82)
P(z,w) > 0. (8b)

where P(z,w) € Rglz,w] is a unknown polynomial
of order d in x and w. Optimization (8) has a linear
cost function in terms of moments up to order d and
polynomial nonnegativity constraints. Hence, it can be

relaxed to a SOS optimization.
Now, we construct the polynomial Pyyer-(z) and the

set éTA in terms of d-order polynomial solution of SOS
optimization (8) as follows:

PouteT(w) :/975(:r7w)uw(w)dw (9)

CP = {x € X : Pouter(x) > 1 - A} (10)

The following Theorem holds true.

Theorem 1: The set C;A in (10) is an outer approx-
imation of A-risk contour CTA in (3) and converges
asymptotically as d increases.

Proof: Appendix A. [ ]

We can interpret the obtained results in (8) and (9) as
follows. For any fixed point z* € , polynomial P(z,w)
in (8) is an upper bound approximation of the indica-
tor function of the set {(z*,w) € Ksufe} denoted by
I{(x*,w)EKsafe}’ ie., I{(w*,w)elefe} =1 for (x*,w) S
Ksafe and O otherwise. Then, Poyier(2*) is an up-
per bound on the probability that z* € Xsqfe, i€,
Proby,, (" € Xsafe(w)) = Prob,,((z",w) € Ksafe) =
S wreroae} Ho @) = Jo Lo wyer, g p o (@)dw <
Jo P(z*,w)pw(w)dw = Pouter(z*). Hence, the set {z €
X : Pouter(z) > 1 — A} describes the outer approxi-
mation of the set of points whose probability of being
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Fig. 1: Polynomial Poyter(z) obtained by solving SOS optimization
(8) and Eq. (9). Outside of the circles represents outer approximations
of A-risk contours, i.e., CrA ={z € x : Pouter(x) > 1— A}

Fig. 2: True A-risk contour CTA (green) and outer approximation
C2 = {x € X : Pouter(x) > 1 — A} (outside of the dashed-line)

in the uncertain safe region is greater than or equal to
1— A, (for more information on indicator function based
probability estimation see [4]).

Note that SOS optimization in (8) is independent of
the risk level A. Hence, we can use its solution to
construct the outer approximation of the risk contours
for different risk levels A as in (10).

A. Illustrative Example

Consider unsafe obstacle of example in III-A. To
obtain outer approximations of A-risk contours, i.e., éTA,
we solve the optimization in (8) with d = 20 using
Yalmip, which is a MATLAB-based toolbox aimed at
SOS optimization [22], with Mosek solver. The com-
putation time to solve the SOS optimization is approx-
imately 150(sec). Then, according to (9), Pouter(x) =
I P, w)pe(w)dw = [} P(z,w)10dw. According to
(10), outer approximation of A-risk contour set is ob-
tained in terms of polynomial P, e (). Figure 1 shows
the obtained P,y (2) and obtained CATA, for the risk lev-
els A = [0.5,0.4,0.3,0.2,0.1,0.09,0.07,0.05,0.03,0.01].
To verify the obtained result, we use Monte Carlo
simulation. The details of the Monte Carlo simulation
are discussed in section VII. Figure 2 shows A-risk
contours obtained by Monte Carlo simulation and also
obtained outer approximations (fTA, for the risk levels
A = [0.1,0.09,0.07,0.05,0.03,0.01]. Note that based on
Theorem 1, tighter sets can be obtained by increasing
the polynomial order d in optimization (8).

VI. CONVEX OPTIMIZATION FOR INNER
APPROXIMATION OF RISK CONTOURS

Consider uncertain obstacle (1) and uncertain
safe  set (2). Then, the following holds
true:  x = {ze€x:Prob(z € xors(w)) <A} +
{x € x : Prob(z € xobs(w)) > A}. Hence, C2 =
X — {z € x : Prob(z € xobs(w)) > A}. So, an outer ap-
proximation of the set {x € x : Prob(z € xobs(w)) > A}
results in an inner approximation of C7.

In the previous section, we used SOS optimization in
(8) and (10) to obtain outer approximations of the set
{z € x : Prob(z € xsafe(w)) > 1— A}. We can apply the
same methodology to obtain outer approximations of the
set {z € x : Prob(x € xops(w)) > A}. For this, we define
the following SOS optimization.

_ min Pz, w) pw (w)dwdz, (11

PERy[z,w] X X
st. Plz,w) —1>0 on {V(z,w) € Kops} (11a)
Pz, w) > 0. (11b)

where P(z,w) € Ry[z,w] is a unknown polynomial
of order d in z and w and K. is the set defined in
(6). Now, we construct the polynomial P;pner(z) and an
inner approximation of A-risk contour denoted by C7 as
follows:

Pinner(w) Z/S)ﬁ(w,w)uw(w)dw (12)

CE ={z € x: Pinner(x) < A} 13)

The following Theorem holds true.

Theorem 2: The set C2 in (13) is an inner approx-
imation of A-risk contour C2 in (3) and converges
asymptotically as d increases.

Proof: Appendix B. [ ]

Similar to Pyyzer(x) in the previous section, for any
x* € x, polynomial, Pjyner(z*) is an upper bound
on the probability that * € x,ps, 1.€., Prob,, (z* €
Xobs(@)) < Pinner(z*) and {z € X : Pinner(r) > A}
is an outer approximation of the set of points whose
probability of collision is greater than A. Hence, the
set {x € x : Pinner(x) < A} describes an inner
approximation of A-risk contour.

A. Illustrative Example

Consider unsafe obstacle of provided example in
III-A. To obtain an inner approximation of A-risk
contours, i.e., C=, we solve SOS optimization in (11)
with d = 20. Then, according to (12), Pinner(z) =
f_ll Pz, w) o (W)dw = 0954 P(z,w)10dw. According to
(13), inner approximation of A-risk contour is obtained
in terms of polynomial Pj,ne-(x). Figure 3 shows the
obtained Pjnner(x) and obtained C~ for the risk levels
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Fig. 3: Polynomial P;y,ner () obtained by solving SOS optimization
(11) and Eq. (12). Outside of the circles represents inner approxima-
tions of A-risk contours, i.e., C2 = {x € X : Pinner(x) < A}.

ca—os  ca—os

Fig. 4: True A-risk contour CTA (green) and inner approximation
CA = {z € x : Pinner(x) < A} (outside of the dashed-line)

Fig. 5: True A-risk contours (green) and  inner
approximations  described by scaled A-risk contours as
cp=o.01 CA=0-01(0.8321,0.83z2) and CA=0-03

AT _
C£=0-03(0.83x1,0.83z2).

A =10.5,0.4,0.3,0.2,0.1,0.09,0.07,0.05]. Figure 4 shows
A-risk contours obtained by Monte Carlo simulation and
also obtained inner approximations C for the risk levels
A =[0.3,0.2,0.1,0.09,0.07,0.05].

Remark 2: Note that based on Theorem 2 tighter sets
can be obtained by increasing the polynomial order d
in optimization (11). An alternative approach to obtain
a tighter set for small d is to use “scaled A-risk con-
tours” that is obtained by rescaling the inner and outer
approximation sets by introducing a scaling factor s,
ie., C2(se x ) = {@ € X : Pouter(sz x ) > 1 — A} and
CR(szxx) = {x € X : Pinner(sz x x) < A}. For example,
Figure 5 shows tight inner approximations of A-risk con-
tours for A = [0.03,0.01] described by scaled outer ap-
proximation sets, i.e., CA=01 = ¢A=901(0.83x,,0.83x2)
and CA=003 = (A=093(0.83z,,0.83z2). Monte Carlo
simulation is used to verify the obtained scaled A-risk
contour.

VII. IMPLEMENTATION AND NUMERICAL RESULTS

In this section, three examples are presented that illus-
trate the performance of the proposed approach. Given

the mathematical description of uncertain obstacles in
(1) and probability distributions of uncertainties, we use
Yalmip [22] and Mosek to solve the provided SOS
optimization and construct an inner approximation of
A-risk contours. The computations in this section were
performed on a laptop with Intel i7 2.7GHz processors
and 8 GB RAM. As described in IV, by obtaining A-risk
contours for different risk levels A in the offline step,
one can use any path planning methods to find feasible
risk bounded paths for robots. In this paper, we assume
that polynomial representation of obstacles are given.
One can use SOS based approaches in ([9], [23]), to
construct such descriptions of obstacles from point cloud
data obtained by sensors. As an alternative approach, one
can model the obstacles with simple ellipsoids. Also, we
assume that probability distributions of uncertainties are
obtained by developed probabilistic models or intention
recognition algorithms (e.g., [24]).

To test the accuracy of the obtained results, we
use Monte Carlo simulation [15] to estimate C2. For
this purpose, we first uniformly grid x into N grid-
points (N depending on the desired precision). Let
{z}N, C x denote the points in the uniform grid.
Next, for each grid point (9, we sample from the
probability distributions of uncertain parameters ., sup-
ported on Q. Let {w®™®1Yi be N; iid. sample of
random parameter w. Then, we approximate P =
Proby,, (7 € Xobs(w)) = f{wEQ:P(Z(i),w)SO} podw by

PJ(\;LL) = Nilzglll x(i)aw(i'k) 5 where I(l‘,w) =
1 if(z,w) € {(z,w):P(z,w) <0}, and I(z,w) =

0 otherwise. For each (), we chose sample size N; such
that PI(\,? becomes stagnant to further increase in N;.
Then, the set of sampled points z* whose estimated
risk satisfy Pyisic < A represents C2.

A. Example 1

An uncertain unsafe region is modeled as X,ps(w) =
{(z1,22) € x : —39.0625z] + 3.1252% — 2.2523 +
0.01 4+ 0.5w < 0} with uncertain parameter w that has a
Beta probability distribution over [0, 1] with parameters
a = 1.1 and g = 5, ie., p, = Beta(1.1,5). Figure
6-a shows the cluttered environment and X,ps(w) for
different values of uncertain parameter w = 0 and 1.

To obtain inner approximations of A-risk contours,
ie., C2», we first solve the SOS optimization in (11)
with d = 24 to find polynomial P,y (x). The com-
putation time to solve the SOS optimization is ap-
proximately 500(sec). Figure 7-a shows the obtained
Pinner(x). Then, we use Pipner(z) to construct the
g according to (12) and (13) for different value of

cp
risk levels A. Figure 7-b shows the obtained inner
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Fig. 6: a) Cluttered environment and X ps(w) for w = 0 and 1. The
constructed path between the start and goal points is obstacle free for
all possible values of w (robust motion planning). b) True A = 0.01-
risk contour (green) and inner approximation C_TA:O'O1 (outside of the
dashed-line). The constructed path between the start and goal points
is risk bounded.
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Fig. 7: a) Polynomial P;nner(z) obtained by solving SOS op-
timization (11) and Eq. (12). b) Outside of the contours rep-
resent inner approximation of A-risk contours, i.e., QA =
{z € X : Pinner(z) < A}.
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Fig. 8: True A-risk contours CTA (green) and inner approximations
éTA ={x € X : Pinner(z) < A} (outside of the dashed-line).

approximation of A-risk contours for the risk levels of
A = [0.5,0.4,0.3,0.2,0.1,0.05]. Also Figure 8 com-
pares the obtained inner approximations with actual A-
risk contours obtained by Monte Carlo simulation.

Moreover, Figure 6-b shows the obtained tight inner
approximation using the scaled A-risk contour described
in Remark 2, for risk level A = 0.01 as C~=001 =
CA=091(0.8921,0.69z2). We use the obtained CA=001
to construct a path between start and goal points with
bounded risk of 0.01 shown in Figure 6-b. We compare
the obtained result using risk bounded motion planning
(Figure 6-b) with robust motion planning (Figure 6-a)
where the designed path should be obstacle free for all
possible values of the uncertain parameter w.

B. Example 2

In the presence of multiple uncertain obstacles, one
needs to obtain the the risk contours for each obstacles
and use the obtained sets to construct the risk bounded
path as in (4). In such scenarios, it is easier to work
with uncertain safe region instead of multiple uncertain
obstacles. For example, in the following example, shown
in Figure 9, we have several dynamic obstacles whose
locations are uncertain. The safe region between the
obstacles is modeled as xsafe(w) = {(z1,22) € Xx :
— (21 + (2 — 0.4)* + (z2 — 0.4)* — 0.1(w — 0.5)) > 0} with
uncertain parameter w that has a Triangular probability
distribution over [0,1] with the peak point 0.5, i.e.,
e = Tri(0.5), (for deterministic and convex version of
this problem see [25]).

To obtain outer approximations of the A-risk contours,
we first solve the SOS optimization in (8) with d = 24
to find polynomial P,y¢er(x), (shown in Figure 10-
a). The computation time to solve the SOS optimiza-
tion is approximately 500(sec). Then, we construct the
CA,"A according to (9) and (10) for different value of
risk levels A. Figure 10-b shows the obtained outer
approximation of A-risk contours for the risk levels
of A = [0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.05,0.01].
Also Figure 11 compares the obtained inner approxi-
mations with actual A-risk contours obtained by Monte
Carlo simulation.

To obtain inner approximations of the A-risk contours,
we first solve the SOS optimization in (11) with d = 24
to find polynomial Pjpper(x), (shown in Figure 12-a).
Then, we construct the C2 according to (12) and (13)
for different value of risk levels A. Figure 12-b shows
the obtained inner approximation of A-risk contours for
risk levels of A = [0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1].
Also, Figure 13 compares the obtained inner ap-
proximations with actual A-risk contours obtained
by Monte Carlo simulation. Moreover, Figure 14
shows the obtained tight inner approximation using
the scaled A-risk contour described in Remark 2,
for risk levels A = [0.1,0.05,0.01] as CA="' =
CR=045(0.821,0.922), CA705 = CA=0-35(0.7521, 0.8522),
CATO0L — £8=03(0.7521,0.85x2).

C. Example 3

Due to the wind disturbances, location of a
flying drone (moving obstacle) for time steps
E = 1,2,3 are modeled as xops(wi,, way,ws,) =
{z €R®: (z1 —w1,)” + (22 — w2, ) + (w3 — w3, )® — 0.2° <0},
where the  uncertain  parameters have  the
following Normal distributions: Hor, =
N(=0.3,0.02), oy, = N(0,0.06),py, = N(0.3,0.1),



Xsa, ,f(u)

‘ 1

y 0.5
1

. 4 - T am e | 4 N
1 - ! = 1 - 20
4 4 yi 8

Q‘;‘ Q‘;‘ in‘
. “ . ‘A“ . A “ 0.5

a) b)

Fig. 9: a) Uncertain safe region (blue) between dynamic obstacles
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valuse of uncertain parameter w.

-0.5 o 0.5
Ty

Fig. 10: a) Polynomial Poyter(z) obtained by solving SOS
optimization (8) and Eq. (9). b) Inside of the contours rep-
resent outer approximation of A-risk contours, i.e., (fTA =
{z € x : Pouter(z) > 1—A}.
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Fig. 11: True A-risk contour set C2 (green) and outer approximation
CA = {z € x : Pouter(x) > 1 — A} (inside of the dashed-line).
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Fig. 12: a) Polynomial P;yner () obtained by solving SOS optimiza-
tion (11) and Eq. (12). b) Inside of_the contours represent inner approx-
imation of A-risk contours, i.e., CTA ={x € X : Pinner(z) < A}.

Hug, = N(=0.3,0.02), puy, = N(0,0.06), puy, = N(0.3,0.1),
Hug, =N (=0.3,0.02), puy, = N(0,0.02), puy, = N(0.3,0.02).

We obtain inner approximations of the A = 0.1-risk
contour, set of points whose probability of collision
with the drone is less than or equal to 0.1, for time
steps £k = 1,2,3. At each time steps, we solve SOS
optimization according to the probability distributions of
the uncertain parameters. Figure 15 shows the obtained
results.
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Fig. 13: True A-risk contour C2 (green) and inner approximation
CA = {z € X : Pinner(x) < A} (inside of the dashed-line).
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Fig. 14: Inner approximations of CA  described by scaled A-
risk contours, CA=0-1 = C2=045(0.8z1,0.9z5), CA=0-05 =
CA=0-35(0.75x1,0.85x2), CA=0-01 = CA=0-3(0.7521,0.85x2).
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Fig. 15: Outside of the red shapes represent inner approximations of
CTAZO'1 for time steps k = 1,2, 3.

Remark 3: In the provided examples, we addressed
risk bounded motion planning problems in 2D and
3D environments. Recently, ”Sparse Bounded degree
SOS (SBSOS)” [26] and “Diagonally-Dominant SOS
(DSOS)” ([27], [28]) techniques are introduced to solve
large-scale SOS optimization. We can use these tech-
niques to solve SOS optimizations of this paper for
higher-dimensional problems (e.g., risk bounded motion
planning in joint space).

VIII. CONCLUSION

In this paper, we addressed a novel approach to
deal with perception uncertainties. For this purpose,
we introduced risk contours map that shows the risk
information of different regions in uncertain environ-
ment. To build such map, we used the notion of A-
risk contour that represents a set of points whose risk
is less than or equal to the given risk level A. We
provided systematic numerical procedure to obtain outer
and inner approximations of A-risk contours in presence
of nonconvexities and both bounded and unbounded
probabilistic uncertainties. We leveraged recent results
on chance constrained optimization and sum of squares
optimizations. Several numerical examples are presented



to illustrate the performance of the proposed approach.

IX. APPENDIX A

Here, we provide the sketch of the proof based on the
recent results on chance constrained optimization (for
more information see [15], [16], [20]). We assume that
sets Kops and Ky s are compact. To satisty this assump-
tion, one can add M — ||z||3 — ||w||3 > O for some M > 0
to the description of the sets, ([17], [18], [15]). To obtain
SOS optimization in (8) and find the outer approximation
C2 defined in (10), we will take the following steps:
1) We first address the chance optimization problem of
the form “maxge,Prob{z € Xsarc(w)}”’ and leverage the
theory of moments to obtain the convex relaxation in the
moment space, 2) We then use the duality theorem to find
the dual optimization in the form of SOS optimization,
3) Finally, we leverage the SOS optimization of step (2)
to obtain the SOS optimization in (8) and (10).

Step 1): Consider the chance optimization problem of
the form max,e,Prob{z € xsafe(w)}. To solve this non-
convex chance optimization, we want to find a convex
relaxation. For this purpose, we take the following steps:
1-i) We find an equivalent optimization in space of
distributions. For this, we assign an unknown probability
distribution p,(z) defined on x, i.e., supp(pz) C X, to
z. We then translate the chance optimization problem
in terms of probability distributions ., (w), u(z), and
a slack distribution p(x,w) defined on {(z,w) € Ksare}-
This results in the following “infinite dimensional’” linear
program in distribution space (Problem 3.2 and Theorem
3.1 in [15]): maz,, . [dp, st p < po X po, [dps =
1, supp(p) C { (z,w) € Ksage}, supp(pa) C X-

1-ii) Next, to find a tractable convex optimization, in-
stead of looking for distributions p, and p in step
(1-i), we look for their moment sequences. For this
purpose, we translate the cost function and constraints
of obtained optimization in step (1-i) in terms of the
moment sequences of the distributions. For this, we need
the following lemma that shows the relation between a
distribution and its moments ([17], [18], [15]). ”Lemma:
The sequence y = {y.} is a moment sequence of a
distribution p defined on the compact set {z : P(z) > 0},
if and only if the following linear matrix inequalities
hold Mu(y) = 0, Ma(y;P) = 0,d € N.”, where My(y)
is the “moment matrix” in terms of the moments up
to order d and Mjy(y;P) is the ”localizing matrix”
in terms of the coefficients of the polynomial P and
moments up to order d. Note that this lemma is valid
for distributions that satisfy Assumption 2. This lemma,
results in the following convex optimization in the
moment space (Problem 3.6 and Lemma 3.2 in [15]):
supy v (¥)o, st. My(y) = 0, Ma(y;P) = 0, My(yx)

0, [lyxll <1, (yx)o =1, Ma(yw X yx —y) = 0, where yx,
yw, and y are the sequence of moments of distributions
e (), pw(w), and p(z,w), respectively. Also, (y)o is the
first element of the moment sequence y and P is the
polynomial describing the uncertain safe region. Optimal
value of the convex optimization in moment space is an
upper bound of the optimal value of the original chance
optimization of step (1) and monotonically converges as
d increase, ([15], [16]).

Step 2: Now, we apply the standard results on
the duality of convex optimizations to the optimiza-
tion of step (l-ii) and obtain the dual convex op-
timization in polynomial space. Given a standard
form of a convex optimization involving linear ma-
trix inequities as: min(C, X), st (A;, X) = b, i =
1,...,m, X »= 0, where, A;,C € R" x R", vector
b € R", and X € R" x R", (C,X) = trace(CX),
the dual optimization reads as ([17], [18], [19], [16]):
maxbTy, st. C — 3™, A;y; »= 0. This will results in a
SOS optimization in space of polynomials as follows
[16]: mingcp oo Jo Pz, w)p (w)dw, s.t. Plz,w) — 1 >
0 on {V(z,w) € Ksafe} Pz, w) > 0.

Step 3: In the chance optimization problem of step
(1), we are looking for the point x € x that has
the minimum risk of collision. Now, we leverage the
obtained results in steps (1) and (2) to look for a set
of all points whose risk is less than or equal to A,
ie., CTA. For this, we extend the SOS optimization
of step (2) that results in the following optimization
[20]: ming cp oo fxxwﬁ(x,w)uw(w)dwdx, st. Pz,w) —
1 >0 on {V¥(z,w)€ Ksafe},P(z,w) > 0. Not that the
only difference between this SOS optimization and SOS
optimization of step (2) is the cost function. This is the
result of replacing u, in the optimization of step (1-i)
with pu, = dz (Eq. 12 and 13 and Theorem 3.1 in [20]).
Then, Pouter(2) = [, P(2,w)pw(w)dw is an upper bound
on the Prob(z € xsafe) and converges as d increases.
Hence, the set {x € x : Pouter(z) > 1 — A} forms a outer
approximation of the C2 and converges as d increases,
[20].

X. APPENDIX B

In Theorem 1, we obtain outer approximations of the
set {x € x : Prob(z € Xsafe(w)) >1—A}. We can take
the same steps to obtain outer approximations of the set
{z € x : Prob(x € xops(w)) > A}, (for more information
on chance constrained optimization of complement of a
set see [20]).
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