
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Influencing Leading and Following
in Human-Robot Teams

Minae Kwon∗
Stanford University

Mengxi Li∗
Stanford University

Alexandre Bucquet
Stanford University

Dorsa Sadigh
Stanford University

Abstract—Recent efforts in human-robot interaction have been
focused on modeling and interacting with single human agents.
However, when modeling teams of humans, current models are
not able to capture underlying emergent dynamics that define
group behavior, such as leading and following. We introduce a
mathematical framework that enables robots to influence human
teams by modeling emergent leading and following behaviors. We
tackle the task in two steps. First, we develop a scalable represen-
tation of latent leading-following structures by combining model-
based methods and data-driven techniques. Second, we optimize
for a robot policy that leverages this representation to influence
a human team toward a desired outcome. We demonstrate our
approach on three tasks where a robot optimizes for changing
a leader-follower relationship, distracting a team, and leading
a team towards an optimal goal. Our evaluations show that
our representation is scalable with different human team sizes,
generalizable across different tasks, and can be used to design
meaningful robot policies.

I. INTRODUCTION

Humans are capable of seamlessly interacting and collabo-
rating with each other. They can easily form teams and decide
if they should follow or lead to efficiently complete a task
as a group [39, 41, 12]. This is apparent in sports teams,
human driving behavior, or simply having two people move
a table together. Similarly, humans and robots are expected
to seamlessly interact with each other to achieve collaborative
tasks. Examples include collaborative manufacturing, search
and rescue missions, and in an implicit way, collaborating on
roads shared by self-driving and human-driven cars.

These collaborative settings bring two important challenges
for robots. First, robots need to understand the emergent
leading and following dynamics that underlie seamless human
coordination. Second, robots must be able to influence human
teams to achieve a desired goal. For instance, imagine a mixed
human-drone search-and-rescue team headed toward the island
on the left as shown in Fig. 1. When a drone senses that the
survivors are actually on the island on the right, how should
it direct the rest of the human team toward the desired goal?

Using natural language or pre-defined, task-specific com-
munication signals (e.g., blinking lights) are viable solutions
[42, 5]. However, in this work, we focus on finding more
general solutions that do not rely on the assumption that there
will be direct channels of communication.

One common solution is to assign leading and following
roles to the team a priori before starting the team’s mis-

∗Authors have contributed equally.

Autonomous drone senses extra 
information and influences human team

t

t

t

t + 1

t + 1

Fig. 1: We learn leading and following relationships in human teams
(denoted by the arrows), and use this to create influential robot
policies. The grey arrows represent intended human leading and
following behaviors whereas the black arrows represent updated
leading and following behaviors after the influencing robot action.

sion. Many current human-robot interactions determine leader-
follower roles beforehand [16, 22, 26, 40, 43, 17, 34], which
include learning-from-demonstration tasks where the human is
the leader and the robot is the follower [10, 3, 1, 44, 13, 8, 28],
assistive tasks where the robot leads by teaching and assisting
human users [33, 20], or other interactions based on game
theoretic formulations where the robot leads by influencing
its human partner [37, 38]. However, assigning leadership
roles a priori is not always feasible in dynamically changing
environments or long-term interactions. For instance, the drone
that collects new information should be able to dynamically
become a leader.

If leading and following roles are not assigned a priori,
the robot must estimate human state and be equipped with
policies that can influence teammates. In addition to the
learning from demonstration work mentioned above, prior
work has shown that robots have been able to infer human
preferences through interactions using partially observable
Markov decision processes (POMDPs) which allow reasoning
over uncertainty on the human’s internal state or intent [9, 14,
25, 27, 19, 36]. Human intent inference has also been achieved
through human-robot cross-training [28] as well as various
other approximations to POMDP solutions such as augmented
MDPs, belief space planning, approximating reachable belief
space, and decentralization [2, 23, 24, 31, 32, 35]. These
approaches do not easily generalize to larger teams of humans
due to computational intractability. Prior work has also studied



how we can construct intelligent robot policies that induce
desired behaviors from people [38, 18, 29, 30, 7]. However,
all of these works optimize for robot policies that influence
only a single human. Human state estimation and optimization
for actions based on the estimation will be computationally
infeasible with larger groups of humans.

Instead of keeping track of each individual’s state in a
team, we propose a more scalable method that estimates the
collective team’s state. Our key insight is that, similar to
individuals, teams exhibit behavioral patterns that robots can
use to create intelligent influencing policies. One particular
behavioral pattern we focus on are leading and following
relationships.

In this paper, we introduce a framework for extracting
underlying leading and following structures in human teams
that is scalable with the number of human agents. We call
this structure a leader-follower graph. This graph provides a
concise and informative representation of the current state of
the team and can be used when planning. We then use the
leader-follower graph to optimize for robot policies that can
influence a human team to achieve a goal.

Our contributions in this paper are as follows:
• Formalizing and learning a scalable structure, leader-

follower graph, that captures complex leading and fol-
lowing relationships between members in human teams.

• Developing optimization-based robot strategies that lever-
age the leader-follower graph to influence the team to-
wards a more efficient objective.

• Providing simulation experiments in a pursuit-evasion
game demonstrating the robot’s influencing strategies to
redirect a leader-follower relationship, distract a team,
and lead a team towards an optimal goal based on its
learned leader-follower graph.

II. FORMALISM FOR MODELING
LEADING AND FOLLOWING IN HUMAN TEAMS

Running Example: Pursuit-Evasion Game. We define a
multi-player pursuit-evasion game on a 2D plane as our main
running example. In this game, each pursuer is an agent in
the set of agents I that can take actions in the 2D space to
navigate. There are a number of stationary evaders, which we
refer to as goals, G. The objective of the pursuers is to collab-
oratively capture the goals. Fig. 2 shows an example of a game
with three pursuers, shown in orange, and three goals, shown
in green. The action space of each agent is identical, Ai =
{move up, move down, move left, move right, stay still}; the
action spaces of all agents collectively define the joint action
space A. All pursuers must jointly and implicitly agree on
a goal to target without directly communicating with one
another. A goal will be captured when all pursuers collide
with it as shown in Fig. 2b.
Leaders and Followers. In order to collectively capture a
goal, each agent i ∈ I must decide to follow a goal or another
agent. We refer to the goal or agent being followed as a leader.
Formally we let li ∈ G ∪ I , where li is either an agent or a
fixed goal g who is the leader of agent i (agent i follows

!"

!# !$

1

23

(a) Pursuit evasion game with three 
goals (green circles), and three 

pursuers (orange triangles). 
The pursuers must jointly agree on a 

goal to target.

!"

!# !$
1

2

3

(b) Three pursuers collide with !#
to capture it.

Fig. 2: Pursuit-evasion game.

li). This is shown in Fig. 3a, where agent 2 follows goal g1
(l2 = g1) and agent 3 follows agent 2 (l3 = 2).

The set of goals G abstracts the idea of the agents reaching a
set of states in order to fully optimize the joint reward function.
For instance, in a pursuit-evasion game, all the agents need to
reach a state corresponding to the goals being captured. An
individual goal g intuitively signifies a way for the agents
to coordinate strategies with each other. For instance, in a
pursuit-evasion game, the agents should collaboratively plan
on actions that capture each goal.
Leader-Follower Graph. The set of leaders and followers
form a directed leader-follower graph as shown in Fig. 3a.
Each node represents an agent i ∈ I or goal g ∈ G.
The directed edges represent leading-following relationships,
where there is an outgoing edge from a follower to its leader.
The weights on the edges represent a leadership score, which
is the probability that the tail node is the head node’s leader.
For instance, in Fig. 3a, w3,2 represents the probability that
2 is 3’s leader. The leader-follower graph is dynamic in that
agents can decide to change their leaders at any time. We
assume that there could be an implicit transitivity in a leader-
follower graph, i.e., if an agent i follows an agent j, implicitly
it could be following the agent j’s believed ultimate goal.

Some patterns are not desirable in a leader-follower graph.
For instance, an agent would never follow itself, or we do
not expect to observe cycling leading-following behaviors
(Fig. 3b). Other patterns that are likely include: chain patterns
(Fig. 3c) or patterns with multiple teams where multiple agents
directly follow goals (Fig. 3d). We describe how to construct
a leader-follower graph that is scalable with the number of
agents and avoids the undesirable patterns in Sec. III.
Partial Observability. The leader of each agent, li, is a
latent variable. We assume that agents cannot directly observe
the one-on-one leading and following dynamics of other
agents. Thus, constructing leader-follower graphs can help
robot teammates predict who will follow whom, allowing them
to strategically influence teammates to adapt roles. We assume
agents are homogeneous and have full information on the
observations of themselves and all other agents. (e.g. positions
and velocities of agents).

III. CONSTRUCTION OF A LEADER-FOLLOWER GRAPH

In this section, we focus on constructing the leader-follower
graph that emerges in collaborative teams using a combination
of data-driven and graph-theoretic approaches. Our aim is to



(c) Chain behavior in the leader-
follower graph.

(b) Cyclic leader-follower graph. We 
design policies that avoid such 

cyclic behaviors.

(d) Multiple teams. (a) Leader-follower graph. Green 
circles are the goals that need to be 
captured. Orange triangles are the 

pursuers.

!"

#$,&
#",'(

#&,'(

!$

!&

1 3

2

!"

#$,&

#",$

#&,"!$

!&

1 3

2

!"

#$,&#",$

#&,'(

!$

!&

1 3

2

!"

#$,&
#",')

#&,'(

!$

!&

#*,"
1

2

3

4

Fig. 3: Variations of the leader-follower graph

leverage this leader-follower graph to enable robot teammates
to produce helpful leading behaviors. We will first focus
on learning pairwise relationships between agents using a
supervised learning approach. We then generalize our ideas to
multi-player settings using algorithms from graph-theory. Our
combination of data-driven and graph-theoretic approaches
allows the leader-follower graph to efficiently scale with the
number of agents.

A. Pairwise Leadership Scores

We first will focus on learning the probability of any agent
i following any goal or agent j ∈ G ∪ I . The pairwise
probabilities help us estimate the leadership score wi,j , i.e.,
the weight of the edge (i, j) in the leader-follower graph.

We propose a general framework of estimating the leader-
ship scores using a supervised learning approach. Consider a
two-player setting where I = {i, j}, we collect labeled data
where agent i is asked to follow j, and agent j is asked to
optimize for the joint reward function assuming it is leading
i, i.e., following a fixed goal g in the pursuit-evasion game
(li = j and lj = g). We then train a Long Short-Term Memory
(LSTM) network with a softmax layer to predict each agent’s
most likely leader.
Training with a Scalable Network Architecture. Our net-
work architecture consists of two LSTM submodules, one
to predict player-player leader-follower relationships (P-P
LSTM) and one to predict player-evader relationships (P-E
LSTM). We use a softmax output layer with a cross-entropy
loss function to get a probability distribution over j and all
goals g ∈ G of being i’s leader. We take the leader (an agent
or a goal) with the highest probability and assign this as the
leadership score. The P-P and P-E submodules allow us to
scale training to a game of any number of players and evaders
as we can add or remove P-P and P-E submodules depending
on the number of players and evaders in a game. An example
of our scalable network architecture is illustrated in Fig. 4.
Data Collection. We collect labeled human data by asking
participants to play a pursuit evasion game with pre-assigned
leaders. We recruited pairs of humans and randomly assigned
leaders li to them (i.e., another agent or a goal). Participants
played the game in a web browser using their arrow keys and
were asked to move toward their assigned leader, li. In order to
create a balanced dataset, we collected data from all possible

!"

!#

1

2

1

!#

2

2

2

2

LSTM pursuer to 
pursuer 

LSTM pursuer to evader

LSTM pursuer to 
evader

!#

2

LSTM pursuer to 
evader

!"

1

Softmax Layer

!"$%= &#,("

$"= &#,(#

$#= &#,"

$)= &#,#

Training data

Fig. 4: Scalable neural network architecture. This example is pre-
dicting the probability of another agent j being agent 2’s leader,
w2,j . There are three LSTM submodules used because there are two
possible evaders and one possible agent that could be agent 2’s leader.

configurations of leader and followers in a two-player setting.
We collected a total of 186 games.

In addition, since human data is often difficult to collect
in large amounts; we augmented our dataset with synthetic
data. The synthetic data is generated by simulating humans
playing the pursuit evasion game. We simulated humans based
on the well-known potential field path planner model [6]. We
find that the simple nature of the task given to humans (i.e.,
move directly toward your assigned leader li) is qualitatively
easily replicated using a potential field path planner. Agents
at location q plan their path under the influence of an artificial
potential field U(q), which is constructed to reflect the en-
vironment. Agents move toward their leaders li by following
an attractive potential field. Other agents and goals that are
not their leaders are treated as obstacles and emit a repulsive
potential field.

We denote the set of attractions i ∈ A and the set
of repulsive obstacles j ∈ R. The overall potential field
is weighted sum of potential field from all attractions and
repulsive obstacles. θi is the weight for the attractive potential
field from attraction i ∈ A, and θj is the weight for repulsive
potential field from obstacle j ∈ R.

U(q) =
󰁛

i∈A

θiU
i
att(q) +

󰁛

j∈R

θjU
j
rep(q) (1)

The optimal action a an agent would take lies in the direction



of the potential field gradient:

a = −∇U(q) = −
󰁛

i∈A

θi∇U i
att(q)−

󰁛

j∈R

θj∇U j
rep(q)

The attractive potential field increases as the distance to
goal becomes larger. The repulsive potential field has a fixed
effective range, within which the potential field increases as
the distance to the obstacle decreases. The attractive and
repulsive potential fields are constructed in the same way for
all attractive and repulsive obstacles. We elaborate on details
of the potential field function in the Appendix, Section VII.
Implementation Details. We simulated 15000 two-player
games, equally representing the number of possible leader
and follower configurations. Each game stored the position of
each agent and goal at all timesteps. Before training, we pre-
processed the data by shifting it to have a zero-centered mean,
normalizing it, and down-sampling it. Each game was then fed
into our network as a sequence. Based on our experiments,
hyperparameters that worked well included a batch size of 250,
learning rate of 0.0001 and hidden dimension size of 64. In
addition, we used gradient clipping and layer normalization [4]
to stabilize gradient updates. Using these hyperparameters, we
trained our network for 100,000 steps.
Evaluating Pairwise Scores. Our network trained on two-
player simulated data performed with a validation accuracy
of 83%. We also experimented with training with three-
player simulated data, two-player human data, as well as a
combination of two-player simulated and human data (two-
player mixed data). Validation results for the first 60,000 steps
are shown in Fig. 5. For our mixed two-player model, we first
took a pre-trained model trained on two-player simulated data
and then trained on two-player human data. The two-player
mixed curve shows the model’s accuracy as it is fined-tuned on
human data. Our three-player model had a validation accuracy
of 74% while our two player human model and our mixed
two-player data model had a validation accuracy of 65%.

0 20e3 40e3 60e3
steps

0.2

0.4

0.6

0.8

ac
cu

ra
cy

2P simulated
3P simulated
2P human
2P mixed

Fig. 5: Validation accuracy when calculating pairwise leadership
scores, described in Sec. III-A.

B. Maximum Likelihood Leader-Follower Graph in Teams

With a model that can predict pairwise relationships, we
focus on building a model that can generalize beyond two
players. We compute pairwise weights, or leadership scores,
wi,j of leader-follower relationships between all possible
pairs of leaders i and followers j. The pairwise weights
can be computed based on the supervised learning approach
described above, indicating the probability of one agent or
goal being another agent’s leader. After computing wi,j for all

combinations of leaders and followers, we create a directed
graph G = (V,E) where V = I ∪ G and E = {(i, j)|i ∈
I, j ∈ I ∪ G, i ∕= j}, and the weights on each edge (i, j)
correspond to wi,j . To create a more concise representation,
we extract the maximum likelihood leader-follower graph G∗

by pruning the edges of our constructed graph G. We prune
the graph by greedily selecting the outgoing edge with highest
weight for each agent node. In other words, we select the
edge associated with the agent or goal that has the highest
probability of being agent i’s leader, where the probabilities
correspond to edge weights. When pruning, we make sure
that no cycles are formed. If we find a cycle, we will choose
the next probable edge. Our pruning approach is inspired by
Edmonds’ algorithm [15, 11], which finds a maximum weight
arborescence [21] in a graph. An arborescence is an acyclic
directed tree structure, where there is exactly one outgoing
edge from a node to another. We use a modified version of
Edmonds’ algorithm to find the maximum likelihood leader-
follower graph. Compared to our approach, a maximum weight
arborescence is more restrictive since it requires the resulting
graph to be a tree.
Evaluating the Leader-Follower Graph. We evaluate the
accuracy of our leader-follower graph with three or more
agents when trained on simulated two-player and three-player
data, as well as a combination of simulated and human two-
player data (shown in Table I). In each of these multi-player
games, we extracted a leader-follower graph at each timestep
and compared our leader-follower graph’s predictions against
the ground-truth labels. Our leader-follower graph performs
better than a random policy, which selects a leader li ∈ I ∪G
for agent i at random, where li ∕= i. The chance of being
right is thus 1

|G|+|I|−1 . We take the average of all success
probabilities for all leader-follower graph configurations to
compute the overall accuracy. In all experiments shown in
Table I, our trained model outperforms the random policy.
Most notably, the models scale naturally to settings with large
numbers of players as well as human data. We find that training
with larger numbers of players helps with generalization. The
tradeoff between training with larger numbers of players and
collecting more data will depend on the problem domain. For
our experiments (Section V), we use the model trained on
three-player simulated data.
TABLE I: Generalization accuracy of leader-follower graph (LFG)

Training Data Testing Data LFG
Accuracy

Random
Accuracy

3 players, simulated 0.67 0.29
4 players, simulated 0.45 0.23

2 players, simulated 5 players, simulated 0.41 0.19
2 players, human 0.68 0.44
3 players, human 0.47 0.29

3 players, simulated 0.44 0.29
4 players, simulated 0.38 0.23

2 players, mixed 5 players, simulated 0.28 0.19
2 players, human 0.69 0.44
3 players, human 0.44 0.29

4 players, simulated 0.53 0.23
3 players, simulated 5 players, simulated 0.50 0.19

3 players, human 0.63 0.29



!1 !2
!3

4

3

2
1

!1 !2
!3

1
2

3

4

(a) Graph   . The directed edges represent 
pairwise likelihoods that the tail node 

is the head node's leader.

! (b) Maximum-likelihood leader-
follower graph,       shown in bold.!*

(c) Most influential leader 
is agent 2.

(d) Most influential leader is 
agent 1 since other human agents 
are targeting the preferred goal.

!2

!3
1

2

3

4

!1*
!2

!3

!1
preferred goal

1

2

3
4

robot
robot

*

preferred goal

Fig. 6: On left: creating a maximum-likelihood leader-follower graph, G∗. On right: examples of influential leaders in G∗. The green circles
are goals, orange triangles are human agents and black triangles are robot agents.

IV. PLANNING BASED ON INFERENCE ON
LEADER-FOLLOWER GRAPHS

We so far have computed a graphical representation for
latent leadership structures in human teams G∗. In this section,
we will use G∗ to positively influence human teams, i.e., move
the team towards a more desirable outcome. We first describe
how a robot can use the leader-follower graph to infer useful
team structures. We then describe how a robot can leverage
these inferences to plan for a desired outcome.

A. Inference based on leader-follower graph

Leader-follower graphs enable a robot to infer useful in-
formation about a team such as agents’ goals or who the
most influential leader is. These pieces of information help
the robot to identify key goals or agents that are useful in
achieving a desired outcome (e.g., identifying shared goals
in a collaborative task). Especially in multi-agent settings,
following key goals or influencing key agents is a strategic
move that allows the robot to plan for desired outcomes. We
begin by describing different inferences a robot can perform
on the leader-follower graph.
Goal inference in multiagent settings. One way a robot can
use structure in the leader-follower graph is to perform goal
inference. An agent’s goal can be inferred by the outgoing
edges from agents to goals. In the case where there is an
outgoing edge from an agent to another agent (i.e., agent i
follows agent j), we assume transitivity, where agent i can be
implicitly following agent j’s believed ultimate goal.
Influencing the most influential leader. In order to lead
a team toward a desired goal, the robot can also leverage
the leader-follower graph to predict who the most influential
leader is. We define the most influential leader to be the
agent i∗ ∈ I with the most number of followers. Identifying
the most influential leader i∗ allows the robot to strategically
influence a single teammate that also indirectly influences the
other teammates that are following i∗. For example, in Fig.
6c and Fig. 6d, we show two examples of identifying the
most influential leader from G∗. In the case where some of
agents are already going for the preferred goal, the one that
has the most followers among the remaining players becomes
the most influential leader, as shown in Fig. 6d.

B. Optimization based on leader-follower graph

We leverage the leader-follower graph to design robot
policies that optimize for an objective (e.g., leading the team
towards a preferred goal). We introduce one such way we
can use the leader-follower graph by directly incorporating
inferences we make from it into a simple optimization.

At each timestep, we generate graphs Gat

t+k that simulate
what the leader-follower graph would look like at timestep
t+k if the robot takes an action at at current timestep t. Over
the next k steps, we assume human agents will continue along
the current trajectory with constant velocity.

From each graph Gat

t+k, we can obtain the weights wt+k
i,j

corresponding to an objective r that the robot is optimizing
for (e.g., the robot becoming agent i’s leader). We then iterate
over the robot’s action, assuming it is finite and discrete, and
choose the action a∗t that maximizes the objective r. We note
that r must be expressible in terms of wt+k

i,j ’s and wt+k
i,g ’s for

i, j ∈ I and g ∈ G.

a∗t = argmax
at∈A

r
󰀃
{wt+k

i,j (at)}i,j∈I , {wt+k
i,g (at)}i∈I,g∈G

󰀄

(2)
We describe three specific tasks that we plan for using the

optimization described in Eqn. (2).
Redirecting a leader-follower relationship. A robot can
directly influence team dynamics by changing leader-follower
relationships. For a given directed edge between agents i and
j, the robot can use the optimization outlined in Eqn. (2) for
actions that reverse an edge or direct the edge to a different
agent. For instance, to reverse the direction of the edge from
agent i to agent j, the robot will select actions that maximize
the probability of agent j following agent i:

a∗t = argmax
at∈A

wt+k
j,i (at), i, j ∈ I (3)

The robot can also take actions to eliminate an edge between
agents i and j by minimizing wi,j . One might want to modify
edges in the leader-follower graph when trying to change the
leadership structure in a team. For instance, in a setting where
agents must collectively decide on a goal, a robot can help
unify a team with sub-groups (an example is shown in Fig. 3d)
by re-directing the edges of one sub-group to follow another.



Distracting a team. In adversarial settings, a robot might want
to prevent a team of humans from reaching a collective goal g.
In order to stall the team, a robot can use the leader-follower
graph to identify who the current most influential leader i∗ is.
The robot can then select actions that maximize the probability
of the robot becoming the most influential leader’s leader
and minimize the probability of the most influential leader
following the collective goal g:

a∗t = argmax
at∈A

wt+k
i∗r (at), i∗ ∈ I (4)

Distracting a team from reaching a collective goal can be
useful in cases where the team is an adversary. For instance, a
team of adversarial robots may want to prevent their opponents
from collaboratively reaching a joint goal.
Leading a team towards the optimal goal. In collaborative
settings where the team needs to agree on a goal g ∈ G, a
robot that knows where the optimal goal g∗ ∈ G is should
maximize joint utility by leading all of its teammates to reach
g∗. To influence the team, the robot can use the leader-follower
graph to infer who the current most influential leader i∗ is. The
robot can then select actions that maximize the probability of
the most influential leader following the optimal goal g∗:

a∗t = argmax
at∈A

wt+k
i∗r (at) + wt+k

r∗g∗(at), i∗ ∈ I (5)

Being able to lead a team of humans to a goal is useful in many
real-life scenarios. For instance, in search-and-rescue missions,
robots with more information about the location of survivors
should be able to lead the team in the optimal direction.

V. EXPERIMENTS

With an optimization framework that plans for robot actions
using the leader-follower graph, we evaluate our approach
on the three tasks described in Sec. IV. For each task, we
compare task performance with robot policies that use the
leader-follower graph against robot policies that do not. Across
all tasks, we find that robot policies that use the leader-follower
graph perform well compared to other policies, showing that
our graph can be easily generalized to different settings.
Task setup. Our tasks take place in the pursuit-evasion
domain. Within each task, we conduct experiments with
simulated human behavior. Simulated humans move along a
potential field as shown in Eqn. 1, where there are two sources
of attraction: the agent’s goal (ag) and the crowd center (ac),
and simulated human agents would make trade offs between
following the crowd and moving toward a target goal. The
weights θg and θc encode how determined human players are
about reaching the goal or moving towards the crowd. Higher
θc means that players care more about being close to the whole
team, while higher θg indicates more determined players who
care about reaching their goals. This can make it harder for a
robot to influence the humans. For validating our framework,
we use weights θg = 0.6 and θc = 0.4, where going toward the
goal is slightly more advantageous than moving with the whole
team, setting moderate challenges for the robot to complete
tasks. At the same time, we prevent agents from colliding with

one another by making non-target agents and goals sources of
repulsion with weight θj = 1.

An important limitation is that our simulation does not
capture the broad range of behaviors humans would show in
response to a robot that is trying to influence them. We only
offer one simple interpretation of how humans would react,
based on the potential field.

In each iteration of the task, the initial position of agents
and goals are randomized. For all of our experiments, the size
of the game canvas is 500× 500 pixels. At every time step, a
simulated human can move 1 unit in one of the four directions:
up, down, left, right, or stay at its position. The robot agent’s
action space is the same but can move 5 units at a time. The
maximum game time limit for all our experiments is 1000
timesteps. For convenience, we will refer to simulated human
agents as human agents for the rest of the section.

A. Changing edges of the leader-follower graph

We evaluate a robot’s ability to change an edge of a leader-
follower graph. Unlike the other tasks we described, the goal
of this task is not to affect some larger outcome in the game
(e.g., influence humans toward a particular goal). Instead, this
task serves as a preliminary to others where we evaluate how
well a robot is able to manipulate the leader-follower graph.
Methods. Given a human agent i who is predisposed to
following a goal with weights θg = 0.6, θa = 0.4, we created
a robot policy that encouraged the agent to follow the robot
r instead. The robot optimized for the probability wi,r that it
would become agent i’s leader, as outlined in Eqn. (3). We
compared our approach against a random baseline, where the
robot chooses its next action at random.
Metrics. For both our approach and our baseline, we evaluated
the performance of the robot based on the leadership scores,
i.e., probabilities wi,r, given by the leader-follower graph.
Results. We show that the robot can influence a human
agent to follow it. Fig. 7 contains averaged probabilities
over ten tasks. The probability of the robot being the human
agent’s leader wi,r increases over time, and averages to 73%,
represented by the orange dashed line. Our approach performs
well compared to the random baseline, which has an average
performance of 26%, represented by the grey dashed line.

0 100 200 300 400 500 600
task steps

0.2

0.4

0.6

0.8

p
ro

b
ab

il
it

y

ours
random

Fig. 7: Smoothed probabilities of a human agent following the robot
over 10 tasks. The robot is quickly able to become the human agent’s
leader with an average of leadership score of 73%.



B. Adversarial task
We consider a different task where the robot is an adversary

that is trying to distract a team of humans from reaching a goal.
There are m goals and n agents in the pursuit-evasion game.
Among the n agents, we have 1 robot and n − 1 humans.
The robot’s goal is to distract a team of humans so that they
cannot converge to the same goal. In order to capture a goal,
we enforce the constraint that n−2 agents must collide with it
at the same time, allowing 1 agent to be absent. Since we allow
one agent to be absent, this prevents the robot from adopting
the simple strategy of blocking an agent throughout the game.
The game ends when all goals are captured or when the game
time exceeds the limit. Thus, another way to interpret the
robot’s objective is to extend game time as much as possible.
Methods. We compared our approach against 3 baseline
heuristic strategies (random, to one player, to farthest goal)
that do not use the leader-follower graph.

In the Random strategy, the robot picks an action at each
timestep with uniform probability. In the To one player strat-
egy, the robot randomly selects a human agent and then moves
towards it to try to block its way. Finally, a robot enacting
the To farthest goal strategy selects the goal that the average
distance to human players are largest and then go to that goal
in the hope that human agents would get influenced or may
further change goal by observing that some players are heading
for another goal.

We also experimented with two variations of our approach.
LFG closest pursuer involves the robot agent selecting the
closest pursuer and choosing an action to maximize the
probability of the pursuer following it (as predicted by the
LFG). Similarly, LFG influential pursuer strategy involves
the robot targeting the most influential human agent predicted
by the LFG and then conducting the same optimization of
maximizing the following probability, as shown in Eqn. (4).

Finally, we explored different game settings by varying the
number of players n = {3, . . . , 6} and the number of goals
m = {1, . . . , 4}.
Metrics. We evaluated the performance of the robot with game
time as the metric. Longer game time indicates that the robot
does well in distracting human players.
Results. We sampled 50 outcomes for every game setting and
robot policy. Tables II and III show the mean and standard
deviation of game time for every game setting and robot
policy across 50 samples. Across game settings, our models
based on the leader-follower graph consistently outperformed
methods without knowledge of leader-follower graph. These
experimental results are also visualized in Fig. 8.

As can be seen from Fig. 8, the average game time goes up
as the number of players increases. This is because it is more
challenging for more players to agree upon on which goal to
capture. The consistent advantageous performance across all
game settings suggests the effectiveness of the leader-follower
graph for inference and optimization in this scenario.

We demonstrate an example of robot behavior in the
adversarial game, shown in Fig. 9 (dashed lines represent
trajectories). Player 1 and player 2 start very close to goal

Fig. 8: Average game time over 50 games with a different number
of players across all baseline methods and our model.

Fig. 9: Adversarial task snapshots. The orange triangles are the human
agents and the black triangle is the robot agent.

g1, making g1 the probable target. The robot then approaches
agent 2, blocks its way, and leads it to another goal g2. In this
way, the robot successfully extends the game time.

C. Cooperative task

Finally, we evaluate the robot in a cooperative setting where
the robot tries to be helpful for human teams. The robot aims
to lead its teammates in a way that everyone can reach the
target goal that gives the team the greatest joint utility g∗ ∈ G.
However, g∗ is not immediately observable to all teammates.
We assume a setting where only the robot knows where g∗ is.

For consistency, the experiment setting is the same as the
Adversarial task where n − 2 human agents need to collide
with a goal to capture it. In this scenario, the task is considered
successful if the goal with greatest joint utility g∗ is captured.
The task is unsuccessful if any other suboptimal goal is
captured or if the game time exceeds the limit.
Methods. Similar to the Adversarial task, we explore two
variations of our approach where the robot chooses to in-
fluence its closest human agent or the most influential agent
predicted by the leader-follower graph. The variation where
the robot targets the most influential leader is outlined in Eqn.
(5). Different from the Adversarial task, here, the robot is
optimizing the probability of both becoming the target agent’s
leader and going toward the target goal. We also experimented
with three baseline strategies. The Random strategy involves
the robot taking actions at random. The To target goal strat-
egy has the robot move directly to the optimal goal g∗,
and stay there, trying to attract other human agents. The
To goal farthest player strategy involves the robot going to
the player that is farthest away from g∗ in an attempt to
indirectly influence the player to move back to g∗. Finally,
we experimented with game settings by varying the number
of goals m = {2, . . . , 6}.
Metrics. We evaluated the performance of the robot strategy
using the game success rate over 100 games. We calculate the
success rate by dividing the number of successful games over
number of total games.



TABLE II: Average Game time over 50 adversarial games with varying number of players

number of goals (m=2)

Model n=3 n=4 n=5 n=6

LFG closest pursuer (ours) 233.04±51.82 305.08±49.48 461.18±55.73 550.88±51.67
LFG influential pursuer (ours) 201.94±45.15 286.44±48.54 414.78±50.98 515.92±48.80

random 129.2±32.66 209.40±39.86 388.92±53.24 437.16±43.17
to one pursuer 215.04±50.00 231.42±44.69 455.16±58.35 472.36±49.75
to farthest goal 132.84±34.22 198.5±36.14 382.08±52.59 445.64±46.77

TABLE III: Average Game time over 50 adversarial games with varying number of goals

number of players (n=4)

Model m=1 m=2 m=3 m=4

LFG closest pursuer (ours) 210.94±33.23 305.08±49.48 289.22±52.99 343.00±55.90
LFG influential pursuer (ours) 239.04±39.73 286.44±48.54 219.56±41.00 301.80±52.00

random 155.94±21.42 209.40±39.86 205.74±43.05 294.62±54.01
to one pursuer 123.58±9.56 231.42±44.69 225.52±41.47 317.92±54.75
to farthest goal 213.36±34.83 198.5±36.14 218.68±43.67 258.30±50.64

Results. Our results are summarized in Table IV. We expected
the To target goal baseline to be very strong, since moving
towards the target goal directly influences other simulated
agents to also move toward the target goal. We find that this
baseline strategy is especially effective when the game is not
complex, i.e., the number of goals is small. However, our
model based on the leader-follower graph still demonstrates
competitive performance compared to it. Especially when the
number of goals increase, the advantage of leader-follower
graph becomes clearer. This indicates that, in complex scenar-
ios, brute force methods that do not have knowledge of human
team hidden structure will not suffice. Another thing to note
is that the difference between all of the strategies becomes
smaller as the number of goals increases. This is because the
difficulty of the game increases for all strategies, and thus
whether a game would succeed depends more on the game
initial conditions. We have shown snapshots of one game

TABLE IV: Success rate over 100 collaborative games with varying
number of goals m.

number of players (n=4)

Model m=2 m=3 m=4 m=5 m=6

LFG closest pursuer 0.59 0.38 0.29 0.27 0.22
LFG influential pursuer 0.57 0.36 0.32 0.24 0.19

random 0.55 0.35 0.24 0.21 0.20
to target goal 0.60 0.42 0.28 0.24 0.21

to goal farthest player 0.47 0.29 0.17 0.19 0.21

as in Fig. 10. In this game, the robot approaches other agents
and the desired goal in the collaborative pattern, trying to help
catch the goal g1.

Fig. 10: Collaborative task snapshots. The orange triangles are the
human agents and the black triangle is the robot agent.

VI. DISCUSSION

Summary. We propose an approach for modeling leading
and following behavior in multi-agent human teams. We use
a combination of data-driven and graph-theoretic techniques
to learn a leader-follower graph. This graph representation
encoding human team hidden structure is scalable with the
team size (number of agents), since we first learn local,
pairwise relationships and combine them to create a global
model. We demonstrate the effectiveness of the leader-follower
graph by experimenting with optimization based robot policies
that leverage the graph to influence human teams in different
scenarios. Our policies are general and perform well across all
tasks compared to other high-performing task-specific policies.
Limitations and Future Work. We view our work as a first
step into modeling latent, dynamic human team structures. Per-
haps our greatest limitation is the reliance on simulated human
behavior to validate our framework. Further experiments with
real human data are needed to support our framework’s effec-
tiveness for noisier human behavior understanding. Moreover,
the robot policies that use the leader-follower graphs are fairly
simple. Although this may be a limitation, it is also promising
that simple policies were able to perform well using the leader-
follower graph.

For future work, we plan to evaluate our model on large
scale human-robot experiments in both simulation and nav-
igation settings such as robot swarms to further improve
our model’s generalization capacity. We also plan on experi-
menting with combining the leader-follower graph with more
advanced policy learning methods such as deep reinforcement
learning. We think the leader-follower graph could contribute
to multi-agent reinforcement learning in various ways such as
reward design and state representation.
Acknowledgements. Toyota Research Institute (“TRI”) pro-
vided funds to assist the authors with their research but this
article solely reflects the opinions and conclusions of its
authors and not TRI or any other Toyota entity. The authors
would also like to acknowledge General Electric (GE) and
Stanford School of Engineering Fellowship.



REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learn-
ing via inverse reinforcement learning. In Proceedings
of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

[2] Ali-Akbar Agha-Mohammadi, Suman Chakravorty, and
Nancy M Amato. Firm: Sampling-based feedback
motion-planning under motion uncertainty and imperfect
measurements. The International Journal of Robotics
Research, 33(2):268–304, 2014.

[3] Baris Akgun, Maya Cakmak, Karl Jiang, and Andrea L
Thomaz. Keyframe-based learning from demonstration.
International Journal of Social Robotics, 4(4):343–355,
2012.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] Kim Baraka, Ana Paiva, and Manuela Veloso. Expressive
lights for revealing mobile service robot state. In Robot
2015: Second Iberian Robotics Conference, pages 107–
119. Springer, 2016.

[6] Jerome Barraquand, Bruno Langlois, and J-C Latombe.
Numerical potential field techniques for robot path plan-
ning. IEEE transactions on systems, man, and cybernet-
ics, 22(2):224–241, 1992.

[7] Aaron Bestick, Ruzena Bajcsy, and Anca D Dragan. Im-
plicitly assisting humans to choose good grasps in robot
to human handovers. In International Symposium on
Experimental Robotics, pages 341–354. Springer, 2016.

[8] Erdem Biyik and Dorsa Sadigh. Batch active preference-
based learning of reward functions. In Conference on
Robot Learning (CoRL), October 2018.

[9] Frank Broz, Illah Nourbakhsh, and Reid Simmons. De-
signing pomdp models of socially situated tasks. In RO-
MAN, 2011 IEEE, pages 39–46. IEEE, 2011.

[10] Sonia Chernova and Andrea L Thomaz. Robot learning
from human teachers. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 8(3):1–121, 2014.

[11] Yoeng-Jin Chu. On the shortest arborescence of a
directed graph. Science Sinica, 14:1396–1400, 1965.

[12] D Scott DeRue. Adaptive leadership theory: Leading
and following as a complex adaptive process. Research
in organizational behavior, 31:125–150, 2011.

[13] Anca D Dragan Dorsa Sadigh, Shankar Sastry, and San-
jit A Seshia. Active preference-based learning of reward
functions. In Robotics: Science and Systems (RSS), 2017.

[14] Finale Doshi and Nicholas Roy. Efficient model learning
for dialog management. In Proceedings of the ACM/IEEE
international conference on Human-robot interaction,
pages 65–72. ACM, 2007.

[15] Jack Edmonds. Optimum branchings. Mathematics and
the Decision Sciences, Part, 1(335-345):25, 1968.

[16] Katie Genter, Noa Agmon, and Peter Stone. Ad hoc
teamwork for leading a flock. In Proceedings of the
2013 international conference on Autonomous agents and

multi-agent systems, pages 531–538. International Foun-
dation for Autonomous Agents and Multiagent Systems,
2013.

[17] Matthew C Gombolay, Cindy Huang, and Julie A Shah.
Coordination of human-robot teaming with human task
preferences. In AAAI Fall Symposium Series on AI-HRI,
volume 11, page 2015, 2015.

[18] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel,
and Anca Dragan. Cooperative inverse reinforcement
learning. In Advances in neural information processing
systems, pages 3909–3917, 2016.

[19] Shervin Javdani, Henny Admoni, Stefania Pellegrinelli,
Siddhartha S Srinivasa, and J Andrew Bagnell. Shared
autonomy via hindsight optimization for teleoperation
and teaming. The International Journal of Robotics
Research, page 0278364918776060, 2018.

[20] Takayuki Kanda, Takayuki Hirano, Daniel Eaton, and
Hiroshi Ishiguro. Interactive robots as social partners and
peer tutors for children: A field trial. Human-computer
interaction, 19(1):61–84, 2004.

[21] Richard M Karp. A simple derivation of edmonds’
algorithm for optimum branchings. Networks, 1(3):265–
272, 1971.

[22] Piyush Khandelwal, Samuel Barrett, and Peter Stone.
Leading the way: An efficient multi-robot guidance sys-
tem. In Proceedings of the 2015 international conference
on autonomous agents and multiagent systems, pages
1625–1633. International Foundation for Autonomous
Agents and Multiagent Systems, 2015.

[23] Mykel J Kochenderfer. Decision making under uncer-
tainty: theory and application. MIT press, 2015.

[24] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop:
Efficient point-based pomdp planning by approximating
optimally reachable belief spaces. In Robotics: Science
and systems, volume 2008. Zurich, Switzerland., 2008.

[25] Oliver Lemon. Conversational interfaces. In Data-Driven
Methods for Adaptive Spoken Dialogue Systems, pages
1–4. Springer, 2012.

[26] Michael L Littman and Peter Stone. Leading best-
response strategies in repeated games. In In Seventeenth
Annual International Joint Conference on Artificial In-
telligence Workshop on Economic Agents, Models, and
Mechanisms. Citeseer, 2001.

[27] Owen Macindoe, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. Pomcop: Belief space planning for side-
kicks in cooperative games. In AIIDE, 2012.

[28] Stefanos Nikolaidis and Julie Shah. Human-robot cross-
training: computational formulation, modeling and eval-
uation of a human team training strategy. In Pro-
ceedings of the 8th ACM/IEEE international conference
on Human-robot interaction, pages 33–40. IEEE Press,
2013.

[29] Stefanos Nikolaidis, Anton Kuznetsov, David Hsu, and
Siddharta Srinivasa. Formalizing human-robot mutual
adaptation: A bounded memory model. In The Eleventh
ACM/IEEE International Conference on Human Robot



Interaction, pages 75–82. IEEE Press, 2016.
[30] Stefanos Nikolaidis, Swaprava Nath, Ariel D Procaccia,

and Siddhartha Srinivasa. Game-theoretic modeling of
human adaptation in human-robot collaboration. In
Proceedings of the 2017 ACM/IEEE International Con-
ference on Human-Robot Interaction, pages 323–331.
ACM, 2017.

[31] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi,
Christopher Amato, and Jonathan P How. Decentralized
control of partially observable markov decision processes
using belief space macro-actions. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference
on, pages 5962–5969. IEEE, 2015.

[32] Robert Platt Jr, Russ Tedrake, Leslie Kaelbling, and
Tomas Lozano-Perez. Belief space planning assuming
maximum likelihood observations. 2010.

[33] Ben Robins, Kerstin Dautenhahn, Rene Te Boekhorst,
and Aude Billard. Effects of repeated exposure to a
humanoid robot on children with autism. Designing a
more inclusive world, pages 225–236, 2004.

[34] Michael Rubenstein, Adrian Cabrera, Justin Werfel, Gol-
naz Habibi, James McLurkin, and Radhika Nagpal. Col-
lective transport of complex objects by simple robots:
theory and experiments. In Proceedings of the 2013 in-
ternational conference on Autonomous agents and multi-
agent systems, pages 47–54. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[35] Dorsa Sadigh. Safe and Interactive Autonomy: Control,
Learning, and Verification. PhD thesis, University of
California, Berkeley, 2017.

[36] Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia, and
Anca Dragan. Information gathering actions over hu-
man internal state. In Proceedings of the IEEE, /RSJ,
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 66–73. IEEE, October 2016. doi:
10.1109/IROS.2016.7759036.

[37] Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia, and
Anca D. Dragan. Planning for autonomous cars that
leverage effects on human actions. In Proceedings of
Robotics: Science and Systems (RSS), June 2016. doi:
10.15607/RSS.2016.XII.029.

[38] Dorsa Sadigh, Nick Landolfi, Shankar S Sastry, Sanjit A
Seshia, and Anca D Dragan. Planning for cars that
coordinate with people: leveraging effects on human
actions for planning and active information gathering
over human internal state. Autonomous Robots, 42(7):
1405–1426, 2018.

[39] Michaéla C Schippers, Deanne N Den Hartog, Paul L
Koopman, and Daan van Knippenberg. The role of
transformational leadership in enhancing team reflexivity.
Human Relations, 61(11):1593–1616, 2008.

[40] Peter Stone, Gal A Kaminka, Sarit Kraus, Jeffrey S
Rosenschein, and Noa Agmon. Teaching and lead-
ing an ad hoc teammate: Collaboration without pre-
coordination. Artificial Intelligence, 203:35–65, 2013.

[41] Fay Sudweeks and Simeon J Simoff. Leading conversa-

tions: Communication behaviours of emergent leaders in
virtual teams. In proceedings of the 38th annual Hawaii
international conference on system sciences, pages 108a–
108a. IEEE, 2005.

[42] Daniel Szafir, Bilge Mutlu, and Terrence Fong. Com-
municating directionality in flying robots. In 2015 10th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 19–26. IEEE, 2015.

[43] Zijian Wang and Mac Schwager. Force-amplifying n-
robot transport system (force-ants) for cooperative planar
manipulation without communication. The International
Journal of Robotics Research, 35(13):1564–1586, 2016.

[44] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and
Anind K Dey. Maximum entropy inverse reinforcement
learning. In AAAI, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.



VII. APPENDIX

A. Potential Field for Simulated Human Planning

In our implementation, the attractive potential field of at-
traction i, denoted as U i

att(q), is constructed as the square of
the Euclidean distance ρi(q) between agent at location q and
attraction i at location qi. In this way, the attraction increases
as the distance to goal becomes larger. 󰂃 is the hyper-parameter
for controlling how strong the attraction is and has consistent
value for all attractions.

ρi(q) = 󰀂q − qi󰀂
U i
att(q) =

1
2󰂃ρi(q)

2

−∇U i
att(q) = −󰂃ρi(q)(∇ρi(q))

The repulsive potential field U j
rep(q) is used for obstacle

avoidance. It usually has a limited effective radius since we
don’t want the obstacle to affect agents’ planning if they
are far way from each other. Our choice for U j

rep(q) has a
limited range γ0, where the value is zero outside the range.
Within distance γ0, the repulsive potential field increases as the
agent approaches the obstacle. Here, we denote the minimum
distance from the agent to the obstacle j as γj(q). Coefficient
η and range γ0 are the hyper-parameters for controlling how
conservative we want our collision avoidance to be and is
consistent for all obstacles. Larger values of η and γ0 mean
that we are more conservative with collision avoidance and
want the agent to keep a larger distance to obstacles.

γj(q) = minq′∈obsj 󰀂q − q′󰀂

U j
rep(q) =

󰀝 1
2η(

1
γj(q)

− 1
γ0
) γj(q) < γ0

0 γj(q) > γ0

∇U j
rep(q) =

󰀝
η( 1

γj(q)
− 1

γ0
)( 1

γj(q)2
)∇γ(q) γ(q)j < γ0

0 γj(q) > γ0


