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Abstract—Embodiment is an important characteristic for all
intelligent agents (creatures and robots), while existing scene
description tasks mainly focus on analyzing images passively and
the semantic understanding of the scenario is separated from the
interaction between the agent and the environment. In this work,
we propose the Embodied Scene Description, which exploits the
embodiment ability of the agent to find an optimal viewpoint in its
environment for scene description tasks. A learning framework
with the paradigms of imitation learning and reinforcement
learning is established to teach the intelligent agent to generate
corresponding sensorimotor activities. The proposed framework
is tested on both the AI2Thor dataset and a real-world robotic
platform demonstrating the effectiveness and extendability of the
developed method.

I. INTRODUCTION

When a visually impaired person enters a new room, he can
easily take pictures of his surroundings using the smartphone
and the built-in advanced computer vision modules could pro-
vide some scattered semantic information of these pictures. For
example, the smartphone can detect certain classes of objects
in the image with the help of an object detector and speak them
out to the visually impaired person. However, such information
is likely to make people confused and uncomfortable due to
its disorder and disorganization. A better way is to generate
higher-level semantic descriptions such as natural language
sentences or even paragraphs to describe the image. At present,
great progress has been made in the areas of Image Caption-
ing[1][2], Dense Captioning[3], and Image Paragraphing [4],
and it has been becoming more and more mature with the
booming of deep learning techniques[5]. It is believed that
such semantic descriptions will be an indispensable approach
for visually impaired people to perceive the environment[6].
In this case, a further question arouses – what is the next step?

In fact, no matter how accurate the semantic description
is, it can only provide information that exists in the current
image, but not tell the user what to do next. The semantic
understanding of the scenario is separated from the interaction
between the agent and the environment. When a visually
impaired person enters a room, the first photo captured is
likely to be a bare wall or window. He usually has to move the
smartphone randomly expecting to capture a more meaningful
image from another viewpoint. In this situation, it is more
useful to tell him where to look next rather than just to provide
him a vague description of the current scene (e.g. there is a
window on the wall). On the other hand, a notorious problem
of the semantic description is that it is very sensitive to camera
viewpoints[7]. Although the content of the captured image
may seem good, a deviation in the camera viewpoint will

Fig. 1. (a) An intuitive Embodied Scene Description demonstration. Here we
take the Image Captioning as an example, while the idea is applicable to other
tasks such as Dense Captioning, Image Paragraphing, etc. At first glance,
the agent captures the initial image (rendered with pink). Since this image
is non-informative, the generated caption provides very limited information
about the scene. However, the agent may explore the environment by itself
to find a better viewpoint to capture a new image (rendered with blue). The
generated caption yields more informative and suitable results. (b) Typical
scene description tasks: Image Captioning, Dense Captioning, and Image
Paragraphing.

lead to a totally wrong semantic description result. Under
this circumstance, it is important to tell the visually impaired
person how to adjust the position of the camera and even his
body (e.g. move left, right, forwards, backwards) to get more
meaningful and accurate scene descriptions for the current sce-
nario. Unfortunately, existing scene description work[8][3][4]
and the free APP software[6] do not take this into account.
All of them ignore the embodiment, which is a very important
characteristic of all intelligent agents (creatures and robots).
The embodiment concept asserts that intelligence emerges by
interactions between the agent and the environment. Without
embodiment, the semantic understanding of the scenario is
separated from actions. It is a difficult problem which mainly
involves key issues of semantic scene description, description
evaluation, and action instruction generation.

In this work, we propose the Embodied Scene Description
problem, which exploits the embodiment ability of the agent
to find an optimal viewpoint in its environment for scene
description tasks. The main idea is illustrated in Fig.1. In
addition to the visually impaired person, this problem is also



extensively applicable to mobile robots. For example, it can
facilitate the robot with many tasks such as actively exploring
unknown environments, quickly acquiring meaningful scenes,
and automatic photo taking.

To tackle this newly proposed problem, we establish a
framework that makes use of existing image description mod-
els (see Fig.1 (b)) to guide the agent to explore an embodied
environment. We encourage the agent to actively explore
the environment and capture scenarios with good semantic
descriptions. It is noted that we consider the following two
aspects when defining a good semantic description: (1) there
should be sufficient visual objects detected in the scene and
(2) these visual objects are able to compose a complete and
reasonable semantic description. Since both the object detector
and the semantic description may make mistakes, the combi-
nation of the two aspects is supposed to yield more reliable
results. Having the definition of a good scene, we can build a
learning framework with the paradigms of imitation learning
and reinforcement learning to teach the intelligent agent to
generate corresponding sensorimotor activities to explore the
environment actively. It is worth noting that this work is
different from a type of the embodied QA task[9][10], which
is driven by finding the answer to a question. In our work, the
agent implements the task of environment exploration entirely
with intrinsic motivation.

The main contributions are summarized as follows:
1) We propose a new framework for the Embodied Scene

Description problem, which exploits the embodiment
characteristic of the intelligent agent to explore the envi-
ronment to find the best viewpoint for scene description
in an embodied environment.

2) We develop a learning framework with the paradigms
of imitation learning and reinforcement learning to help
the agent to acquire the intelligence to generate senso-
rimotor activities.

3) We testify the proposed method on the AI2Thor dataset
and evaluate its effectiveness using the quantitative and
qualitative performance indexes.

4) We implement the proposed method on a robotic plat-
form, which shows promising experimental results in
real physical environments.

II. RELATED WORK

The deep learning methods have brought great success in
many computer vision tasks such as object recognition[5] and
detection[11]. Moreover, many research studies have begun to
investigate a higher-level task of semantic scene description
with natural language. The proposed work focuses on the
embodiment task of finding an optimal viewpoint for these
scene description tasks.

Refs.[12][1] are some early-stage works that propose to
use a combination of CNN and LSTM model to generate
image captions. These image caption models are further
improved by integrating different visual and semantic atten-
tion mechanisms[2][13][8]. Due to the fact that information
expressed in a single sentence is limited when describing

an image[14], researchers begin to investigate some more
complex models to bridge the gap between images and human
language. Therefore, Dense Captioning[3] is proposed, which
describes an image with multiple sentences. Each sentence is
corresponding to an area within a bounding box in the image.
It is further improved by Image Paragraphing[4], which is
able to generate a long paragraph to describe an image instead
of a single sentence. Ref.[15] proposes a better model for
Image Paragraphing, which utilizes the attention and copying
mechanisms, as well as the adversarial training technique.

With the recent rapid development in computer vision
and many traditional computer vision problems being ad-
dressed, the problem of embodied exploration has gradually
emerged[16]. In the embodied exploration, an embodied agent
actively explores the environment to have a better understand-
ing of the scene[17]. Contrary to traditional computer vision
tasks, which mainly focus on analyzing static images passively,
embodied exploration requires the agent both understands
the content of the current image and takes proper actions
accordingly to explore the environment. In most cases, the
agent needs to make decisions based on observed image
sequences instead of a single image[18].

Ref.[19] develops the target-driven visual navigation, where
the agent tries to find an object that is given by an RGB
image in an indoor scenario. The model is improved in [20]
by incorporating the semantic segmentation information. The
embodied visual recognition task proposed in [21] aims to
address the problem of navigating in an embodied environment
to find an object which might be occluded at first glance.
Refs.[22][23] investigate the look-around behavior through ac-
tive observation completion. Recently, language understanding
and active vision are tightly coupled. In [24], the authors
propose the task of visual-and-language navigation, where
the agent is expected to follow the given language instruc-
tions, and use the collected vision information to navigate
through the indoor scene. Refs.[9][10] develop embodied
question answering and interactive question answering tasks,
where an agent is spawned at a random location in a 3D
environment and explores to answer a given question. Such
tasks have attracted many attentions from the computer vision
communities[25][26][27][28]. Although more and more work
has taken the embodiment into consideration, the investigated
tasks mainly focus on object search, scene recognition, and
question answering. The problem of scene description in an
embodied environment has not been investigated yet.

To solve the embodied perception problem, deep rein-
forcement learning has become the most popular method
for its ability to integrate the perception and action mod-
ules seamlessly[29]. However, many scholars have pointed
out that the end-to-end training for such complex tasks is
rather difficult to converge[30]. To tackle this problem, some
hybrid learning methods are proposed, such as sidekick policy
learning which allows the agent to learn via an easier auxiliary
task[31]. In addition, some work prefers to use imitation
learning method[32][33] for pre-training and reinforcement
learning for fine-tuning[34]. In this work, we resort to such a



Fig. 2. The proposed navigation model.

Fig. 3. Demonstration of the visual input feed into the ResNet.

methodology to solve the proposed embodied scene descrip-
tion task.

III. PROBLEM FORMULATION

The goal of this work is to develop a method to help the
agent to rapidly find a proper viewpoint to capture a scene
for generating the high-quality semantic scene description.
Concretely speaking, we denote the image captured by the
agent as It and the corresponding description as U(It), where
t is the time instant. Please note that the operator U(·) denotes
the description generation procedure, which can be easily
implemented by existing work, such as Image Captioning,
Dense Captioning, Image Paragraphing, and so on.

Fig.1 (a) gives an intuitive introduction of the Embodied
Image Description problem. At time instant t = 0, the captured
I0 may contain wall only and the produced caption a white
wall with a white wall with a wall in a wall is non-informative.
Then the agent exploits its embodied capability to select
an action to explore the room and get a new image. Such
a procedure is iterated until the agent captures an image
containing plenty of objects and produces the informative
caption A living room with a couch and a table. The problem
is therefore formulated as to develop an appropriate policy π
to help the agent to find a high-quality scene description about

the scene. At each step t, the developed policy is used for the
agent to take action at to acquire the observed image It.

Though our general idea is to learn action policies for an
agent to locate a target scene in indoor environments using
only visual inputs, the target scene is not specified by the
user. This significantly differs from the work in [19][20] which
requires a pre-specified target image.

IV. NAVIGATION MODEL

The proposed navigation model is shown in Fig.2. The
action the agent would take in one step can be relevant to
all its previous actions and observations. Therefore, we model
it using the LSTM network, which is very commonly used for
sequence modeling [1][2]. With the learned policy, the agent
is expected to take as few steps as possible to approach the
target scene from a random starting position.

A. State Representation

In our implementation, we use a small ResNet-18 [5] as a
feature extractor, which is trained from scratch, jointly with
the navigation model.

Since the image semantic segmentation results can improve
the generalization performance[20], we also use the class
segmentation map to help image description generation. To
this end, we modify the number of input channels of the
original ResNet-18 from 3 to 6. The added 3 channels are
used to deal with the class segmentation map. Fig.3 shows
how those 6 channels of the input fed to ResNet are generated.
We use PSPNet [35] to predict the class segmentation map for
a given image.

Furthermore, since we need to train the model with thou-
sands of images in one batch (100 scenes times approximately
30 steps at most for the demonstration trajectories of those
scenes, which means about 3000 images in one batch), we
shrink the original ResNet-18 to a smaller network with 10
convolution layers. There are 4 kinds of residue building
blocks in the original ResNet18, and each of them is repeated
twice, leading to 16 convolution layers in residue blocks with



Fig. 4. A representative action space. Please note that some actions (such
as move left) can be easily implemented in the simulation environment,
but cannot be realized by some mobile agents, due to the non-holonomic
constraints.

parameters (and there are another 2 convolution layers in
ResNet18). We use each kind of those residue building blocks
only once, yielding a model with only 18 − (16 − 8) = 10
weighted layers. Besides, the output channels for all convolu-
tion layers are also halved (e.g. 512 output channels are shrunk
to 256 channels for the final output layer).

Since the description result U(It) can directly show how
well the scene description model performs for the current
frame, we extract the Bag-of-Words (BoW) feature Lt for all
appeared words (after removing stop words) of the output of
the 2D image understanding model.

Finally, we combine those multiple features to form the state
representation. Denoting the class segmentation map of It as
Ĩt, the state vector can be represented as

st = [ResNet(It, Ĩt);WLLt] (1)

where ResNet denotes the feature extraction module men-
tioned above. WL is a trainable parameter for language em-
bedding.

B. Action Space

As illustrated in Fig.4, for one step, we permit the agent
to perform the following two kinds of discrete actions in the
plane:

1) Move: The agent can take nine basic actions correspond-
ing to 8 directions and no move. The move step is set to
a fixed value ∆m and the set of the movement actions
is denoted as AM . In this work, we set ∆m = 0.25m.

2) Rotation: The agent can rotate for a fixed interval of ∆r.
In this work, we set ∆r = 45◦ and therefore the set of
the rotation actions AR contains 8 action atoms.

For each step, the complete action space of the agent is
A = AM × AR and the agent is permitted to take the move
actions firstly and the rotation action secondly. Please note that
if the agent selects the action no move from AM and 0 from
AR, then the exploration is completed and the obtained image
with description is reported as the final result.

In practical environments, the agent has motion limitations
and may encounter obstacles or dead corners. Thus the se-
lected action may not be realized. To solve this problem, the
agent may use its sensors to detect the feasible region and
construct the available action set At ⊂ A for the t-th step.

V. MATCHING BETWEEN SCENE IMAGE AND DESCRIPTION

Since the goal of the navigation module is to guide the agent
to find the scene which is good for both the image itself and

Fig. 5. Demonstration of the proposed scoring function.

Fig. 6. Some examples which show the mis-match between images and the
corresponding description.

the semantic description, we should design a matching score
between the scene image and its description. This is indeed not
a trivial task because the visual object detection results may
contain noises and the image-text translator is far from perfect.
On one hand, an object-rich image is preferred but may lead
to poor or non-informative descriptions. On the other hand, a
good description may include some wrong objects which do
not appear in the image at all. See Fig.6 for some examples.

To tackle this difficulty, we apply the off-the-shelf object
detectors provided by the AI2Thor simulator [36] on the image
I to find the visual objects, and extract the object nouns in
the text description U(I). The matching score score(I) is
designed according to their connections. By matching those
words with all of the detected objects for one image, we can
quantitatively measure how “good” a viewpoint is.

We denote all appeared words in the category labels of all
detected objects in the image I as O(I) = {o1, o2, · · · , on},
and all appeared noun words in the output of the description
model U(I) as W(U(I)) = {w1, w2, · · · , wm}, where n and
m are the numbers of the detected visual objects in the image
I and the extracted noun words in the description U(I). Since
the vocabularies adopted by the visual object detector and
the semantic description may be different, the same object
may be expressed by different words (such as desk in the
image and table in the description). We resort to the Word2Vec
[37] embedding to semantically vectorize these words. For the
object category label oi in O(I) and the noun word wj in
W(U(I)), we can define their similarly as

R(oi, wj) = k(oi, wj)cos〈oi, wj〉 (2)

where cos〈oi, wj〉 is the cosine similarity between the word
vectors of the two words. The value k(oi, wj) is related to the



confidence score of the word and the bounding box. Fig.5 is an
intuitive demonstration of the matching-based score function.

The determination of the confidence k(oi, wj) is depen-
dent of the adopted description model. For example, if the
adopted scene description task is Image Captioning or Image
Paragraphing, since there is no specific information provided
for the confidence score by the image description model,
we just set k(oi, wj) = 1. For Dense Captioning task, we
have the confidence score and bounding box provided by the
dense captioning model, therefore we can set k(oi, wj) =
IoU(BB(oi), BB(wj)) · C(wj), where BB(·) is the corre-
sponding bounding box and C(·) is the confidence score for
the bounding box provided by the dense captioning model.

Based on the definition of R(oi, wj), we can formulate the
calculation of the similarity sim(I, U(I)) as the maximum
matching problem between the sets O(I) andW(U(I)). Such
a problem can be easily solved using the Hungarian algorithm.
Please note that this similarity value is normalized to [0,1].

Finally, we combine the similarity between image-
description and the richness of objects to define the following
viewpoint scoring function:

score(I) = sim(I,U(I)) + λ
|O(I)|
N

(3)

where λ is a penalty parameter; the symbol | · | denotes the
number of atoms in a set and N represents the number of
all possible objects. The second term encourages the agent
to search the object-rich scene. It is very useful to some
description tasks such as Image Captioning, which usually
contains few words.

VI. LEARNING FOR EMBODIED SCENE DESCRIPTION

A natural method to train the model presented in the previ-
ous section is the reinforcement learning algorithm. However,
training such a complex model using end-to-end reinforcement
learning from scratch is very hard to converge[31]. Therefore,
we first use demonstrations to develop imitation learning
method to train the embodied scene description model from
scratch, and then fine-tune this model with reinforcement
learning. Such methodology has been extensively used for
several difficult tasks[10].

A. Imitation Learning

The goal of imitation learning for sequential prediction
problems is to train the agent to mimic expert behavior for
some tasks. To develop the imitation learning algorithm, we
have to annotate some scenes with the pre-trained caption
model and generate demonstrations for the agent. Therefore,
for a specific scene S, we discretize it with grids of a fixed
size of ∆m, and fixed angle ∆r as stated in the Action Space
section. For each possible position (x, y) with rotation φ,
the corresponding viewpoint can be represented as the tuple
(x, y, φ). We denote all these possible discrete viewpoints in
the given scene S as SD. With some abuse of notation, we
use score(x, y, φ) to represent the score of the image which
is captured at this viewpoint.

Fig. 7. Demonstration of selecting the target locations.

Fig. 8. Demonstration of the generated shortest path.

To produce the demonstration trajectories for a scene, we
first find a special viewpoint (x∗, y∗, φ∗):

(x∗, y∗, φ∗) = arg max
(x,y,φ)∈SD

score(x, y, φ) (4)

which achieves the highest score smax = score(x∗, y∗, φ∗).
Then we randomly sample one item from the set of candidate
locations of which the score is in the interval of [γsmax, smax]
as the target location (demonstrated in Fig.7). The parameter
γ is set to 0.95 to prevent over-fitting. Finally, the shortest
path between one randomly selected initial point and the
target point, demonstrated in Fig.8, can be obtained using the
all-pairs shortest path table generated by the Floyd-Warshall
algorithm[38]. This path is used as the demonstration trajec-
tory. Using the multiple demonstrations from various scenes,
we can develop supervised imitation learning to train the
feature extractor and the navigation model together. The loss
function is defined as follows

Lθ =

K∑
k=1

Tk∑
t=1

− log πθ(âk,t|ŝk,0, âk,0, ŝk,1, âk,1, · · · , ŝk,t),

(5)
where K is the number of demonstration trajectories used for
training in one batch, Tk is the length of the k-th trajectory,
ŝk,t and âk,t are the annotated observation and action, and



Fig. 9. Four representative examples for the scenes Living Room, Kitchen, Bedroom and Bathroom. The trajectories of the agent are shown as red curves in
the left panel.

θ denotes all of the parameters to be optimized. During
the training phase, we assume a map of the environment is
available and give the agent access to information about the
shortest paths to some targets. We prepend random actions to
the demonstration trajectories to simulate possibly non-optimal
actions and the beginning of the exploration process. We use
Adam optimizer with a learning rate of 10−3.

B. Fine-Tuning with Reinforcement Learning

After pre-training the navigation model with imitation learn-
ing, we then try to further improve its performance using the
REINFORCE algorithm. The key to fine-tuning the model
is to design the reward function for the generated trajectory.
Generally speaking, we hope to get high-quality caption within
a short period of time and therefore a score can be designed
as pt = score(It)− ρt, where ρ is used to balance the scales
of the two terms and is set to 0.01.

According to the above definition, the immediate reward is
set as the incremental of the score r(st, at) = pt − pt−1 and
the cumulative reward which is used to fine-tune the model is
as

R(st, at) = r(st, at) +

T∑
t′=t+1

βt
′−tr(st, at), (6)

where the discounted parameter β is set to 0.99 and T is the
prescribed maximum steps and is set to 40.

Based on the above-defined reward function, we use RE-
INFORCE algorithm to fine-tune the policy network. We also
test the proposed framework when training from scratch with
RL-based method, using SGD optimizer with a learning rate
of 10−3. For finetuning, the learning rate is reduced to 10−4.

VII. EXPERIMENT RESULTS

The proposed framework can be generalized to various
semantic description tasks such as Image Captioning, Dense
Captioning, Image Paragraphing, and so on. Considering that
the Image Captioning provides a single-sentence description,
which is more intuitive and convenient for practical appli-
cations, we focus on the scene description task of Image
Captioning in this section for performance evaluations. The
experimental results on the tasks of Dense Captioning and
Image Paragraphing are illustrated in the supplementary video
https://youtu.be/KEeUmyhOL2o.

A. Dataset

For there isn’t any existing dataset for the proposed Embod-
ied Scene Description task, we generate a new dataset with
the AI2Thor dataset. A pretrained caption model is used to
generate captions for each scene from different viewpoints.

Fig. 10. The annotation for the scene using selected three representative
viewpoints.

The AI2Thor dataset contains 120 scenarios belonging to
four categories: Living Room, Kitchen, Bedroom and Bath-

https://youtu.be/KEeUmyhOL2o


TABLE I
PERFORMANCE COMPARISON

NoS SoL NoS(0.7) SoL(0.7) BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGE L CIDEr
Random 26.78 0.3017 N/A N/A 0.6176 0.5088 0.4252 0.3686 0.2598 0.6086 1.7135
IL (RGB) 21.38 0.7430 12.71 0.7130 0.8471 0.7997 0.7537 0.7144 0.4633 0.8293 4.8382
IL (Segm.) 19.76 0.7525 10.43 0.7361 0.8607 0.8113 0.7611 0.7154 0.4653 0.8368 4.6627
IL (RGB+Segm.) 15.43 0.7734 12.02 0.7075 0.8741 0.8334 0.7902 0.7502 0.4910 0.8625 4.9376
RL (RGB+Segm.) 18.38 0.4531 N/A N/A 0.7228 0.6399 0.5682 0.5139 0.3401 0.7106 2.8099
IL+RL(RGB+Segm.) 15.10 0.7724 N/A N/A 0.8752 0.8345 0.7906 0.7502 0.4913 0.8626 4.9482
By default, results are reported for models selected with maximum SoL on the validation set.
(0.7) denotes results selected with minimum NoS when SoL > 0.7, only reported for models with best SoL > 0.7 and trained from scratch.

room. Each category has 30 rooms. For each category, we use
25 rooms as the training set, and 5 rooms as the validation/test
set. The layout of the room is discretized with grids. For those
rooms used as validation/test set, one fixed point in every 4×4
grid is regarded as a point in the validation set and the rest
15 points belong to the test set. The image caption model
proposed in [8] is adopted for its satisfying performance. The
model is trained with the MSCOCO captioning dataset[39].

B. Evaluation Metrics

To evaluate the performance of the embodied scene descrip-
tion task, we resort to the score function defined in Eq.(3) to
calculate the score for each location in the room. Concretely
speaking, for each scene, we select all of the locations whose
scores are in the interval of [γsmax, smax] and generate their
corresponding captions. The generated captions are combined
together to act as the ground truth annotation of the scene
(Fig.10). Based on this ground truth annotation, the following
metrics are designed:

1) Number of Steps (NoS): The number of steps the agent
takes before stopping.

2) Score of the Last Image (SoL): The score of the location
which triggers the Stop action.

3) Natural Language Metrics: With the generated ground
truth annotation for each scene, metrics for natural
language tasks can be used for evaluating the proposed
task. We select several metrics including BLEU which
are based on the n-gram precision[40], Meteor which
considers the word-level alignment, ROUGE L which
is based on the longest common sub-sequence[41], and
CIDEr[42].

C. Result Analysis

The performance of the proposed framework for the scene
description of image captioning is illustrated in Table I. Com-
prehensive comparisons are conducted with several different
settings. The full implementation of the proposed framework
is denoted as IL+RL (RGB+Segm.). IL (RGB) and IL (Segm.)
only use imitation learning for the RGB image and seg-
mentation map respectively. IL (RGB+Segm.) uses both the
RGB image and semantic segmentation map under the same
imitation learning framework without reinforcement learning.
We also investigate the performance of the reinforcement-
learning only framework which is trained from scratch and

it is denoted as RL (RGB+Segm.). The baseline method is to
randomly select each action.

The detailed results on test samples are summarized in Table
I, from which we have the following observations:

• RGB and Semantic segmentation are both important.
When the model is selected with SoL,it can be seen
that using both RGB image and semantic segmentation
information yields better performance. Utilizing both
semantic information from segmentation and color details
from RGB image may contribute to this result. However,
we also noticed that the model trained only with semantic
segmentation could provide a shorter path when the
model is selected with NoS. Since the difference in the
scores is still insignificant, future research may be needed
for a better understanding of different components in the
proposed framework.

• RL only method works poorly. The RL only method,
though using the same information with IL+RL, yields
poor results only better than the baseline random method.
It demonstrates that the pre-training process using imita-
tion learning is helpful.

• RL finetuning could improve performance. The results
show that IL+RL method which contains both the pre-
training process using imitation learning and fine-tuning
process using reinforcement learning achieves the best
performance according to all of the language-related
metrics. We notice that the fine-tuning process using rein-
forcement learning only slightly improves these metrics.
This is in accordance with the results shown in existing
literature [10][32].

D. Representative Examples

In Fig.9, we list four representative examples for different
scenario categories. The agent is able to navigate in the room
and finally find a good viewpoint to describe the scene. For
example, for a living room which is illustrated in the second
row of Fig.9, the agent can only see the television initially,
and then it continuously explores in the room until it reaches
a position where a good view of the living room is obtained.
For a bathroom which is illustrated in the last row of Fig.9,
the agent starts at a location where only the wall is visible.
With the help of the navigation model, it gradually discovers
the mirror and the sinks. Finally, it generates a description that
contains major objects in the bathroom.



Fig. 11. Failure case. Though an object-rich scene is finally discovered, the adopted caption model does not work well.

Fig. 12. LEFT: The developed robotic platform. A Kinect is equipped on
the top of it and we carefully adjust its position to ensure the optical center of
the camera in Kinect is aligned with the center of the platform. RIGHT: Two
representative real working scenes for the agent. For each scene, we show the
the-third-person view (left) and the first-person view (right).

It is noted that the performance of embodied scene descrip-
tion is also strongly dependent on the scene description task
(Image Captioning in this task). In Fig.11 we show a failure
case. One possible reason is that the caption model generates
improper caption for the scene even though the agent actually
finds a good viewpoint for the scene description.

We also perform extensive validation on some other typical
scene description tasks such as Dense Captioning and Image
Paragraphing. The details can be found in the supplementary
video.

E. Real-World Experiments

Our model is trained on the AI2Thor dataset, rendered with
Unity in high quality real-time realistic computer graphics,
which makes the difference between the real world and
simulation environments minimal. Therefore, it is possible for
a simulation-to-real transfer and applying our model to real-
world robots and scenes. The learned policy is able to provide
action instructions to the robot.

As shown in Fig.12, a mobile robot equipped with a Kinect
camera is used in the real world experiment. The mobile
robot is able to rotate 360 degrees around itself and move
forwards/backwards flexibly, which allows for implementing
actions in the action space. The Kinect camera is mounted on
the top of the mobile robot and is used to collect egocentric
images in real-time. The robot is placed in an unseen hotel
room for a simulation-to-real experiment. Although the layout
of the room and the viewpoint of the camera are significantly
different from those in the simulation environment, promising
results are obtained to validate the effectiveness of the trained
model. In Real Scene 1 (Fig.13), the robot firstly faces to
a corner of the room. With the generated instructions, the
robot moves around the room until it recognizes that it is a
bedroom scene. In Real Scene 2 (Fig.14), the robot starts with
a scene where it faces the door of a cabinet and it is difficult

Fig. 13. Real Scene 1: The robot turns around from the wall corner to the
bed and finally correctly recognizes the bedroom scene.

Fig. 14. Real Scene 2: The robot adjusts its position to observe the room.
But the caption model mistakenly recognizes the scene as a bathroom.

to obtain a useful semantic description. Then, with generated
action instructions, the robot adjusts its positions gradually and
stops at a position where it can get a full view of the room.
It reflects that the learned model is capable of transferring
the semantic knowledge learned in simulation environments
to real-world environments.

VIII. CONCLUSIONS

In this work, we propose the new Embodied Scene De-
scription problem, in which the agent exploits its embodiment
ability to find an optimal viewpoint for scene description
tasks. A learning framework with the paradigms of imitation
learning and reinforcement learning is established to teach the
agent to generate corresponding sensorimotor activities. The
trained model is evaluated in both the simulation and real-
world environments demonstrating that the agent is able to
actively explore the environment for good scene description.

This work only takes the final frame into consideration for
scene description tasks. Image sequences collected during the
exploration process is believed to reveal more information for
a better scene description. It will be also useful to leverage
the attention, preference, 3D relationship between objects, and
multi-modal information[43] to further actively understand the
scenario.
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