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Abstract—There is a rising interest in Spatio-temporal systems
described by Partial Differential Equations (PDEs) among the
control community. Not only are these systems challenging
to control, but the sizing and placement of their actuation
is an NP-hard problem on its own. Recent methods either
discretize the space before optimziation, or apply tools from
linear systems theory under restrictive linearity assumptions.
In this work we consider control and actuator placement as
a coupled optimization problem, and derive an optimization
algorithm on Hilbert spaces for nonlinear PDEs with an additive
spatio-temporal description of white noise. We study first and
second order systems and in doing so, extend several results
to the case of second order PDEs. The described approach is
based on variational optimization, and performs joint RL-type
optimization of the feedback control law and the actuator design
over episodes. We demonstrate the efficacy of the proposed
approach with several simulated experiments on a variety of
SPDEs.

I. INTRODUCTION

In many complex natural processes, a variable such as
temperature or displacement has values that are time varying
on a spatial continuum over which the system is defined.
These spatio-temporal processes are typically described by
Partial Differential Equations (PDEs) and are increasingly
prevalent throughout the robotics community. Swarm robotics
can be described by Reaction-advection-diffusion PDEs [1]].
Robot navigation in crowded environments can be described
by Nagumo-like PDEs [2]. Soft robotic limbs can be modelled
as damped Euler-Bernoulli systems [3l].

Some of the major control-related challenges of these
systems include dramatic under-actuation, high system di-
mensionality, and the design and/or placement of distributed
actuators over a continuum of potential locations. These systems
often have significant time delay from a control signal, and
can have several bifurcations and multi-modal instabilities. In
addition, realistic representations of these systems are stochastic.
Put together, control of spatio-temporal systems represents
many of the largest current-day challenges facing the robotics
and automatic control communities.

This paper addresses stochastic optimal control and co-
design of Stochastic Partial Differential Equations (SPDEs)
through the lens of stochastic optimization. We propose a
joint actuator placement and policy network optimization
strategy via episodic reinforcement that leverages inherent
spatio-temporal stochasticity in the dynamics for optimization.
The resulting stochastic gradient descent approach bootstraps

off the widespread success of SGD methods such as ADAM
for training Artificial Neural Networks (ANNS).

Among the main goals of this line of research is to establish
capabilities for the eventual design and manufacture of
soft-body robots. The behavior of such systems follows second
order SPDEs. As such, while the proposed method is general
to first and second order systems, we focus our mathematical
formulation on second order SPDEs.

Our contributions. In this work we tackle the coupled
challenge of policy optimization and actuator co-design for
SPDEs. Our approach is founded on a general principle coming
from thermodynamics that also has had success in stochastic
optimal control literature [4]]

Free Energy < Work — Temperature x Entropy (1)

We leverage this principle in order to derive a measure-
theoretic loss function that utilizes exponential averaging over
importance sampled system trajectories in order to choose
network and actuator design parameters that simultaneously
minimize state cost and control effort. This work builds
off related work [S] by including actuator co-design and
establishing needed theory for applicability to second order
SPDEs. Specifically, we contribute the following:
i) A derivation of a joint policy optimization and actuator
co-design architecture in Hilbert spaces for SPDEs
ii) A version of the Girsanov Theorem suitable for second-
order SPDEs in a natural form
iii) A practical set of tools to extend related work to actuator
co-design and to handle second-order SPDEs

II. RELATED WORK

Control of SPDEs. There is a growing body of work that seek
control of PDEs by immediately reducing them to a set of
ODE:s [6, [7, 18 19} [10]. They do not consider stochasticity and
typically use standard tools from finite-dimensional control
theory. Other approaches apply SPDE control theory, yet either
treat linear systems or lack numerical results [11} [12]]. We build
the proposed framework on [5], wherein the authors create a
semi-model-free reinforcement learning framework for policy-
based control of SPDEs. This prior work does not consider
actuator co-design and lacks a mathematical treatment suitable
to second-order SPDEs.

Actuator Co-Design for PDEs. Several works have addressed
optimal placement of actuators and sensors in the linear



regime, using minimum norm control for the stochastic
heat equation [13]], using H. and H, objectives for flexible
structures [[14} (15 [16] and the linearized Ginzburg-Landau
equation [17} 18], leveraging symmetry properties in linear
PDEs [19], by utilizing Gramians [20, [21]], and level set

methods based on Gramians that promise scalability [22].

Aside from these methods which are appealing, yet constrained
to linear systems, optimal actuator and sensor placement for
stabilization of the nonlinear Kuramoto-Sivashinsky equation is
demonstrated in [23]. They produce appealing results, however
they impose strong simplifying assumptions which limit their
dimensionality. Finally, conditions for the existence of optimal
actuator and sensor placement for semilinear PDEs are obtained
in [24].

III. PROBLEM FORMULATION

This work proposes actuator co-design optimization for a
large class of stochastic spatio-temporal systems represented
as SPDEs. We describe these systems as evolving on time
separable Hilbert spaces, where they are represented by infinite
dimensional vectors and acted on by operators. We address a
class of SPDEs that are of semi-linear form. Let ¢ denote a
separable Hilbert space with o-field Z () and probability
space (Q,.#,P) with filtration %, t € [0,T]. Consider the
general semi-linear form of a controlled SPDE on J# given
by

dX = (/X+F(t,X))dt

oM+

+G(1,X)(P(1,X,x;0W)dr + ﬁdW(t)), (2)
where X (1) € ¢ is the state of the system which evolves
on the Hilbert space .7, the linear and nonlinear measurable
operators &7 : S — . and F(t,X) : R x 5 — A (resp.) are
uncontrolled drift terms, CI>(t,X,x;®<k)) Rx I xD— A
is the nonlinear control policy parameterized by 0% at the
k" iteration, where D C R? is the domain of the finite spatial
region, dW (¢) : R — 4 is a spatio-temporal noise process, and
G(t,X) is a nonlinearity that affects both the noise and the
control and acts to incorporate each into the field.

The Hilbert spaces formulation given in eq. (Z) is general
in that any semi-linear SPDE can be described in this form by
appropriately choosing the .27 and F operators. In this form, the
spatio-temoral noise process dW (t) is a Hilbert space-valued
Wiener process, which is a generalization of the Wiener process
in finite dimensions. We include a formal definition of a Wiener
process in Hilbert spaces for clarity [25, Section 4.1.1]

Definition IIL.1. A J7-valued stochastic process W (t) with
probability law £ (W(-)) is called a Wiener process if
i) W(0) =0
it) W has continuous trajectories
iti) W has independent increments
iv) L(W({t)—W(s)) =A(0,t—5)Q), t>s>0
v) L(W(t)=2L(-W()), t>0

Proposition IIL1. Let {¢;}, be a complete orthonormal
system for the Hilbert Space €. Let Q denote the covariance

operator of the Wiener process W(t). Note that Q satisfies
Qe; = Aie;, where A; is the eigenvalue of Q that corresponds to
eigenvector e;. Then, W (t) € A has the following expansion:

W)= Y /4B 0)ey. )
=1

where B(t) are real valued Brownian motions that are mutually
independent on (Q, F#,P).

This expansion in eq. (3) reveals how the Wiener process acts
spatially. There are various forms of the Wiener process with
different properties. We refer the interested reader to [25] for a
more complete introduction. The proposed approach is derived
for a special case of Wiener process called the Cylindrical
Wiener process, defined as follows.

Definition III.2. A Wiener process W(t) on S is called a
Cylindrical Wiener process if the covariance operator Q is the
identity operator I.

Note that for the Cylindrical Wiener process, the sum in
eq. (3) is unbounded in J# since A; =1, Vj=1,2,.... This
makes the Cylindrical Wiener process a challenging Wiener
process to handle since it acts spatially everywhere with equal
magnitude, in contrast to Wiener processes with covariance
operators that are of trace class (i.e. wherein the expansion
eq. (3) is finite). This type of spatio-temporal noise requires the
assumption that the operators <7, F(1,X), and G(z,X) satisfy
properly formulated conditions given in [25, Hypothesis 7.2]
to guarantee the existence and uniqueness of the .%;-adapted
weak solution X(z), # > 0.

The nonlinear policy ®(r,X,x;®®)) is a potentially time-
varying policy that has explicit state dependence. Nonlinear,
explicit state dependence allows for a feedback policy that can
extract pertinent information from the state for control. In this
work the nonlinear policy utilizes an ANN. Embedded in this
function is also a spatial dependence. The dependence on x
describes how the actuator is placed in the spatial domain. This
approach encompasses cases where terms that parametrize how
the actuators are shaped or sized are included in the nonlinear
policy.

Many complex spatio-temporal systems are given by partial
differential equations of second order in time. One such system
is the simply supported stochastic Euler-Bernoulli equation
with Kelvin-Voigt and viscous damping, which can describe
the motion of a soft robotic limb. Formally, this is given by

1
Oy + Oxx (8xxy + Cdaxxty) +udy =+ 7atW(tax) 4)

\/ﬁ
y(t70):y(t7a):07 )’(Oax):}’m

8;))(0,)5) =V
Oxxy(1,0) +Cyruy(1,0) =0,  duy(t,a) +CyOeuy(t,a) =0

where the spatial region is one-dimensional, y(x,7) =y : R" x
R — R represents the vertical displacement of the beam, and
all functional dependencies of the nonlinear policy & have been
dropped since it has a different form in the PDE perspective.
With the change of variables v := d;y, this system has the



typical second order matrix form

2l Y=l 0 1 y
d v o —Ao —CdAo—[,L v

atW(t,x)
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where Ag = Oy Without boundary conditions. Now, we lift this
PDE into infinite dimensional Hilbert spaces. Define Y € JZ as
the Hilbert space analog of y(x,7), V € 5 as the Hilbert space
analog of v(x,t), and a variable Z on the direct product Hilbert
space % := # x . Note that Z is a Hilbert space analog
of a variable z(x,7) = [y(x,t) v(x,t)]" € R2. In Hilbert spaces,
Ay becomes an operator acting on . and 1 gets replaced
by the identity operator I acting on 7. Rewriting eq. (3) in
Hilbert space semi-linear form yields

_ oM+ )
dZ = AZdt +G(¢>(I,Z,x,® )dr + ﬁdW(t) 6)
where A : 7% — 77 is the linear operator A= [0 I;—Ag —
CyAo—ul], G : A — H* is operator representing how control
and spatio-temporal noise enter the system G = [0;1], and dW ()
is a Cylindrical Wiener process on .. Note that the Hilbert
space variables Y, V, and Z no longer have spatial dependence
as the Hilbert space vectors capture the spatial continuum over
which the problem is defined.

IV. A GIRSANOV THEOREM FOR SECOND ORDER SPDESs

In order to derive a measure theoretic view of variational
optimization, we require a change of measures coming from an
appropriate Girsanov theorem for second order Hilbert space
valued systems. We present the second order version of the
Girsanov theorem here as an extension of existing formulations,
where all norms and inner products are taken with respect to
the Hilbert space 7.

Theorem IV.1 (Girsanov). Let Q be a sample space with a
o-algebra F. Consider the following 7¢*-valued nonlinear
stochastic processes
1
dZ = (A Z+F(t,2))dt + —G(¢,Z2)dW (1), 7
(/24 F0,2))d+ 5 G0, 2)aW (1)

0Z = (/Z+F(1,2))dt +G(t,2) (B(t,Z)dt+ \}de(r)),
®)

where Z(0) = Z(0) = zo and W € ¢ is a Cylindrical Wiener
process with respect to measure P. Moreover, let T be a set of
continuous-time, infinite-dimensional trajectories in the time
interval [0,T]. Define the probability law of Z over trajectories
Ias Z(I):=P(w € Q|Z(-,0) €T) . Similarly, define the law
of Z as Z(T) :=P(w € QZ(-,w) €T). Then

exp ([ (vshaws)

2() =Ep

- ©)
=y Hl,,(s)yfds)

X(-)eF],

where we have defined

v(t) = /pB(t,Z(1)) € A, (10)
and assumed Ep [e%fOT H"’(’)sz’] < oo,
Proof: Define the process
t
W (1) = W) —/ w(s)ds. (1
0

Under the above assumption, W is a Cylindrical Wiener process
with respect to a measure Q defined by

dQ(o) = exp (/OT (y(s),dW (s)) - %/OT Hu/(s)szs)dIP’

T . 1 /T
:exp(/o <l/l(s)7dW(s)>+§/O Hl[/(s)szs)dIP’.
(12)

The proof for this intermediate result can be found in [26]
Theorem 10.14]. Now, using eq. (1)), eq. (7) is rewritten as

dZ = (/X +F(1,Z))dt + \}pG(t,Z)dW(t) (13)

1 .
= (HZ+F(1,2))dt+G(1,Z) (B(t,Z)dt + \/ﬁdW(t)()M)

Notice that the SPDE in eq. has the same form as eq. (§).
Therefore, under the introduced measure Q and noise profile
W, Z(-,») becomes equivalent to Z(-,®). Conversely, under
measure P, eq. (or eq. (T4)) behaves as the original system
in eq. (7). In other words, eq. (7) and eq. (T4) describe the
same system on (Q, % ,P). From the uniqueness of solutions
and the aforementioned reasoning, one has

P({ZeT}) =Q({zeT)).

The result follows from eq. (12). u
It follows that the Randon-Nikodym (RN) derivative between

measures .Z(-) and .Z(-) of the different dynamical systems
defined in eqs. (7) and (@), is given by

e~ [ wo.awe) -5 [MIve)Pe).

15)

Applying this to both the general semi-linear system eq. (2) and
the second order semi-linear form of the Euler-Bernoulli system
eq. (@) yields y := ﬁCID(t,Z,x;(D(k)) and a Radon-Nikodym
derivative as

d%'?i = exp (— \/E/OT <<I>(t,Z7x;®(k))7dW(s)>

4z
p [T

_5/ |<I>(t,Z,x;®(k))||2ds>.
0

Throughout the rest of the manuscript,

(16)

we refer to

the terms in the Radon-Nikodym derivative many
times. For convenience, they will be assigned
functions .A(@,x) = [) (®(r,Z,x;0W),dW(s)), and

2(0,x) = [ ||®(1,Z,x;00)|2ds.



V. SPATIO-TEMPORAL STOCHASTIC OPTIMIZATION

The proposed measure theoretic framework is based on
eq. (I) in the following form [27, 28]

1 1
- EloglEg {exp(—p])] = 1612 [IE )+ pDKL “Z 2],

a7

where J = J(X) is an arbitrary state cost function. Relating
eq. (T7) to eq. (1), the metaphorical work and entropy describe a
metaphorical energy landscape for which there is a minimizing
measure. Sampling from this measure would simultaneously
minimize state cost and the KL-divergence term, which is
interpreted as control effort. The measure that optimizes eq.
is the so-called Gibbs measure

exp(—pJ)d.Z
B [oxp(-p7)]

It is not known how to sample directly from the Gibbs mea-
sure in eq. (I8). Instead, variational optimization methods seek
to iteratively minimize the controlled distribution’s distance to
the Gibbs measure [28, 29} [30]]. Define the control policy and
actuator co-design problem as

@ = argmin Dy (L*]|.2)
®

dz* = (18)

(19a)
x* = argmin Dgr (L*||.2) (19b)

Throughout experiments, the authors found that a joint opti-
mization problem dramatically outperforms the split problem in

eq. 1) To make this clear, define a new variable ® := (CH X]T,
and with it the new joint variational optimization as
©" = argmin D, (L*||.2). (20)
c}
Expanding the KL divergence and applying the chain rule
yields
n dz* dz
C) :argénin [/log d.,% dg)dﬁ*] 21
which is equivalent to minimizing
A dz
O = argmin[ ( ~)d$*]. (22)
0 Z
Performing importance sampling yields
A df dz* dZ
®" = argmin /lo ) ~d$} 23
A { t\ag) dZ a7 *9

The proposed iterative approach performs episodic reinforce-
ment with respect to a loss function in order to optimize eq. (23).
Define the loss function as

L(®):=E,

(24)

o (45242

Plugging egs. (I5) and (I8) into eq. (24) yields

oK) exp(—pJ) ( NONIN PN )
L6 Ey|l—— 27 [ — p ¥ (O —E26 ,
( ) 2 Eg [eXp(—pﬂ] \/ﬁ ( ) 2 ( )
(25)
where J = J(Z} ,@)(k)) is defined as
7T &k 7y, | NONNR PN
JZF 6" =1z + — /(O +-2(0"), (26)
(2),07):=J(Z) 7 ©7)+52(07)

and J(Z!) is a state cost evaluated over the state trajectory Z .
For reaching tasks, J(Z]) is typically a weighted quadratic
penalization of the 1-norm distance to the goal state.

This loss function compares sampled trajectories by evalu-
ating them on the exponentiated J performance metric. The
importance sampling terms .4 and &, which appear in J
add a quadratic control penalization term and a mixed control
noise term. In the Loss function, they serve as weights for the
exponentiated cost trajectories. For convenience, we denote the
exponentiated cost term as & :=E 5 [exp(—pJ)] “exp(—pd).

Recall, that the nonlinear policy P is a functional mapping
into Hilbert space 7. This is kept general for derivation
purposes, however it implies that the nonlinear policy controls
each element of an infinite vector Z € 7. A more realistic,
but less general representation refines the policy as

@(1,Z,x;0%) =m(x) " o(z;0X), 27)

where m(x) : DV — RN x J# represents the effect of the
actuation from N actuators on the infinite-dimensional field.
Typically this is either a Gaussian-like exponential with mean
centered at the actuator locations or an indicator function.

In eq. , (p(X;®(k)) : # — RV is a policy network with
N control outputs representing N distributed (or boundary)
actuators. Note that as desired, the tensor contraction given
on the right hand side of eq. produces a vector in JZ.
Splitting the actuation function from the control signal is also
desired because we ultimately wish to use a finite input, finite
output policy network for the function @(X;©®*)). The inner
product terms become

ﬂ(@(k)):/OT<m(X)T(p(Z;@(k))’dW(S)> (28)
:/TmeT ©)[2ds
/ (2:09), M(x)9(2:0W))ds  (29)
where M(x) = m(x)m(x).

VI. APPROXIMATE DISCRETE OPTIMIZATION

Performing spatio-temporal stochastic optimization in Hilbert
spaces as described above maintains generality of the resulting
loss function. In addition, it allows us to make use of the
spatio-temporal noise process. Finally, we can apply the spatial
inner product integration scheme described in [5]. Despite this,
computations on a digital computer require spatial discretization.



As a result, the portion of this optimization procedure dedicated
to actuator co-design becomes a discrete optimization problem.
To see this more clearly, consider the 1-dimensional (1D)
spatial continuum D = [0, 1] discretized into a 10 point 1D grid.
Lets assume that an actuator is chosen to be placed at x = 0.25.
Even though the actuation function m(x) may be Gaussian-like
function, the majority of the actuation will be felt in between
two grid points, namely 0.2 and 0.3. This problem is even more
severe if the actuation function m(x) is the indicator function,
as there will be no actuation exerted on the field irrespective
of the control signal magnitude. Denote the number of spatial
discretization points as J and the discretized problem domain
grid as D composed of J3 elements. The optimization problem
becomes
min L(®,x)
Ox (30)
subject to x € D

This formulation is an accurate representation, yet limits
gradient flow from the loss function back to the actuator
design parameters. In order to maintain these gradients, we
approximate eq. (30) as follows. Define a one-to-one map
S:D — 7., where Z, denotes positive integers. Applying
the forward and inverse mapping produces a gradient-based
parameter update of the form

0k =l — ygvgL©W, xH) (31)

kD) = g1 (R (S(x(k) - yxVxL(G)(">,x(k>))>> (32)

where R(-) simply rounds to the nearest integer, ¥ is the learn
rate for the ANN parameters, Y is the learn rate for the actuator
design parameters, Vg denotes the gradient with respect to O,
and Vy deontes the gradient with respect to x. This approach
allows us to leverage well-known backprop-based algorithms
such as ADA-Grad [31] and ADAM [32].

VII. ALGORITHM AND NETWORK ARCHITECTURE

As discussed previously, implementation of the above
framework requires spatial and temporal discretization of the
SPDEs discussed in section With this in mind, we choose
an ANN for our nonlinear policy @(Z;®®). In this work
we exclusively use Feed-forward Neural Networks (FNNs)
for all of our experiments, and use physics-based models of
each SPDEs to generate training data. Given that the proposed
framework is semi-model-free, real system data can seamlessly
replace the physics-based model as described in [S]. We only
need prior knowledge of the flavor of noise and the actuator
dynamics (i.e. m(x)). Also described is a sparse method for
spatial integration that we apply here to maintain computational
and memory efficiency.

The resulting algorithm, which we call the Actuator Design
and Policy Learning (ADPL) algorithm is shown in algorithm [T}
The inputs are time horizon (T), number of iterations (K),
number of rollouts (R), initial state (Zy), number of actuators
(N), noise variance (p), time discretization (Atf), actuator
variance (0y,), initial network parameters (G)(O)), initial actuator

Algorithm 1 Actuator Design and Policy Learning

1: Function: ®* = OptimizePolicyNetwork(T,K,R,Zy,N,p,
A, 6,09, X0 yg, %)

2: for k=1to K do

3 Compute m(x),M(x) VyeD

4 for r=1toR do

5: fort=1toT do

6

7

8

9

dW, < SampleNoise()
Z; Propagate(Z,_l,G)(k),dW,) via eq. @)
U SparseForwardPass(G(k) Zt)
end for
10: end for
11:  J <« StateCost(Z})
122 N+ A (ul,dW,m(x)) via eq.
133 P+ P(ul,M(x)) via eq. (29)
14 E<« &(J,N,P) as in eq. (25)
15: L < ComputeLoss(P,N,E) via eq.
16: Compute Vg (L) via backprop
17: Compute V(L) via backprop
18: 0% D « GradientStep(L, yg) via eq.
19: x®%) « GradientStep(L, %) via eq. (32)
20: end for

locations (x(0), policy learn rate (¥g), and actuator location
learn rate (%). For more information on SampleNoise(), refer
to [33, Chapter 10].

In addition to obtaining gradients from any variant of Stochas-
tic Gradient Descent (SGD) via backprop paths, GradientStep
for actuator parameters also adds the current gradient to the
previous gradient if the actuator location has not moved by
the current gradient step. This is useful because when the
actuators are near their optimal value, the gradients become
very small, preventing the actuator locations from reaching
optimal values. This could also be achieved by heuristically
changing the learning rate J. Also, a quadratic cost term was
added to L in eqs. (31) and (32) iP order to penalize actuators
from leaving the spatial domain D, with a large coefficient to
ensure this condition was rarely, if ever violated.

Note that there are separate learning rates for the policy and
the actuators. This is because in practice the authors found that
the optimization landscape is typically much more shallow for
the actuator design than for the policy parameters. For most
of the experiments, the actuator placement learn rate J% was
about 30 times larger than the policy network learn rate ¥g.

VIII. SIMULATION RESULTS AND DISCUSSION

We applied our approach to four simulated SPDE experi-
ments to simultaneously place actuators and optimize a policy
network. Each experiment used less than 32 GB RAM, and was
run on a desktop computer with a Intel Xeon 12-core CPU with
a NVIDIA GeForce GTX 980 GPU. Our code was written to
operate inside a Tensorflow graph [34] to leverage rapid static
graph computation, as well as sparse linear algebra operations
used by SparseForwardPass [5]. The first two experiments
involved a reaching task, where the SPDEs is initialized at a
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Fig. 1: Heat Equation Temperature Reaching Task. (left) controlled contour plot where color represents temperature, (right) final
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Fig. 2: Burgers Velocity Reaching Task. (left) controlled contour plot where color represents velocity, (right) final time snapshot
comparing to the uncontrolled system. Mean trajectories are represented with a solid line, while a 20 standard deviation is

represented with a shaded region.

zero initial condition over the spatial region, and must reach
certain values at pre-specified regions of the spatial domain.
The last two experiments involved a suppression task, where
some non-zero initial condition must be suppressed on desired
regions.

The data that was used for training was generated by a spatial
central difference, semi-implicit time discretized version of
each SPDE. These schemes are described in detail in [33]
Chapter 3 & 10]. Each experiment had all actuators initialized
to be sampled from a random distribution on [0.4a,0.6a], where
a denotes the spatial size. For 3500 iterations of our algorithm,
run times for the most complicated system—the Euler-Bernoulli
equation—were about 15 hours. Details of the experiments and
videos of the controlled systems can be found in the provided
linksﬂ We encourage the interested reader to contact the authors

I'Supplement: tinyurl.com/yc7fq3Ic| | Video: https://youtu.be/pqryLcdwCuU

for code.

The first experiment was a temperature reaching task on
the 1D Heat equation with homogeneous, 7 = 0 Dirichlet
boundary conditions, and is depicted in fig. [I] The task was to
raise the temperature at regions specified in green to specified
values depicted in the figure. The algorithm was run for 3000
iterations.

The next experiment was a velocity reaching task on the
Burgers equation with non-homogenous Dirichlet boundary
conditions, and is depicted in fig. 2} The Burgers equation
has a nonlinear advection term, which produces an apparent
rightward motion. The algorithm was run for 3500 iterations,
and was able to take advantage of the advection for actuator
placement in order to solve the task with lower control effort.

The heat equation is a pure diffusion SPDE, while the
Burgers equation shares the diffusion term with the Heat
equation with an added advection term. The results of the
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Heat and Burgers experiments show actuator locations that
take advantage of the natural behavior of each SPDEs. In the
case of the Heat equation, actuators are nearby the desired
regions such that the temperature profile can reach a flat peak
of the diffusion at the desired profile. In the case of the burgers
equation, the advection pushes towards the right end of the
space, thus forming a wave front that develops at the right end,
but leaves the left end dominated by the diffusion term. This is
again reflected in the placement of actuators. The first actuator
is nearby the desired region just as the actuators in the Heat
SPDE, while two of the actuators between the center and the
right region are located to be able to control the amplitude
and shape of the developing wave front so as to produce a flat

peak that aligns with the desired region at the desired velocity.

The central desired region is flanked on both sides by actuators
that are nearly equidistant, in order to produce another desired
flat velocity region at this location.

The third experiment was a voltage suppression task on
the Nagumo equation with homogeneous Neumann boundary
conditions, and is depicted in fig. [3] The task was to suppress
an initial voltage on the left end, that without intervention
propagates toward the right end, as shown by the uncontrolled
trajectories. The Nagumo equation is composed of a diffusive
term and a 3rd-order nonlinearity, making this equation the
most challenging from a nonlinear control perspective. Despite
this, our approach was able to simultaneously place actuators
and provide control such that the task was solved. The
algorithm was run for 2000 iterations, and demonstrates actuator
placement optimization that takes advantage of the natural
system behavior. This task was also the most challenging due
to the significantly longer planning horizon of 3.5 seconds, as
compared to the 1.0 second planning horizon of all the other
experiments.

In order to validate our proposed approach, we compared the
actuator locations that the algorithm found after optimization to
the actuator locations that were hand placed by a human expert
for the simulated experiments conducted in related work [5].
To have a valid comparison, we ran the IDVRL algorithm for
both sets of actuator locations. Figure [] reports these results.
The left figure shows that the state costs for each is almost
identical. Note that the scale here is 1074, The center figure
shows the control signals for each actuator, for each method,
and demonstrates that for almost identical state cost values, the
control effort for each actuator with our approach is lower on
average. The calculated average control signal magnitudes for
IDVRL are 3.3 times higher than our method. The third plot
shows the voltage profile at the final time. We hypothesize that
the lower control effort is due to the control over the shape of
the spatially propagating signal, enabling it to have a smoother
transition into the desired region. While the penalty of this
actuator placement is a slightly higher variance on the desired
region, the choice appears correct given the result.

The final task was an oscillation suppression task on the
Euler-Bernoulli equation with Kelvin-Voigt damping given
in eq. (@), and is depicted in fig. 5] As shown, the initial
condition prescribes spatial oscillations, that then oscillate

temporally. The second-order nature of the system creates
offset and opposite oscillations in the velocity profile, that in
turn produce offset and opposite oscillations in the position
profile. Without interference, the oscillations proceed over
the entire time window. As shown on the right, our approach
successfully suppresses these oscillations, which die out quickly
under the given control policy. In this experiment, the actuators
did not leave the initialized actuator placement region [0.4,0.6]
perscribed for all experiments.

The Euler-Bernoulli oscillation suppression task is in fact
very challenging and complex. Producing a control signal at an
actuator location that is in phase with the velocity oscillations
will amplify the oscillations, leading to a divergence. The
actuator location and control signal from the policy network
must work in concert to produce a control signal out of phase
with the velocity that matches its frequency, which is time
varying due to control, as shown on the right side of fig. 5]

Each of the above experiments has its challenges and in
most cases the spatio-temporal problem space produces a joint
policy optimization and actuator co-design problem that is
littered with local minima. These experiments demonstrate that
the proposed approach can jointly optimize a policy network
and actuator design. These results and the overall performance
of the algorithm are indicative that this approach may enable
actuator design on problem spaces where a human has little
to no prior knowledge to rely on in attempting to solve the
problem by hand.

IX. CONCLUSION AND FUTURE DIRECTIONS

This work presents a framework for joint policy optimization
and actuator co-design. We contribute a novel mathematical
tool required for a measure theoretic treatment of second order
SPDEs, namely the change of measure and associated proof.
We also provide a mechanism for handling discrete parameter
optimization with a gradient-based approach. We demonstrate
the resulting algorithm on four different SPDEs, each with
their own challenges and complexities. The last of which is
the Euler-Bernoulli SPDE which connects back with our goal
of establishing capabilities for the further development of soft-
body robotics.

The presented approach is a new way of performing
optimization and can lead to many applications in soft robotics,
soft materials, morphing, and continuum mechanism. The
results are encouraging to the authors. We plan to scale this
approach on systems with higher spatial dimensionality (i.e.
2D and 3D), as well as investigate more complex forms of the
above systems that are relevant to a future of soft robotics.
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