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Abstract—Self-reconfigurable modular robots are composed of
many modules that can be rearranged into various structures
with respect to different activities and tasks. The variable
topology truss (VTT) is a class of modular truss robot. These
robots are able to change their shape by not only controlling joint
positions which is similar to robots with fixed morphologies, but
also reconfiguring the connections among modules in order to
change their morphologies. Motion planning for VTT robots is
difficult due to their non-fixed morphologies, high-dimensionality,
potential for self-collision, and complex motion constraints. In
this paper, a new motion planning algorithm to dramatically alter
the structure of a VTT is presented, as well as some comparative
tests to show its effectiveness.

I. INTRODUCTION

Self-reconfigurable modular robots consist of repeated
building blocks (modules) from a small set of types with
uniform docking interfaces that allow the transfer of mechan-
ical forces and moments throughout all modules [23]. These
systems are capable of reconfiguring themselves in order to
handle failures and adapt to different tasks.

Many self-reconfigurable modular robots have been devel-
oped, with the majority being lattice or chain type systems. In
lattice modular robots, such as Telecubes [20] and Miche [5],
modules are regularly positioned on a three-dimensional grid.
Chain modular robots, such as PolyBot [22], M-Tran [16] and
CKBot [24], consist of chains of modules. Their modules are
connected in tree-like configurations and are more versatile as
the serial chains of n modules can act like articulated robot
arms. Some systems (SUPERBOT [17] and SMORES [11])
are hybrid and move like chain systems for articulated tasks
but reconfigure using lattice-like actions.

Modular truss robots are different from lattice and chain
type systems in that the systems are made up of beams that
typically form parallel structures. The variable geometry truss
(VGT) [15] is a modular robotic truss system composed of
prismatic joints as truss members (modules), and examples
include TETROBOT [6], Odin [14], and Linear Actuator
Robots [21]. These truss members alter their length to perform
locomotion or shape-morphing tasks. Another similar hard-
ware is Intelligent Precision Jigging Robots [9]. The variable
topology truss (VTT) is similar to variable geometry truss
robots with additional capability to self-reconfigure the con-
nection between members to alter the truss topology [18] [8].
One of the current hardware prototypes is shown in Fig. 1.

Fig. 1. The hardware prototype of a VTT in cubic configuration is composed
of 12 members. Note that at least 18 members are required for topology
reconfiguration [18].

A significant advantage for self-reconfigurable modular
robots over other robots with fixed morphologies is their
versatility, namely they are able to adapt themselves into dif-
ferent morphologies with respect to different requirements. For
example, a VTT in which the members form a broad supported
structure is well suited for shoring buildings or structures after
disasters, while another truss with some members protruding
to form an arm that has a large reachable workspace is good at
manipulation tasks. However, a fundamental problem is per-
forming collision-free (especially self-collision-free) motion
planning for VTT systems.

A truss is composed of truss members (beams) and nodes
(the connection points of multiple beams). A VTT is composed
of edge modules. Each edge module has an active prismatic
joint member and passive joint ends that can actively attach or
detach from other edge module ends [18]. The configuration
can be fully defined by the set of member lengths and their
node assignments at which point the edge modules are joined.
A node is constructed by multiple edge module ends using a
linkage system with a passive rotational degree of freedom.
The node assignments define the topology or how truss edge
modules are connected, and the length of every member
defines the shape of the resulting system [10].

Thus, there are two types of reconfiguration motion: geom-
etry reconfiguration and topology reconfiguration. Geometry
reconfiguration involves moving positions of nodes by chang-
ing length of corresponding members and topology reconfig-
uration involves changing the connectivity among members.

There are some physical constraints for a VTT to execute
geometry reconfiguration and topology reconfiguration. A
VTT has to be a rigid structure in order to maintain its shape



and be statically determinant. A node in a VTT must be of
degree three, so has to be attached by at least three members to
ensure its controllability. In addition, A VTT requires at least
18 members before topology reconfiguration is possible [18].
Thus, motion planning for VTT systems has to deal with at
least 18 dimensions and typically more than 21 dimensions.
These constraints complicate the motion planning problem.

As VTTs are inherently parallel robots, it is much easier
to solve the inverse kinematics than the forward kinematics.
So, for the geometry reconfiguration, rather than doing motion
planning for the active degrees of freedom — the member
lengths — we plan the motion of the nodes and then do the
inverse kinematics to easily determine member lengths. How-
ever, motions of multiple nodes are strongly coupled, namely
moving one node can significantly affect the configuration
space of other nodes.

Hence, it is a challenge to do motion planning for multiple
nodes at the same time. Motion planning for multiple nodes
are also involved when executing topology reconfiguration.
Some impossible motions can become possible with topology
reconfiguration. For example, a single node controlled by
enough edge modules can be split into a pair of nodes in
order to go around some internal blocking members and then
merge back to an individual node. This process requires the
motion planning for two nodes at the same time.

In this work, we present a new framework for the motion
planning of a VTT. This method dramatically reduces the
search space when planning for multiple node motions greatly
improving efficiency. In addition, a fast method to compute
the configuration space which is often not fully connected can
explicitly answer whether a topology reconfiguration action
is required for a motion goal. An algorithm to compute a
sequence of topology reconfiguration actions is then intro-
duced, if required, for a motion goal. Software and videos
are available on our lab website page.1

The rest of the paper is organized as follows. Section II
reviews relevant and previous works and some necessary
concepts are introduced in Section III as well as the motion
planning problem statement. Section IV presents the geome-
try reconfiguration algorithm with motion of multiple nodes
involved. Section V introduces the approach to verify whether
a topology reconfiguration action is needed and the planning
algorithm to do topology reconfiguration. The framework is
demonstrated in Section VI. Finally, Section VII talks about
the conclusion and some future work.

II. RELATED WORK

In order to enable modular robotic systems to adapt them-
selves to different activities and tasks, many reconfiguration
motion planning algorithms have been developed over several
decades for a variety of modular robotic systems [3, 2, 7, 11].
The planning frameworks are for topology reconfiguration
where undocking (disconnecting two attached modules) and

1Supplementary materials are available at https://www.modlabupenn.org/
2020/06/03/motion-planning-for-variable-topology-truss-modular-robot/.

docking (connecting two modules) actions are involved. There
are also some approaches for shape morphing and manipula-
tion tasks, including inverse kinematics for highly redundant
chain using PolyBot [1], constrained optimization techniques
with nonlinear constraints [4]. Here, there are no topology
reconfiguration actions involved, but complicated kinematic
structures and planning in high dimensional spaces needs to
be considered. However, these methods are not applicable to
variable topology truss systems which have a very different
morphology and connection architecture. Indeed the physical
constraints and collision models are significantly different
from all of the previous lattice and chain type systems.

The variable topology truss hardware design and basic
analysis were presented in [18]. Some approaches have been
developed for VGT systems that are similar to VTT systems
but without topology reconfiguration capability. Hamlin and
Sanderson [6] presented a kinematic control but is limited to
tetrahedrons or octahedrons. Usevitch et al. [21] introduced
linear actuator robots (LARs) as well as a shape morphing
algorithm. These systems are in mesh graph topology con-
structed by multiple convex hulls, and therefore self-collision
can be avoided easily. However, this is not applicable to
VTT systems because edge modules span the space in a
very non-uniform manner. There has been some work on
VTT motion planning. Retraction-based RRT algorithm was
developed by Jeong et al. [8] in order to handle this high
dimensional problem and narrow passage problems which is
a well-known issue in sampling-based planning approaches;
nevertheless this approach is not efficient because it samples
the whole workspace for every node and collision checking
needs to be done for every pair of members. Also sometime
waypoints have to be assigned manually. Liu and Yim [10] pre-
sented a reconfiguration motion planning framework inspired
by the DNA replication process — the topology of DNA can
be changed by cutting and resealing strands as tanglements
form. This work is based on a new method to discretize the
workspace depending on the space density and an efficient way
to check self-collision. Both topology reconfiguration actions
and geometry reconfiguration actions are involved if needed.
However, only a single node is involved in each step and
the transition model is more complicated which make the
algorithm limited in efficiency.

Liu et al. [13] presented a fast algorithm to compute the
reachable configuration space of a given node in a VTT
which is usually a non-convex space and this space can be
then decomposed into multiple convex polyhedrons so that
a simple graph search algorithm can be applied to plan a
path for this node efficiently. However, multiple nodes are
usually involved for shape morphing. In this paper, we first
extend this approach to compute the obstacles for multiple
nodes so that the search space can be decreased significantly.
In addition, only collision among a small number of edge
modules needs considered when moving multiple nodes at the
same time. Hence RRT can be applied efficiently. The idea
has been discussed briefly in [12]. For some motion tasks,
topology reconfiguration is required. An updated algorithm

https://www.modlabupenn.org/2020/06/03/motion-planning-for-variable-topology-truss-modular-robot/
https://www.modlabupenn.org/2020/06/03/motion-planning-for-variable-topology-truss-modular-robot/


is developed to compute the whole not fully connected free
space and required topology reconfiguration actions can then
be generated which can achieve motions that are similar to the
DNA replication process.

III. PRELIMINARIES AND PROBLEM STATEMENT

A VTT can be represented as an undirected graph G =
(V,E) where V is the set of vertices of G and E is the set of
edges of G: each member can be regarded as an undirected
labeled edge e ∈ E of the graph and every intersection among
members can be treated as a vertex v ∈ V of the graph
denoting a node. The Cartesian coordinates of a node v ∈ V
is its Pos property denoted as v [Pos] = [vx, vy, vz]ᵀ ∈ R3.
Let qv = v[Pos] and the configuration space of node v
denoted as Cv is simply R3. In this way, the state of a member
e = (v1, v2) ∈ E where v1 and v2 are two vertices of edge e
can be fully defined by qv1 and qv2 . The position of a given
node v ∈ V is controlled by changing the length of all attached
members denoted as Ev ⊆ E.

The geometry reconfiguration motion planning of a VTT is
achieved by planning the motion of the involved nodes then
determining the required member length trajectories since it
is easier to solve the inverse kinematics problem. Given a
node v ∈ V in G = (V,E), the state of every member
e ∈ Ev , denoted as Av(qv), can be altered by changing qv .
The obstacle region of this node which includes self-collision
with other members as obstacles Cvobs ⊆ Cv = R3 is defined
as

Cvobs = {qv ∈ R3|Av(qv) ∩ Ov 6= ∅} (1)

in which Ov is the obstacle for Ev . This obstacle region is
fully defined by the states of ∀e ∈ E \Ev [13] and composed
of multiple polygons. For a simple VTT shown in Fig. 2a, the
obstacle region Cv0obs is shown in Fig. 2b. The free space of
node v is just the leftover configurations denoted as

Cvfree = R3 \ Cvobs (2)

However, Cvfree may not be fully connected and may be
partitioned by Cvobs. Only the enclosed subspace containing
qv which is denoted as Cvfree(qv) is free for node v to move.
A fast algorithm to compute the boundary of this subspace
is presented in [13]. For example, given the VTT in Fig. 2a,
Cv0free — the free space of v0 — is shown in Fig. 2b and the
subspace Cv0free(qv0) is shown in Fig. 3.
Cvfree is usually partitioned by Cvobs into multiple enclosed

subspaces, and it is impossible to move v from one enclosed
subspace to another one without topology reconfiguration.
The physical system constraints from [18] allow two atomic
actions on nodes that enable topology reconfiguration: Split
and Merge. Since the physical system must be statically
determinate with all nodes of degree three, a node v must be
composed of six or more edge modules to undock and split
into two new nodes v′ and v′′, and both nodes should still
have three or more members. This process is called Split.
Two separate nodes are able to merge into an individual one
in a Merge action. The simulation of these two actions is

(a) (b)

Fig. 2. (a) Given node v0, one of its neighbors v1 and a member (v6, v8)
can define the blue polygon which is part of Cv0

obs. (b) The obstacle region
Cv0
obs is composed of polygons and the leftover space of R3 is Cv

free.

Fig. 3. Cv0
free(q

v0 ) is bounded by polygons and workspace boundaries.

shown in Fig. 4. Hence, in topology reconfiguration process,
the number of nodes can change, but the number of members
which are physical elements remains constant.

In this work, given a VTT G = (V,E), the motion planning
problem can be stated in the following:

1) Geometry Reconfiguration: For a set of n nodes {vt ∈
V |t = 1, 2, · · · , n}, compute paths τt : [0, 1] → Cvtfree such
that τt(0) = qvti and τt(1) = qvtg in which t = 1, 2 · · · , n, qvti
is the initial position of vt and qvtg is the goal position of vt.

2) Topology Reconfiguration: Compute topology reconfig-
uration actions, including Merge and Split, and collision-
free path(s) to move a node v from its initial position qvi to
its goal position qvg .

IV. GEOMETRY RECONFIGURATION

The overall shape of a VTT is altered by moving nodes
around in the workspace. For an individual node, its configu-
ration space is R3. Apparently, the configuration space for n
nodes is R3n. When multiple nodes are involved, the motion
planning problem will be in high-dimensional space. Our strat-
egy to avoid this high-dimensionality is to divide the moving

Fig. 4. A single node with six members can be split into a pair of nodes
and two separate nodes can also merge into an individual node.



nodes into multiple groups and each group contains one or a
pair of nodes. The motion planning space for each group is
either in R3 or R6. Even with lower dimensional space, it is
not efficient if searching the whole R3 or R6. Narrow passage
is also a problem when applying rapidly-exploring random tree
(RRT) algorithm. This issue is overcome by computing free
space of the group in advance so that the sampling space is
decreased significantly.

A. Obstacle Region and Free Space for a Group of Nodes

A group can contain either one node or a pair of nodes.
Given a VTT G = (V,E), for an individual node v ∈ V ,
an efficient algorithm to compute Cvobs and Cvfree(qv) with its
boundary is introduced by Liu et al. [13]. If there are two
nodes vi ∈ V and vj ∈ V in a group, then any collision
among members in Evi and Evj is treated as self-collision,
and all the members in E \ (Evi ∪ Evj ) define the obstacle
region of this group denoted as Ĉviobs (the obstacle region of vi
in the group) and Ĉvjobs (the obstacle region of vj in the group)
respectively, namely

Ĉviobs = {qvi ∈ R3|Avi(qvi) ∩ Ovi,vj 6= ∅}
Ĉvjobs = {qvj ∈ R3|Avj (qvj ) ∩ Ovi,vj 6= ∅}

in which Ovi,vj is formed by every e ∈ E \ (Evi ∪ Evj ).
Then the free space of vi and vj in the group can be derived

as

Ĉvifree = R3 \ Ĉviobs (3)

Ĉvjfree = R3 \ Ĉvjobs (4)

Using the same boundary search approach in [13], the bound-
ary of Ĉvifree(qvi) — the enclosed subspace containing the
current position of node vi — can be obtained efficiently.
Similarly, the boundary of Ĉvjfree(qvj ) can be obtained. For
example, given the VTT shown in Fig. 5, if node v0 and v1
form a group, then Ĉv0free(qv0) and Ĉv1free(qv1) can be computed
and shown in Fig. 6. It is guaranteed that as long as v0 is
moving inside Ĉv0free(qv0) (the space shown in Fig. 6a), there
must be no collision between any member in Ev0 and any
member in E \ (Ev0 ∪ Ev1). Similarly, no collision between
any member in Ev1 and any member in E \ (Ev0 ∪Ev1) can
happen if v1 is moving inside Ĉv1free(qv1) (the space shown in
Fig. 6b). In this way, when planning the motion of node v0
and v1 using RRT, the sample will only be generated inside
Ĉv0free(qv0) and Ĉv1free(qv1), and we only need to consider self-
collision in the group, namely the collision among members
in Ev0 ∪ Ev1 . There is a special case when these two nodes
in the group are connected by a member. Both ends of the
member are moving which is not considered by our obstacle
model. This is an extra case when doing collision check.

B. Path Planning for a Group of Nodes

If there is only one node v in the group and the motion
task is to move the node from its initial position qvi to its goal
position qvg where qvi ∈ Cvfree(qvi ) and qvg ∈ Cvfree(qvi ), then
it is straightforward to apply RRT approach in Cvfree(qvi ) and

Fig. 5. A VTT is composed of 17 edge modules with 9 nodes among which
v0 and v1 form a group.

(a) (b)

Fig. 6. (a) Ĉv0
free(q

v0 ) is computed with all members controlling v1 ignored.
(b) Ĉv1

free(q
v1 ) is computed with all members controlling v0 ignored.

no collision can happen as long as the motion of each step is
inside Cvfree(qvi ) since this space is usually not convex.

When moving two nodes vi and vj in a group, sampling
will only happen inside Ĉvifree(qvi) and Ĉvjfree(qvj ) for vi and
vj respectively. If there is no edge module connecting vi and
vj , then when applying RRT approach, the collision between
moving members and fixed members can be ignored as long as
the motion of both nodes in each step are inside Ĉvifree(qvi) and
Ĉvjfree(qvj ) respectively. Only self-collision inside the group
— the collision among members in Evi ∪Evj — needs to be
considered. If there is an edge module e = (vi, vj) which
connects vi and vj , since this case is not included in our
obstacle model when computing the obstacle region, it is also
necessary to check the collision between e = (vi, vj) and
every edge module in E \ (Evi ∪ Evj ).

In summary, when planning node vi and vj in a variable
topology truss G = (V,E), for each step, it is required to
ensure the following
• The motion of both node vi and vj are inside Ĉvifree(qvi)

and Ĉvjfree(qvj ) respectively;
• No collision happens among edge modules in Evi ∪Evj ;
• No collision happens between edge module e = (vi, vj)

and every member in E \ (Evi ∪ Evj ) if e = (vi, vj)
exists.

It is difficult to check the second and third collision cases
during the motion if both nodes are moving simultaneously.
But since the step size for each node is limited and both
of them are moving in straight lines, we can first check the
collision during the motion of vi while keeping vj fixed, and



then check the motion of vj . By doing so, the collision can
be checked efficiently using the approach presented in [10].
Every edge module can be modeled as a line segment in space,
thus, when moving node v, every e ∈ Ev sweeps a triangle
area, and if this member collides with another member ē ∈ E,
then ē must intersect with the triangle generated by e. Open
Motion Planning Library (OMPL) [19] is used to implement
RRT for this path planning problem.

C. Geometry Reconfiguration Planning

Assuming there are n nodes {vt ∈ V |t = 1, 2 · · · , n} that
should be moved from their initial positions qv1i , q

v2
i , · · · , q

vn
i

to their goal positions qv1g , q
v2
g , · · · , qvng respectively, we first

divide these nodes into dn/2e groups. Each group contains
at most two nodes. Then the motion task is achieved by
moving nodes one group by one group. Then this geometry
reconfiguration problem results in finding a sequence of groups
that can achieve the task. If failed, try another grouping and
find the corresponding sequence. Repeat this process until the
task is finished, otherwise failed. With this approach, we can
solve this geometry reconfiguration planning problem much
faster than [13] and the detailed test results are in Section VI.

V. TOPOLOGY RECONFIGURATION

Topology reconfiguration involves changing the connectivity
among edge modules and there are two atomic actions: Split
and Merge. The undocking and docking process is difficult
for modular robotic systems, but sometimes necessary for
some motion tasks. We need to verify whether the geometry
reconfiguration process is enough or topology reconfiguration
actions are needed. Recall that the free space of a node is
usually not a single connected component, and if a motion
task has initial and goal configurations in separated enclosed
subspaces, topology reconfiguration actions are needed.

A. Enclosed Subspace in Free Space

If the free space Cvfree of a node v is separated by Cvobs —
the obstacle region of a node v, then each polygon in Cvobs is
connected to exactly two different enclosed subspaces. Hence
after computing Cvfree, we can compute all the enclosed sub-
spaces by repeatedly applying the boundary search algorithm
introduced in [13] until all polygons are included in exactly
two enclosed subspaces. So we will first obtain the set of all
obstacle polygons Pv

obs. Then, as described in Algorithm 1,
search for the enclosed subspace containing the current node
configuration — Cvfree(qv) — from a starting polygon Ps,
which is the nearest one to the node [13]. Afterwards, we
compute all other subspaces in Cvfree.

In this algorithm, in the first loop, we build a counting map,
CP , to count how many enclosed subspaces a polygon has
already been involved in. And in the second loop, we first
check each polygon whether it is involved in two enclosed
subspaces. If not, we will use this polygon as a starting
polygon to apply the boundary search algorithm to obtain a
new enclosed subspace and update the counts of all polygons
involved in this subspace. The inner direction vector of the

Algorithm 1: Enclosed Subspace Search
Input: VTT G = (V,E), node v ∈ V
Output: Set of all enclosed subspaces Cvfree

1 Compute Pobs;
2 Ps ←polygon closest to node v;
3 Cvfree(qv)← BoundarySearch (Ps);

4 Cvfree ←
{
Cvfree(qv)

}
;

5 Define an empty counting map CP ;
6 for Pi ∈ Pv

obs do
7 if Pi is a boundary of Cvfree(qv) then
8 CP [Pi]← 1;
9 else

10 CP [Pi]← 0;

11 for Pi ∈ Pv
obs do

12 while CP [Pi] 6= 2 do
13 Flip inner direction vector of Pi;
14 C ← BoundarySearch (Pi);
15 Cvfree ← Cvfree + {C};
16 for Pj in boundaries of C do
17 CP [Pj ]← CP [Pj ] + 1;

18 return Cvfree

(a) (b)

Fig. 7. (a) Enclosed subspace Cv0
free(q

v0 ) contains the current position of
v0. (b) Another enclosed subspace is separated from Cv0

free(q
v0 ) by obstacles.

starting polygon [13] will be flipped to avoid obtaining the
same subspace from different loops. Fig. 7 shows two enclosed
subspaces of node v0 in a simple cubic truss. In total, there
are 33 enclosed subspaces in Cv0free above the ground.

B. Topology Reconfiguration Planning

Given a VTT G = (V,E) and the motion task that is to
move node v from qvi to qvg , if qvi and qvg belong to the same
enclosed subspace, then geometry reconfiguration planning is
able to handle this problem by either the approach in [13] or
the approach introduced in Section IV-B. Otherwise, topology
reconfiguration is needed.

There are multiple ways for a node v to split into nodes
v′ and v′′ as there are multiple ways to take the members
into two groups. However it is straightforward to compute all
possible ways, denoted as action set A. Given qv , the current



position of node v, and Cvfree = {tCvfree|t = 1, 2, · · · , T} that
contains T enclosed subspaces in the free space of node v,
∀a ∈ A, two new nodes v′ and v′′ can be generated. Cv′

free(q
v′

)

and Cv′′

free(q
v′′

) can be computed accordingly. If there is a
position q ∈ tCvfree that is contained by both Cv′

free(q
v′

) and
Cv′′

free(q
v′′

), namely both nodes can reach this position q, then
tCvfree and Cvfree(qv) can be connected under this action. With
this transition model, a graph search algorithm can be applied
to compute a sequence of topology reconfiguration actions to
move this node v from qvi to qvg where qvi and qvg belong
to different enclosed subspaces in Cvfree. Here, the graph has
enclosed subspaces as nodes. An edge in this graph connecting
two enclosed subspaces denotes that node v can move from
one enclosed subspace to the other. The graph is built from
Cvfree(qv), and grows as valid actions apply and stops when
the enclosed subspace containing qvg is visited. A graph search
algorithm designed based on Dijkstra’s framework is shown in
Algorithm 2.

Line 1 — 8: Compute all enclosed subspaces in Cvfree
for node v using Algorithm 1 and, if qvi and qvg are in the
same enclosed subspace, then no topology reconfiguration
is needed. Otherwise, we uniformly and randomly select a
location in every enclosed subspace except Cvfree(qvi ) and
Cvfree(qvg ), and make two sets Q and Q where Q contains
all newly checked or non-visited enclosed subspaces and Q
contains all visited enclosed subspaces. The size of these two
sets will change as the algorithm explores Cvfree. Initially, only
the enclosed subspace containing qvi that is Cvfree(qvi ) and the
enclosed subspace containing qvg that is Cvfree(qvg ) are in Q
and the algorithm starts with Cvfree(qvi ). The value g(C) is
the cost of the path from qgi to the enclosed subspace C, so
g(Cvfree(qvi )) = 0 and g(Cvfree(qvg )) =∞ in the beginning.

Line 10 — 12: Every iteration starts with the enclosed
subspace that has the lowest cost g(C) in Q. At the beginning,
Cvfree(qvi ) has the lowest cost. After selecting an enclosed
subspace, update the position of v to be Cq, and update
Q and Q. The connection information among all enclosed
subspaces is not known so we have to try all possible topology
reconfiguration actions (all possible ways to split a node).

Line 13 — 26: After applying every valid topology reconfig-
uration action on node v which is currently in C, we can obtain
a new VTT with two new generated nodes v′ and v′′. The
enclosed subspace containing the current positions of these
two new generated nodes can be computed using the boundary
search algorithm in [13]. Then iterate every enclosed subspace
C except C in Cvfree and check if it is already visited. If so, then
this potential connection is not a new connection. Otherwise,
check if Cq is inside both Cv′

free(q
v′

) and Cv′′

free(q
v′′

). If this is
true, then there are two cases: this subspace is not checked for
the first time namely that there is already a connection between
this enclosed subspace and another enclosed subspace, or this
subspace has never been checked which means it has no
connection before. For the first case, we need to check whether
its cost needs to be updated. c(a) is the cost of the current
action a. In our case, a is always Split and different ways

Algorithm 2: Topology Reconfiguration Planning
Input: VTT G = (V,E), initial qvi , goal qvg
Output: Tree of enclosed subspaces for node v

1 Cvfree ← EnclosedSubspaceSearch(G, v);
2 if Cvfree(qvi ) = Cvfree(qvg ) then
3 return Null;

4 ∀C ∈ Cvfree \
{
Cvfree(qvi ), Cvfree(qvg )

}
, uniformly and

randomly select a position Cq ∈ C;
5 C

v
free(q

v
i )q ← qvi , C

v
free(q

v
g )q ← qvg ;

6 Q ←
{
Cvfree(qvi ), Cvfree(qvg )

}
, Q ← ∅;

7 g(Cvfree(qvi ))← 0, g(Cvfree(qvg ))←∞;
8 Compute action set A;
9 while Cvfree(qvg ) ∈ Q do

10 C ← arg min
C∈Q

g(C), qv ← Cq;

11 Q ← Q \ {C};
12 Q ← Q+ {C};
13 for a ∈ A do
14 Apply a on v to generate v′ and v′′;
15 Compute Cv′

free(q
v′

) and Cv′′

free(q
v′′

);
16 for C ∈ Cvfree \ {C} do
17 if C /∈ Q then
18 if Cq ∈ Cv′

free(q
v′

)
∧ Cq ∈ Cv′′

free(q
v′′

)

then
19 if C ∈ Q then
20 if g(C) + c(a) < g(C) then
21 g(C)← g(C) + c(a);
22 p(C)← C;

23 else
24 Q ← Q+ {C};
25 g(C)← g(C) + c(a);
26 p(C)← C;

27 return p

to split a node can have the same cost. If its cost is updated,
then its parent p(C) should also be updated accordingly. For
the second case, initialize the cost and parent of this newly
checked enclosed subspace, and update set Q. Since Cq is
randomly selected, it is possible that the condition in Line 18
is failed although there does exist a location in C that can pass
this condition.

Once Cvfree(qvg ) is visited, the algorithm ends. With p, a tree
with visited enclosed subspace as vertices, it is straightforward
to find the path connecting Cvfree(qvi ) and Cvfree(qvg ) as well as
the optimal topology reconfiguration action sequence. When
moving from one enclosed subspace to the next enclosed
subspace after splitting the node, apply the approach in Sec-
tion IV-B to move them to any positions in the next enclosed
subspace that are close enough to merge and merge them there.



(a) (b)

Fig. 8. The motion task is to change the shape of a VTT from (a) a cubic
truss for rolling locomotion to (b) a tower truss for shoring.

VI. TEST SCENARIOS

The motion planning framework is implemented in C++.
Three example scenarios were conducted to measure the effec-
tiveness of our approach. The performance of the framework
is compared with the approach in [8], [13] and [10]. The
first one tests geometry reconfiguration and the other two
topology reconfiguration. All tests run on an Intel i7 processor
at 2.20 GHz and the workspace is a cuboid above the ground.

A. Geometry Reconfiguration

The geometry reconfiguration planning test changes the
cube shape of a VTT, Fig. 8a, to a tower shape, Fig. 8b. This
VTT is composed of 21 members with initial positions of
nodes listed in the following

qv0 = [−1.60,−0.77, 2.08]
ᵀ

qv1 = [0.78,−0.76, 2.08]
ᵀ

qv2 = [−0.48,−2.02, 0.08]
ᵀ

qv3 = [−0.41, 0.42, 2.18]
ᵀ

qv4 = [−1.61,−0.77, 0.08]
ᵀ

qv5 = [0.38,−0.37, 0.13]
ᵀ

qv6 = [−0.43,−0.96, 1.23]
ᵀ

qv7 = [−0.48,−2.02, 2.08]
ᵀ

qv8 = [0.18,−0.17, 0.08]
ᵀ

Four nodes v1, v3, v5 and v6 are involved in this mo-
tion task and their goal positions in the tower VTT are
qv1g = [0.18,−0.17, 4.13]

ᵀ, qv3g = [−1.61,−0.77, 4.08]
ᵀ,

qv5g = [−0.48,−2.02, 4.08]
ᵀ and qv6g = [0.18,−0.17, 2.13]

ᵀ.
These four nodes are separated into two groups {v3, v5}
and {v1, v6} which is randomly selected. We first compute
Ĉv3free(q

v3
i ) (Fig. 9a) and Ĉv5free(q

v5
i ) (Fig. 9b), and then do

planning for these two nodes. The motion of node v3 and
v5 is shown in Fig. 10. Most of the obstacle region in this
step is surrounded by the subspace Ĉv3free(q

v3
i ) and Ĉv5free(q

v5
i ),

hence it is easier for them to extend outwards first in order to
navigate to the goal positions. After planning for v3 and v5, the
truss is updated, and Ĉv1

free(q
v1
i ) and Ĉv6free(q

v6
i ) are computed

accordingly. Finally the planning for v1 and v6 finishes this
motion task with the result shown in Fig. 11. For v1 and v6
in this updated truss, the enclosed subspace Ĉv1

free(q
v1
i ) and

Ĉv6free(q
v6
i ) almost covers the whole workspace so it is also

easy to navigate to the goal positions. This motion task is
also demonstrated in [8] and [13]. With the retraction-based
RRT algorithm in [8], a waypoint needs to be added manually
to mitigate the narrow passage problem. Using the approach
in [13], it takes 4.004 s to finish the planning. However, we can
solve this motion planning problem much faster on the same
hardware. We did 1000 trails and the mean running time is

(a) (b)

Fig. 9. (a) The enclosed subspace of v3 in group {v3, v5} containing qv3i .
(b) The enclosed subspace of v5 in group {v3, v5} containing qv5i in the
initial VTT.

Fig. 10. v3 and v5 firstly extend outwards, and then move upward to their
goal positions.

Fig. 11. v1 and v6 can navigate to their goal positions easily since
Ĉv1
free(q

v1
i ) and Ĉv6

free(q
v6
i ) almost cover the whole workspace.

0.860 s with standard deviation of 0.669 s and the success rate
is 100%.

B. Topology Reconfiguration

1) Scenario 1: The VTT configuration used for this topol-
ogy reconfiguration example is shown in Fig. 12a with the
following nodes’ positions

qv0 = [0.05, 0, 0]
ᵀ

qv1 = [0.1, 1.8, 0]
ᵀ

qv2 = [2.1, 1.9, 0]
ᵀ

qv3 = [2.1, 0, 0]
ᵀ

qv4 = [0, 2.1, 3.1]
ᵀ

qv5 = [1.95, 0.9, 3]
ᵀ

qv6 = [0, 0, 2.9]
ᵀ

The motion task is to move v5 from its initial position
qv5i = [1.95, 0.9, 3]

ᵀ to a goal position qv5g = [1, 1.2, 0.9]
ᵀ

(Fig. 12b). This motion cannot be executed with only geometry
reconfiguration because Cv5free(q

v5
i ) and Cv5free(qv5

g ) shown in
Fig. 13a are separated by the obstacle region generated from
edge module (v3, v4).

With our topology reconfiguration planning algorithm (Al-
gorithm 2), one pair of Split and Merge actions is suffi-
cient. v5 is split into a pair of nodes v′5 and v′′5 so that both
Cv

′
5

free(q
v′
5) and Cv

′′
5

free(q
v′′
5 ) contain qv5g . Then the geometry

motion planning is used to plan the motion of v′5 and v′′5 and



(a) (b)

Fig. 12. (a) A VTT is constructed from 18 edge modules with 6 nodes. (b)
The goal is to move node v5 from its initial position to a position inside the
truss.

(a) (b)

Fig. 13. (a) Cv5
free(q

v5
i ) is the yellow space on the upper left and Cv5

free(q
v5
g )

is the green space on the lower right which are not connected and separated
by the obstacle region generated from edge (v3, v4). (b) v has to move
from Cv

free(q
v
i ) that is the yellow enclosed subspace to the green enclosed

subspace, and then Cv
free(q

v
g ) that is the blue enclosed subspace.

control them to positions which are close enough to qv5g , then
merge them back to an individual node at qv5g . The detailed
process is shown in Fig. 14.

This motion task has been solved in [10] with the graph
search algorithm exploring 8146 VTT configurations with a
more complex action model in order to find a valid sequence of
motion actions. With the proposed framework, the free space
of v5 is partitioned into 53 enclosed subspaces and it takes on
average only 0.390 s to solve this motion task with standard
deviation of 0.019 s in 1000 trails, including the enclosed
subspace computation, topology reconfiguration planning and
two-node geometry reconfiguration planning, and the success
rate is 100%.

2) Scenario 2: Another motion task in which topology
reconfiguration actions are involved is shown in Fig. 15 that is
to move v from a position qvi inside the cubic truss (Fig. 15a)
to a new position qvg (Fig. 15b). For this motion task, topology
reconfiguration actions have to be applied twice to traverse
three enclosed subspaces in Cvfree shown in Fig. 13b.

The detailed planning result is shown in Fig. 16. We first
split the node v into two and do geometry reconfiguration
planning to control them to an intermediate enclosed subspace
and merge them back. Then split the node in a different
way in order to navigate these two nodes to Cvfree(qvg ) and
merge them at qvg . The average planning time is 2.343 s with
standard deviation being 0.531 s in 1000 trails, and the success
rate is 95.8%. The search space is larger and more actions
have to be applied in order to find the sequence of topology
reconfiguration actions which consumes more time.

.

Fig. 14. The sequence to move v5 from qv5i to qv5g and the motion is
denoted as →. First split v5 into v′5 and v′′5 , and then move these two newly
generated nodes in different directions to go around the red edge module
(v3, v4). Finally, merge them into an individual node at qv5g .

(a) (b)

Fig. 15. (a) A VTT is constructed from 19 members with 9 nodes. (b) The
task is to move v from its initial position to a position outside the cubic truss.

Fig. 16. The sequence to move v from qvi to qvg by traversing three enclosed
subspaces in Cv

free.

VII. CONCLUSION

A new efficient motion planning framework for variable
topology trusses is presented that includes geometry reconfig-
uration and topology reconfiguration. The motion of multiple
nodes are divided into the motion of multiple groups which
contains either one or two nodes. Obstacle regions and free
space for each group can be computed efficiently so that
the geometry reconfiguration planning is fast using RRT
technique. A fast algorithm to compute all enclose subspaces
in the free space of a node is presented so that we can
verify whether topology reconfiguration actions are needed.
With our topology reconfiguration planning algorithm based
on Dijkstra’s algorithm, topology reconfiguration actions can
be computed with geometry reconfiguration planning for a
group of nodes, and the motion tasks requiring topology
reconfiguration can then be solved efficiently.
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