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Abstract—In robot manipulation, planning the motion of a
robot manipulator to grasp an object is a fundamental problem.
A manipulation planner needs to generate a trajectory of the
manipulator to avoid obstacles in the environment and plan an
end-effector pose for grasping. While trajectory planning and
grasp planning are often tackled separately, how to efficiently
integrate the two planning problems remains a challenge. In
this work, we present a novel method for joint motion and
grasp planning. Our method integrates manipulation trajectory
optimization with online grasp synthesis and selection, where we
apply online learning techniques to select goal configurations
for grasping, and introduce a new grasp synthesis algorithm
to generate grasps online. We evaluate our planning approach
and demonstrate that our method generates robust and efficient
motion plans for grasping objects in cluttered scenes.

I. INTRODUCTION

In order to manipulate objects in a cluttered scene, a robot
needs to plan its motion to reach and grasp a target object
in the scene. Due to the complexity of this manipulation
planning problem, it is usually decomposed into two sub-
problems and tackled separately: arm motion planning and
grasp planning. While arm motion planning aims at reaching
the target goal and avoiding obstacles in the scene, grasp
planning generates feasible grasps of the target object based
on its properties such as its 3D shape and material. However,
separating motion planning and grasp planning requires some
post-processing steps to connect the two plans. For instance,
a common strategy is to loop over each planned grasp and
check if there exists a trajectory to reach the grasp. The post-
processing usually involves heuristics and leads to sub-optimal
solutions. How to efficiently integrate motion planning and
grasp planning remains a challenge.

Solutions to this problem are previously introduced both
in the traditional motion planning literature [10, 41] and the
recent Task And Motion Planning (TAMP) literature [26, 40].
According to when grasps are generated during planning, these
methods can be classified into two categories. Methods in
the first category generate a fixed set of grasps offline, and
formulate the problem as a grasp selection problem [2, 10, 11].
Generating grasps offline can take advantages of well-designed
grasp planning algorithms such as [29]. However, a fixed set
of grasps limits the number of grasp options during motion
planning. Methods in the second category formulate and solve
a joint optimization problem of trajectories and grasps, which
generate grasps online during trajectory planning [41, 15, 19].
Online grasp planning explores more grasp options. However,

Fig. 1: A planning scene example. The goal set, initial grasp
and selected grasp are yellow, red and green, respectively. Our
algorithm synthesizes and selects grasps online and generates
motion trajectories to reach the selected grasp.

since the space of possible grasps is large and highly non-
convex for various objects, approximations are often made to
simplify the grasp planning problem. For instance, [41, 40] use
spheres to approximate the object shape in optimizing grasps,
which limits the quality of the generated grasps.

In this work, to overcome the limitations of existing inte-
grated motion and grasp planning methods [41, 15, 19], we
introduce a novel integrated Optimization-based Motion and
Grasp Planner (OMG Planner). Our planner combines trajec-
tory optimization with online grasp synthesis and selection.
In this context, the planning phase is offline, and we do not
consider execution or re-planning. “Online” mainly attributes
to the fact that the final grasp is not fixed and can be refined
during trajectory optimization. Grasp selection enables us to
leverage dedicated grasp planning methods [29, 12] to generate
an initial grasp set, which guarantees the quality of the grasps
and handles objects with arbitrary shapes. By performing on-
line grasp synthesis, our method augments the initial grasp set
and provides more grasp candidates during motion planning.
More importantly, the grasp selection problem is formulated
as an online learning problem, where a probability distribution
of the grasp set is estimated and updated during trajectory
optimization, and the best grasp is selected accordingly.

Specifically, our planner optimizes for motion trajectories
and grasps jointly. An iterative update algorithm is introduced
that alternatively updates trajectories and grasps. In each
iteration, given a grasp goal configuration, we utilize the
CHOMP trajectory optimization method [33] with a goal set
constraint [11] to update the trajectory. To update the grasp,



we first assume the availability of a set of grasp candidates
that can be obtained from any grasp planning method. Our
online grasp selection algorithm then leverages the interplay
between the grasp set and the current trajectory to update
the probability distribution of the grasp set, from which the
optimal goal in the grasp set can be selected. In order to
augment the grasp set, we propose a grasp synthesis procedure
named Configuration Space Iterative Surface Fitting (C-Space
ISF) that refines the grasp configuration of the selected grasp
by matching the 3D shapes of the robot gripper and the
object. The overall framework leverages the grasp set structure
to improve motion and grasp generation. Fig. 1 illustrates a
planning scene example from our method.

We conduct qualitative and quantitative evaluation to
demonstrate the performance of our method for manipulation
planning. We also conduct ablation studies on each component
of the method. Overall, our contributions are:

1) We introduce an integrated planner that models joint
motion and grasp planning as an optimization problem.
The computation of feasible and reachable grasps and
the search for collision-free trajectories are connected.

2) We propose an online learning algorithm and a grasp
synthesis approach to select grasps and generate grasps
online, which eliminates the need for a perfect grasp set
and grasp selection heuristics.

3) We showcase our algorithm for manipulation planning
tasks in cluttered scenes. By comparing the proposed
approach with existing methods, we demonstrate that
our integrated planner improves performance.

II. RELATED WORK

A. Motion Planning

1) Sampling-based Methods: Sampling-based motion plan-
ners such as Rapidly exploring Random Trees (RRTs) [28,
25, 23] and Fast Marching Tree (FMT) [21] find trajectories
by incrementally building space filling trees through directed
sampling. RRTs offer probabilistic completeness. If there
exists a solution to the problem, given sufficient time, a
feasible trajectory can be found. However, sampling-based
algorithms can be difficult to use in some applications due
to the computational challenges and requirements for post-
processing steps such as smoothing.

2) Trajectory Optimization: Trajectory optimization starts
with a possibly infeasible trajectory and then optimizes the
trajectory by minimizing a cost function. CHOMP [33] and re-
lated methods [11, 10] optimize a cost functional using covari-
ant gradient descent, while STOMP [22] uses stochastic sam-
pling of noisy trajectories to optimize non-differentiable costs.
More recently, TrajOpt [36] solves a sequential quadratic pro-
gram and performs convex continuous-time collision checking.
GPMP2 [31] formulates the problem as inference on a factor
graph and finds the maximum a posteriori trajectory by solving
a nonlinear least squares problem. Trajectory optimization
methods are fast, but can only find locally optimal solutions.
The local nature of previous methods can often be improved
by multiple initialization and goals [36, 10].

Our method is based on CHOMP [33] for trajectory opti-
mization. Instead of optimizing trajectories on fixed endpoints,
we also consider goal selection and synthesis in our planner.
While [10] model the goal selection problem as a regression
on trajectory attributes through offline training, our method
selects the target goal online during planning.

B. Grasp Planning

1) Analytic Methods: Analytic methods [32, 14, 6] often
require full object information to define grasp qualities such
as maximal disturbance resistance, force closure and antipodal
grasps. For instance, [7] strive to reduce the dimensionality of
the search space for robust grasps and use eigengrasps in the
Graspit! simulator [29] to plan with the simulated annealing
algorithm. Recently, [13] propose to find robust grasp poses by
iterative surface fitting that optimizes error metrics of normal
alignments and distances as a least squares problem.

2) Data-driven Methods: Compared to analytic methods,
data-driven approaches [18, 3] have gained popularity since
they can work with partial information of objects. For deter-
mining object grasps from images, [34] assume objects are
put on a table top, and a parallel gripper grasps objects from
top-down directions. Due to the multi-modality of grasping
tasks, [38] sample 6 DOF grasps and train a neural network to
predict a quality score. [30] also focus on the diversity of grasp
synthesis, which allows and benefits motion planning with
multiple goals. Compared to these grasp planning methods, our
method jointly plans arm motion and grasps to reach objects.

C. Integrated Motion and Grasp Planning

The advantage of an integrated planner is that motion
planning and grasp planning impose constraints on each other.
The closest works to ours are the integrated motion and
grasp planners [41, 15, 19]. These methods are built upon
sampling-based motion and grasp planners. They bias a motion
planner to sample nodes that lead to better grasps while a
grasp sampling planner synthesizes grasps online. Different
from these methods, we focus on studying the grasp selection
problem in a trajectory optimization framework. Therefore,
our method can utilize high-quality grasps generated from
well-designed grasp planners, such as grasps synthesized from
physics simulation [29, 12].

D. Task and Motion Planning

TAMP methods focus on how to combine high-level task
planning with low-level motion planning [26, 37, 16, 40],
where the tasks usually involve hybrid states and require
multiple steps of actions such as picking, placing and pushing.
For example, [26] leverage geometric constraints from motion
planning to reduce the search space of possible actions.
[16] build factored transition systems with sampling-based
algorithms for robotic manipulation problems. [40] formulate a
constrained path optimization problem for sequential manipu-
lation that involves physical interactions by logic geometric
programming [39]. Our approach is related to TAMP for
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Fig. 2: Our Optimization-based Motion and Grasp Planner (OMG Planner) consists of three components. The motion planner
component optimizes the current trajectory denoted by the red line for a fixed target goal. The online learning component
considers the goal set (yellow), and update the initial grasp (red) with a new grasp (green). The grasp refinement component
iteratively improves the grasp. The refined grasp is used as the target goal for the next iteration.

manipulation planning. However, we neither perform any high-
level reasoning nor model sequences of actions. We focus on
obstacle avoidance with kinematics constraints for grasping.
While TAMP methods usually simplify or approximate the
geometry of the manipulated objects, we do not make such
approximations. Our method can benefit TAMP by providing
a joint motion and grasp planner for task-level reasoning.

E. Online Learning
Compared with statistical learning in which data is assumed

to come from a distribution and the goal is to minimize an
excess risk, online learning instead considers a setting where
a learner makes a decision that triggers a loss function online at
every time step and the learner needs to dynamically improves
its decision making by minimizing the accumulated losses
[4, 20, 27]. In the regret-based framework, the learner tries to
minimize the regret on the loss sequence. Online interactive
learning has been successfully applied to tackle different prob-
lems in robotics such as imitation learning [35], manipulation
[24], navigation [17], and model predictive control [42]. Here,
we formulate the grasp selection problem as an adversarial
linear bandit [27] in the online learning framework, where
our learner (the planner) needs to choose the grasp goal online
and adapt to some measured costs during every iteration of the
trajectory optimization.

III. METHODOLOGY

The key idea of our method is to simultaneously optimize
the arm motion trajectory and the end-effector configuration
for grasping. We formulate the problem as a constrained
trajectory optimization problem, where we require the tra-
jectory to avoid obstacles and to be smooth. Meanwhile, the
last configuration of the trajectory should afford grasping. To
achieve this, our method synthesizes and selects grasps online
during trajectory optimization. Fig. 2 presents an overview of
our optimization-based motion and grasp planner.

Formally, we define a trajectory ξ : [0, 1] 7→ Q to be a
function that maps time [0, 1] to the robot configuration space

Q, where Q ⊂ Rd and d is the degree of freedom of the
robot manipulator. Given a scene of multiple objects, we define
the feasible grasp set of a target object as G ⊂ Q. Then we
solve the following optimization problem to find the optimal
trajectory of the robot manipulator for grasping:

ξ∗ = argmin
ξ

fmotion(ξ)

s.t. ξ(1) ∈ G, (1)

where fmotion is the objective function of the trajectory, and
ξ(1) indicates the last configuration of the trajectory. The
constraint in Eq. (1) requires the last configuration at time
1 to be a feasible grasping configuration.

A. Trajectory Objective Functional

Similar to CHOMP [33], we model the objective functional

fmotion(ξ) = fobstacle(ξ) + λfprior(ξ), (2)

where the obstacle term fobstacle bends the trajectory away from
obstacles by penalizing parts of the robot that are close to or
already in collision with objects in the scene, the prior term
fprior measures the dynamical quantities across the trajectory
such as velocities and accelerations, and λ is a weight to
balance the two terms. In this work, the prior term is defined
as the integral over squared velocity norms:

fprior(ξ) =
1

2

∫ 1

0

‖ξ′(t)‖2 dt, (3)

where ξ′(t) indicates the velocity of the trajectory at time t.
To define the obstacle term, let B ⊂ R3 be a set of body

points on the robot and x(q, u) : Q × B 7→ R3 the forward
kinematics mapping a body point u ∈ B with configuration
q ∈ Q to the workspace. Furthermore, let cobstacle : R3 7→ R
be a workspace cost function that penalizes points in the
workspace inside and around the obstacles using the Signed
Distance Field (SDF). Since we want to drive the body points
away from collision, the obstacle term in Eq. (2) is an integral



that collects the cost of body points on the robot in the
workspace along the trajectory:

fobstacle(ξ) =

∫ 1

0

∫
B
cobstacle

(
x(ξ(t), u)

) ∥∥∥∥ ddtx(ξ(t), u)

∥∥∥∥ dudt.
(4)

Please refer to [33] for the definition of cobstacle and the
derivation of the gradients of fprior and fobstacle.

B. Iterative Update Rule

In practice, we use a discretization of the trajectory function
over time: ξ ≈ (q>1 , q

>
2 , ..., q

>
n )> ∈ Rn×d for resolution n.

Under this parametrization, we can write the prior term as:

fprior(ξ) =
1

2
‖Kξ + e‖2 =

1

2
ξ>Aξ + ξ>a+ c, (5)

where K is a finite differencing matrix, e is a vector that
accounts for the contributions of the configurations that remain
constant in the trajectory, i.e., the start configuration and the
goal configuration, and A = K>K is the dynamic matrix.
The covariant idea of CHOMP comes from the inverse of
the dynamic matrix. A−1 acts as a smoothing operator that
propagates the Euclidean gradient of the objective along the
trajectory and seeks to make small changes in the average
acceleration. Given this parametrization, CHOMP is a variant
of gradient descent that minimizes the linear approximation of
fmotion about ξ within an ellipsoid trust region. The distance
metric that shapes this ellipsoid is defined by A, and we obtain
the update rule in gradient descent for the ith iteration:

ξi+1 = ξi −
1

ηmotion
A−1vi, (6)

where vi = ∇fmotion(ξi) is the discretized functional gradient
and ηmotion is the step size.

C. Goal Set Constraint

The end-point of ξi can be varied during planning for a
set of feasible goal configurations G. Following [11], this is
achieved by introducing a constraint on the trajectory. Given
a general constraint h(ξ) = 0, we can linearize h around ξi:
h(ξ) ≈ h(ξi) + ∂

∂ξh(ξi)(ξ − ξi) = C(ξ − ξi) + b, where C
is the Jacobian of h evaluated at ξi and b = h(ξi). We use
Lagrangian to solve the linearized constraint and yield the
projected gradient update rule:

ξi+1 = ξi −
1

ηmotion
A−1vi

+
1

ηmotion
A−1C>(CA−1C>)−1CA−1vi

−A−1C>(CA−1C>)−1b. (7)

Assume our goal configuration is g at the ith iteration. We
simply model the goal set constraint as

h(ξi) = ξi(1)− g = 0, (8)

and denote the update rule in Eq. (7) by CHOMP-Proj(ξ, g).
With this update rule, we denote fg(ξi) as the objective cost
if we use g as the goal from the ith iteration. As we move the
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Fig. 3: Online goal selection algorithm at the ith iteration. The
goal costs c(g) are denoted inside red circles. In this example,
the online learning algorithm is about to shift goal from A to
B, which yields a collision-free yet shorter trajectory.

end-point, CHOMP smoothly updates the remaining trajectory.
This formulation is different from the vanilla CHOMP in that
the goal is not fixed and can change in different iterations.

D. Online Learning for Grasp Selection

While [11] address the problem of CHOMP planning with
a goal set constraint, modeling goal selection as projection by
Eq. (8) can often be simplistic. [10] propose a few trajectory
attributes such as goal radius, elbow room, distance, etc., for
a regression formulation. Indeed, the optimality of a goal
should be induced by the objective function and thus related
to the success of motion planning. Given that we can optimize
fg(ξi) with a target goal, we propose to choose the goal that
maximizes our motion generation success under an online
linear bandit scheme [4, 27]. An online linear optimization
framework is suitable because at every iteration, we can model
the objective costs of the goal set as our suffered losses and
relax our goal selection as probability distributions.

Assuming the goals in G are intricately correlated, our
strategy should dynamically choose the goal for the next
iteration until it finds the best goal. In CHOMP projection,
we suffer from switching to goals that can heavily perturb
our current trajectory into collision. Therefore, to allow for
principled behavior that selects the next goal gi+1, we need a
strategy that balances exploitation and exploration of the costs.

In the ith iteration, denote the goal distribution on a discrete
goal set G by pi. We apply online learning to solve for pi+1. To
use optimization for goal selection, we need to define the cost
of each goal in the goal set, denoted by a cost vector ci. Ideally,
we would like to have ci(g) = fg(ξi), then the objective
cost directly tells us which target goal to use. However, since
fg(ξi) is not available without running CHOMP for each goal,
we generate surrogates to our objective cost f(ξ̂gi ) ≈ fg(ξi)

by estimating the potentially optimized trajectory ξ̂gi as if the
trajectory ξi ends at g ∈ G.

We propose that to compute f(ξ̂gi ), it is more natural to look
at the tail of trajectory denoted by ξ̃gi starting at ti = i

N , where
N is our optimization horizon. To motivate this, recall that in
each CHOMP-Proj step, we project onto the goal constraint



and propagate the changes smoothly. Therefore, as the time
step i approaches N , the changes to the trajectory impact
more on the tail than the head of the trajectory. Our estimated
costs would be more accurate if we use the tail ξ̃gi instead
of the whole trajectory. Moreover, the goal cost vector needs
to converge for stability of the algorithm and it should also
be dynamic from the learning perspective. Another way to
think about this is that we are “simulating” the optimal control
execution of the trajectory during planning and estimating
the running cost for dynamic goal selection. As shown in
Fig. 3, since the prior of CHOMP is the minimum smoothness
trajectory, one can approximate the trajectory tail ξ̃gi as the
interpolation between ξi(ti) and the goal g with constant
velocity. The associated cost for the next iteration is defined
as ci+1(g) = f(ξ̃gi ) and normalized to have unit norm.

Given our estimated objective cost ci+1 = {f(ξ̃gi ) | g ∈ G}
and previous costs c1, ..., ci for the goal set G, we apply online
learning algorithms to update the goal distribution pi+1 as
described later. Then the expected loss at the (i+1)th iteration
under this distribution is 〈ci+1, pi+1〉 and gi+1 is defined as
the mode of the distribution pi+1, which turns out to be more
stable than a sample. Overall, online learning for goal selection
aims to minimize the regret

RN =

N∑
i=1

〈ci, pi〉 −min
g∈G

N∑
i=1

ci(g), (9)

which compares the loss of our strategy pi up to time N with
the best cost of any fixed goal in hindsight. In the following, a
few commonly used optimization methods for online learning
problems [4] are presented. These methods can be used to
solve pi+1 at the ith iteration.

1) Follow the Cheapest (FTC): FTC greedily moves the
distribution pi+1 entirely to the point that has the minimum
cost ci+1(g). CHOMP-Proj turns out to be a FTC algorithm
with the costs defined by the distances between the end-point
of the current trajectory and the goals.

2) Follow the Leader (FTL): FTL computes the point g ∈ G
that causes the lowest total cost

∑i+1
j=1 cj(g) and then makes

the distribution pi+1 concentrated entirely on g.
3) Exponential Weighting (EXP): EXP begins with an uni-

form distribution over goals: p1(g) = 1
|G| ,∀g ∈ G. At time i, it

first multiplies the previous probabilities with the correspond-
ing exponential costs: p̂i+1(g) = exp(−ηolci+1(g))pi(g),∀g ∈
G, where ηol is the learning rate. Then it normalizes the
vector to make it a probability distribution: pi+1(g) =
p̂i+1(g)/

∑
g∈G p̂i+1(g).

4) Mirror Descent (MD): We refer the readers to [1, 27] for
this more general form of regularized optimization in a bandit
setting. A natural way to regularize probability distributions
is to associate the Bregman divergence with entropy, which
becomes the KL divergence. At time step i, the MD update
rule is pi+1 = argmin

p∈∆
ηol〈ci+1, p〉 + DKL(p||pi), where ∆

is the probability simplex and ηol is the learning rate. The
argmin of this update rule can be solved by Lagrangian.

Fig. 4: Red points denote the sampled contact points uh with
normals unh and purple points denote the corresponding object
points uo with normals uno . The correspondence lines are
colored in cyan. Body points u range from blue to green,
denoting from far to close with respect to objects.

E. Online Grasp Synthesis

So far we have assumed that the goal set is given and fixed.
A fixed set of grasps limits the number of grasp possibilities.
Even with a set of perfect grasps in the workspace, it is unclear
that solving inverse kinematics would give a sufficient goal set
in the configuration space. A fixed set also has low adaptability
to the environment since it fails to explore new grasps.

Starting from an initial finite goal set G, we propose to
synthesize more candidate grasp configurations online. Sup-
pose after the online learning process for goal selection,
the configuration end goal gi is selected at iteration i. For
simplicity, we drop the iteration index i in the followings.
Our proposed grasp synthesis algorithm aims to improve the
grasp affordance by minimizing the objective function:

fgrasp(g) = fisf(g) + γfcollision(g), (10)

where fisf(g) measures the grasp quality using the Iterative
Surface Fitting (ISF) algorithm, fcollision(g) measures collisions
in the scene, and γ is a constant to balance the two terms. We
use fisf(g) to refine the end configuration g such that the end
effector transformation T ∈ SE(3) makes the surface of the
robot gripper S match against the surface of the target object
O. We softly penalize hand and arm collisions and use gradient
descent to optimize the objective. This enables efficient and
stable optimization in the configuration space.

Specifically, we generalize the forward kinematics mapping
x(g, u) of a body position u in Sec. III-A to include direc-
tions: x(g, un) maps a body direction vector un and a robot
configuration g to a direction vector in the workspace. Observe
that the end effector transformation T in the workspace is the
hand coordinate transformed by g. We can write all workspace
costs on T as the configuration space costs on g. We define a
set of hand contact points {hj} and a set of contact normals
{hnj } on the robot hand and fingers, indexed by j (see Fig. 4).
Denote uh = {x(g, hj)} and unh = {x(g, hnj )} as the two sets
in the workspace transformed by forward kinematics. We then
search for the nearest neighbor point uo and normal uno on
object O associated with uh, u

n
h . For m pairs of points and



normals, we define the point matching loss as

fpml(g) =

m∑
j=1

〈uh,j − uo,j , uno,j〉2, (11)

and the normal alignment loss as

falign(g) =

m∑
j=1

(〈unh,j , uno,j〉+ 1)2. (12)

The point matching loss closely attaches the hand to the object,
and the normal alignment loss aligns their surface normals.
Overall, the ISF loss is defined as

fisf(g) = fpml(g) + αfalign(g), (13)

where α is a weight coefficient.
Since the hand has to remain collision-free with respect to

the object, we evaluate the object points in the SDF of the
robot hand and penalize any hand collision fhand obstacle(g).
This is different from the obstacle cost in CHOMP, where
robot body points are evaluated in the SDFs of objects. Note
that the gradient for object points in the SDF of the hand
can be treated as hand points pushing in opposite gradient
directions. We also add the CHOMP obstacle cost evaluated at
a single configuration g, fobstacle(g), to allow local arm obstacle
avoidance. The overall collision cost for grasp synthesis is

fcollision(g) = fhand obstacle(g) + βfobstacle(g), (14)

where β is a balancing weight.
Algorithm 1 presents our C-Space ISF algorithm for grasp

refinement. The workspace cost fgrasp in Eq. (10) and its
gradient ∇fgrasp are computed by the Error function. The
gradient ∇fgrasp is updated via the exponential map exp from
se(3) to SE(3) and pulled back to the configuration space
∇g through the Jacobian transpose J> with a step size ηgrasp.
We then update the grasp g in G and return back to motion
planning step. In practice, one can run the C-Space ISF
algorithm 1 multiple times for each motion planning iteration.

Algorithm 1: C-Space ISF (gi, uh, u
n
h,O,S)

1 uo, u
n
o = NearestNeighbor(uh, unh, ∂O)

2 fgrasp,∇fgrasp = Error(uh, unh, uo, u
n
o ,O,S)

3 ∇gi = J>exp(∇fgrasp)
4 gi = gi − ηgrasp∇gi

F. Joint Motion and Grasp Planning

We have defined our iterative update rule for the ith iter-
ation, involving optimizations of smoothness, collision, goal
selection, and grasp quality. Our integrated planner simply
runs this iterative update rule for N times. A pre-termination
criterion can be set with the threshold on grasp quality, tra-
jectory smoothness, and collision-free requirement. Our joint
planning algorithm is shown in Algorithm 2. CHOMP-Proj
provides a way to smoothly update the trajectory to avoid
obstacles given a goal. The ONLINE-LEARNING as described

Simulated Graspit Approach

Fig. 5: Three initial grasp sets of the mustard bottle.

in Sec. III-D considers all grasps in the goal set and updates
our goal distribution for the next iteration. The C-Space ISF
applies to the selected goal to refine its quality.

It is worth to mention that we tried to formulate a joint
optimization problem by combining the two objective func-
tions in Eq. (1) and Eq. (10). However, we found that the ISF
algorithm heavily depends on the initialization and is often
stuck in local optima with bad initializations. Our current
formulation provides good initialization to the ISF algorithm
using the goal set, which makes the optimization more stable.

Algorithm 2: OMG Planner

1 initial trajectory ξ0,O,G,S, p0, g0

2 for i = 0, ..., N do
3 ξi+1 = CHOMP-Proj(ξi, gi)
4 pi+1 = ONLINE-LEARNING(ξi+1,G)
5 gi+1 = argmax(pi+1)
6 gi+1 = C-Space ISF(gi+1,O,S)
7 end

IV. EXPERIMENTS

We conduct experiments with the Panda Franka arm, a 7-
DOF arm with a parallel gripper (Fig. 2). We generate cluttered
scenes by dropping sampled YCB objects [5] with random
upright poses on a table in the Pybullet Simulator [8]. Each
scene samples 3 to 7 objects. The objects used are master chef
can, cracker box, sugar box, tomato soup can, mustard bottle,
potted meat can, pitcher base, bleach cleanser, bowl, and mug.

We experiment with three different sets of initial grasps as
shown in Fig. 5. The “Simulated” grasps are sampled from a
physics-based simulator [12]. The second set is sampled from
the Graspit! planner [7]. The “Approach” grasps are collision-
free grasps naively sampled by random approach directions.
The initial start configuration is fixed, and goal configurations
are generated from inverse kinematics and checked collision-
free. A trajectory is then initialized as a cubic spline connect-
ing the start configuration and the initial goal.

A. Evaluation Metrics

Motion planning methods are usually evaluated by the
feasibility of the generated paths, i.e., collision-free paths. In
addition, we measure several attributes of the paths that are
desirable in our grasping tasks.



100 scenes, 30 grasps each scene, 10 runs
Algorithm Fixed Proj FTC FTL EXP MD
Execution 74% 75% 81% 79% 80% 81%
Planning 78% 79% 91% 89% 90% 92%

Smoothness 18.87 11.24 15.78 15.86 15.71 15.54
Collision 5.97 12.06 4.68 4.10 4.95 3.87

Time 0.18 0.15 0.20 0.22 0.23 0.30

TABLE I: Comparison between two baselines and four online
learning algorithms for grasp selection.

Trajectories close to obstacles should be avoided in practice.
We measure “collision” as the sum of the obstacle costs cobstacle
of the sampled points inside the minimum padding distance
(5cm) by densely interpolating each trajectory to contain 200
time steps. The smoothness of a trajectory is another desired
property. We measure “smoothness” by the squared velocity
norm as in fprior. To measure the planning performance, we
define the “planning” success as a collision-free path with its
smoothness below a threshold of 30.

After planning, it is important to see how the plan is
executed for grasping. The success of grasp execution involves
system dynamics, feedback controllers and grasp robustness,
in addition to trajectory collision and smoothness. We execute
a plan in the Pybullet simulator and define the “execution”
success if the target object is lifted. The execution success
rate takes failed plans into account as well. We also compute
the “grasp” cost fgrasp(ξ(1)) from our C-Space ISF method
to measure the grasp quality. Finally, planning “time” is
measured in seconds for different algorithms.

B. Implementation Details

1) CHOMP: We set the smooth weight λ = 0.1, discretiza-
tion resolution n = 30, and learning rate ηmotion = 0.01.
The obstacle padding is 0.2m within which the cost increases
quadratically [33]. A collision-free path is assumed to have a
minimum distance of 5cm from obstacles. Instead of modeling
the arm with swept spheres as in the original CHOMP, we
uniformly sample body points from the vertices of the robot
3D mesh, and select 500 points in the trajectory with the
largest obstacle costs to update the obstacle gradient (see Fig.
4). These modifications make the integral over B more general
and precise as well as stabilize the optimization. We sample
20 points from each body part in our implementation. Since
grasping tasks require collision-free gripper poses, we also
include sampled points from hand and fingers.

2) Online Learning: The EXP algorithm uses the learning
rate ηol =

√
log(|G|)/N . The MD algorithm takes the learning

rate over an ensemble of experts with ηol = 2k log(N) and k
is selected from {−2,−1, 0, 2, 4}.

3) C-Space ISF: We set the normal penalty weight α =
0.01, the arm collision coefficient β = 0.001, the hand
collision constant γ = 0.5, and the learning rate ηgrasp = 0.05.
The nearest neighbors are found with a KD-Tree on 1000
sampled points for each object, where repeated neighbors are
filtered out to increase robustness.

100 scenes, 60 grasps, 30 iteration refinements, 10 runs
Object Name S S Refined G G Refined A A Refined
Cracker Box 2.47 2.32 4.27 3.31 6.58 4.36

Mug 5.11 3.93 7.24 5.55 9.05 5.18
Tomato Soup Can 2.38 2.27 3.15 2.83 7.06 6.27

Mustard Bottle 4.40 3.19 4.91 3.79 8.15 5.73
Potted Meat Can 2.96 1.95 3.08 2.54 7.47 4.91

Pitcher Base 4.41 2.97 5.68 3.76 8.69 6.14
Mean 3.62 2.77 4.72 3.63 7.83 5.43

Planning 92% 93% 84% 84% 71% 73%
Execution 80% 82% 56% 59% 26% 33%

TABLE II: Grasp costs for six YCB objects before and after
refinement. “S”, “G” and “A” denotes the simulated set, the
graspit set, and the approach set, respectively.

Fig. 6: Examples of grasps before and after refinement.

C. Grasp Selection

We first evaluate different algorithms for grasp selection
in our trajectory optimization framework. In this experiment,
the “Simulated” grasp set is used and no grasp refinement
is performed. Therefore, the dominating factor in planning
performance is the goal selection strategy. Table I presents
the results for 100 scenes, where we compare the four online
learning algorithms with two baselines. 1) “Fixed” selects the
best goal based on the initial objective estimate and fixes the
goal during planning. 2) “Proj” [11] uses the CHOMP-Proj
update rule which always projects to the closest goal during
trajectory optimization.

Our results in Table I indicate that the online learning
methods improve the success of planning and execution. From
the improvement over “Fixed”, it is clear that planning toward
a fixed goal does not provide the same performance as online
algorithms that adaptively select goals, since the initial goal
may be sub-optimal. Comparing the four online learning
algorithms with “Proj”, we can see that the cost estimate based
on our objective function performs better than just using the
distance between the trajectory end-point and grasps in the
goal set. In addition, modeling the probability distribution of
the goal set for grasp selection is beneficial. Our empirical
analysis shows that these online learning methods provide a
scheduling behavior for a planner to adaptively switch goals
while keeping optimization stability. While the grasp set size
presents a trade-off between runtime and performance, we find
30 grasps is a good balancing point. Finally, MD performs
slightly better than the others with a trade-off in running time.



Fig. 7: Left) Planning scene examples with CHOMP trajectories in red and our OMG-Planner trajectories in green. Right)
Successful real world grasping examples by executing trajectories from our planner using estimated 6D object poses from [9].

100 scenes, 30 grasps each scene, 10 runs
Algorithm CHOMP [33]CHOMP-C [11]FMT [21]RRT-C [25]OMG
Execution 77% 75% 66% 64% 84%
Planning 82% 79% 80% 78% 93%

Smoothness 19.12 11.24 27.21 26.45 15.43
Collision 4.78 12.06 6.37 6.52 3.92

Grasp 3.43 3.35 3.49 3.48 3.04
Time 0.25 0.15 0.67 0.22 0.42

TABLE III: Comparison on planning methods for joint motion
and grasp planning.

D. Grasp Refinement

We investigate the performance of the C-Space ISF algo-
rithm for grasp refinement. In this experiment, we apply the
MD algorithm for grasp selection and test the C-Space ISF
algorithm on the three different grasp sets (Fig. 5). Table II
shows the detailed grasp costs and the planning and execution
success before and after grasp refinement.

Overall, we observe a consistent improvement on different
initial grasps from grasp refinement. The “Simulated” set
achieves the minimum grasp cost and the highest success rate.
Because these grasps are sampled and verified in simulation
by grasping and shaking an object to see if the object falls or
not [12]. The drawback is that it is time-consuming to generate
these high-quality grasps. Our refinement algorithm can further
improve the quality of these simulated grasps. We can also see
that the C-Space ISF algorithm heavily depends on the initial
grasps. Therefore, the improvement on the “Graspit” set and
the “Apporach” set is limited. This is also the reason why
we combine grasp selection with grasp refinement, instead of
optimizing grasps from random initial grasps. Fig. 6 shows
some qualitative examples of our grasp refinement method.

E. Planner Performance

We compare our OMG planner with several other motion
planners in Table III, where the “Simulated” grasp set is used.
The OMG planner uses the MD algorithm for grasp selection
and the C-Space ISF algorithm for grasp refinement. Since
grasp planning is not covered by CHOMP [33], FMT [21]
and RRT-Connect [25], we adopt the common routine used
in practice to generate manipulation trajectories for them: 1)
ranking the goals in the grasp set based on heuristics such as
our objective estimates; 2) planning through the goal set until a
feasible trajectory is found. We perform planning experiments
for 100 scenes with 30 initial grasps each scene. The numbers
in Table III are averaged over 10 runs for each scene.

10 20 30 40 50
State Number n

0.0

0.2

0.4

0.6

0.8

1.0

S
ca

le
d

 M
et

ri
c

planning

smoothness

collision

time

10
−4

10
−3

10
−2

10
−1

10
0

Smooth Constant λ

0.0

0.2

0.4

0.6

0.8

1.0

S
ca

le
d

 M
et

ri
c

planning

smoothness

collision

time

Fig. 8: Ablation study of n and λ. The metrics (except
planning) are scaled between 0 and 1.

Comparing OMG with other planners, we can see the
improvement on planning and execution thanks to our grasp
selection and refinement process. By modeling a probability
distribution on the grasp set, our method globally selects the
optimal grasp for planning. In our metrics, planning success
acts as a feasibility and optimality of the trajectory but
execution involves control and system noises. By terminating
at the first feasible trajectory, other methods may generate
sub-optimal plans to execute. In contrast, with the option to
select goals in the goal set, our trajectory optimization has
fundamentally more solutions and more likely to yield robust
results. Some qualitative planning results are shown in Fig. 7.

We also conduct ablation study on the influences of two im-
portant design choices in our OMG planner: the discretization
n defined in Sec. III-B and the smoothness constant λ defined
in Eq. (2). The results are presented in Fig. 8. By increasing
n, a fine-grained trajectory better approximates a continuous
curve and therefore induces better smoothness and planning
success. The smoothness weight λ around 0.1 acts as a good
balance in terms of collision and planning success.

V. CONCLUSION

We have presented a joint motion and grasp planning ap-
proach based on first-order trajectory optimization to generate
grasping trajectories. Our OMG planner does not require
a perfect goal configuration, since the candidate goals are
determined during the planning process. A goal set is explicitly
modeled as a probability distribution and the best goal is
selected online. Moreover, our method synthesizes new grasps
online to augment the goal set. Our experiments demonstrate
that the OMG planner can plan grasping trajectories for clut-
tered scenes efficiently and robustly. While our work is based
on CHOMP, we believe that the online goal selection and
refinement procedure can also benefit other planning methods
and tasks that involve a set of goals.
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