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Abstract—The successful application of general reinforcement
learning algorithms to real-world robotics applications is often
limited by their high data requirements. We introduce Regu-
larized Hierarchical Policy Optimization (RHPO) to improve
data-efficiency for domains with multiple dominant tasks and
ultimately reduce required platform time. To this end, we
employ compositional inductive biases on multiple levels and
corresponding mechanisms for sharing off-policy transition data
across low-level controllers and tasks as well as scheduling of
tasks. The presented algorithm enables stable and fast learning
for complex, real-world domains in the parallel multitask and
sequential transfer case. We show that the investigated types
of hierarchy enable positive transfer while partially mitigating
negative interference and evaluate the benefits of additional
incentives for efficient, compositional task solutions in single task
domains. Finally, we demonstrate substantial data-efficiency and
final performance gains over competitive baselines in a week-long,
physical robot stacking experiment.

[. INTRODUCTION

Creating real-world systems that learn to achieve many goals
directly through interaction with their environment is one of the
long-standing dreams in robotics. Although recent successes
in deep (reinforcement) learning for computer games (Atari
[28]), StarCraft [33]), Go [44] and other simulated environments
(e.g. [34]) have demonstrated the potential of these methods
when large amounts of training data are available, the high cost
of data acquisition has limited progress for many problems
involving systems directly acting in the physical world.

Data efficiency in machine learning generally relies on
inductive biases or prior knowledge to guide and accelerate the
learning process. One strategy for injecting prior knowledge that
is widely and successfully used in robotics learning problems
is the use of human expert demonstrations to bootstrap the
learning process. But the perspective of a system with a
permanent embodiment capable of achieving many goals in
a persistent environment provides us with a complementary
opportunity: an efficient learning strategy should allow us to
share and reuse experience across tasks — such that the system
does not have to experience or learn the same thing multiple
times, and such that solutions to simpler tasks can bootstrap
the learning of harder ones.

Rather than providing prior knowledge or biases specific to a
particular task this suggests focusing on more general inductive
biases that facilitate the sharing and reuse of experience
and knowledge across tasks while allowing other aspects
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Fig. 1: Top: Overview of the real robot setup with the Sawyer robot
performing the Pilel task. Screen pixelated for anonymization. Bottom
Left: Simulated Sawyer performing the same task. Bottom Middle &
Right: Respectively Pile2 & Cleanup2 setup with a simulated Jaco
arm.

of the domain to be learned [9]. Previous approaches to
transfer learning have, for example, built on optimizing initial
parameters [e.g. [13], sharing models and parameters across
tasks either in the form of policies or value functions [e.g.
41], 311, [13]], data-sharing across tasks [e.g. 38, [3]], or through
the use of task-related auxiliary objectives [57]. Transfer
between tasks can, however, lead to either constructive or
destructive transfer for humans [43]] as well as for machines
[33] 33]]. That is, jointly learning to solve different tasks can
provide both benefits and disadvantages for individual tasks,
depending on their similarity. Finding a mechanism that enables
transfer where possible but avoids interference is one of the
long-standing research challenges.

In this paper, we propose a general reinforcement learning
architecture that benefits from learning multiple tasks simulta-
neously and is sufficiently data-efficient and reliable to solve
non-trivial manipulation tasks from scratch directly on robotics
hardware. We achieve efficiency through three forms of transfer:
(1) robust off-policy learning allows to effectively share all
generated transition data across tasks and skills; (2) a modular
hierarchical policy architecture allows skills to be directly
reused across tasks; and (3) switching between the execution
of policies for different tasks within a single episode leads to
effective exploration.



The model uses deep neural networks to parameterize state-
conditional Gaussian mixture distributions as agent policies,
similar to Mixture Density Networks [7]. To obtain robust and
versatile low-level behaviors in the multitask setting we shield
the mixture components from information about the task at
hand. Task information is thus only communicated through
the choice of mixture component by the high-level controller,
and the mixture components are trained as domain-dependent
but task-independent skills. To efficiently optimize hierarchical
policies in a multitask setting, we develop robust off-policy
learning schemes enabling us to use all transition data to train
each low-level controller independent of the actually executed
one. We focus on Maximum A-Posteriori Policy Optimization
(MPO) [3]] but also consider a variant of Stochastic Value
Gradients (SVG) [20]. For both algorithms we employ trust-
region like constraints at both levels of the hierarchy.

We evaluate the approach on several real and simulated
robotics manipulation tasks and demonstrate that it outperforms
competitive baselines. In particular, it dramatically improves
data efficiency on a challenging real-world robotics manipu-
lation task similar to the one considered in [38]]: Our model
learns to stack blocks from scratch on a single Sawyer robot
arm within about a week at which point it demonstrates up to
three times higher performance compared to our baselines. We
further perform a number of careful ablations. These highlight,
among others, the importance of the hierarchical architecture
and the importance of the trust-region like constraints for
the stability of the learning scheme. Finally, to gain a better
understanding of the role of this type of hierarchy in RL, we
compare its benefits in the single task and multitask setting.
We find that it shows clear benefits advantages in the multitask
setting. However, it can fail to improve performance in the
single-task case, where additional incentives are required to
encourage component specialization similar to the multitask
case. These results shed further light on the interaction of
model and domain in RL.

In summary, our contributions are as follows,

o Algorithmic improvements: We propose a new method for
robust and efficient off-policy optimization of hierarchical
policies. Our approach controls the rate of change at both
levels of the hierarchy via trust-region like constraints
thus ensuring stable learning. Furthermore, it can use all
data to train any given low-level component, independent
of the component which generated the transition. This
enables data efficient training with experience replay and
data sharing across tasks.

¢ Performance improvements: We evaluate our approach
on a range of real and simulated robotic manipulation
domains. The results confirm that the algorithm scales
to complex tasks and significantly reduces interaction
time. Particular benefits arise in more complex task
sets and the low-data regime. When learning to stack
from scratch on the Sawyer robot arm in a week-long
experiment, the approach demonstrates up to three times
better performance for the most complex tasks.

« Investigation of benefits, shortcomings and requirements:

We perform a careful analysis and ablation of our
algorithm and its properties, highlighting in particular, the
impact of individual algorithmic and environment proper-
ties, as well was the overall robustness to hyperparameter
settings.

II. PRELIMINARIES

We consider a multitask reinforcement learning setting with
an agent operating in a Markov Decision Process (MDP)
consisting of the state space S, the action space A, the transition
probability p(s;y1|s¢,ar) of reaching state s;41 from state
s¢ when executing action a;. The actions are drawn from
a probability distribution over actions 7(a|s) referred to as
the agent’s policy. Jointly, the transition dynamics and policy
induce the marginal state visitation distribution p(s). The
discount factor « together with the reward r(s,a) gives rise
to the expected reward, or value, of starting in state s (and
following 7 thereafter) V™ (s) = Er[>.,~ 77 (s, a)|s0 =
syar ~ 7(:|s¢), 8e41 ~ p(-|st,ar)]. We define multitask
learning over a set of tasks ¢ € I with common agent
embodiment as follows: We assume shared state and action
spaces and shared transition dynamics; tasks only differ in their
reward function 7;(s, a). We consider task conditional policies
m(als, i) with the overall objective defined as

J(W) = Einr [Enpon)| 2277 (s1.1) 3141 ~ p(fse,a1)||
t=0

=B [Emw [Q7(s,a, i)]] ’

where all actions are drawn according to the policy 7
conditioned on task 4, that is, a; ~ 7(+|s¢,¢) and we used
the following definition of the task-conditional state-action
value function (Equation [I)).

Q" (s,a,i) = En {Z 7' (s¢,at) |ao = a,
=0 ()

so = 8,a; ~ (+|5¢,4), 5041 ~ p(-[5¢, a)

III. METHOD

This section introduces Regularized Hierarchical Policy
Optimization (RHPO) which focuses on efficient training
of modular policies by sharing data across tasks. We first
describe the underlying class of mixture policies, followed by
details on the critic-weighted maximum likelihood optimization
objective used to update structured hierarchical policies in a
multitask, off-policy setting. For efficiency in the multitask
case, RHPO extends data-sharing and scheduling mechanisms
from Scheduled Auxiliary Control with randomized scheduling
(SAC-U) [38].



A. Hierarchical Policies

We start by defining the hierarchical policy class which
supports sharing sub-policies across tasks. Formally, we de-
compose the per-task policy 7(als, i) as

2)

M
mo(als,i) = ZWQL (als,0) wl (o]s, i),
o=1

where 7! and 7! respectively represent a high-level switching
controller (a categorical distribution) and a low-level sub-policy
(components of the resulting mixture distribution), and o is
the index of the sub-policy. 6 denotes the parameters of both
7 and 7L, which we seek to optimize. While the number of
components has to be decided externally, RHPO is robust with
respect to this parameter (Appendix G3). Note that in the above
formulation only the high-level controller wy is conditioned
on the task information i. This choice introduces a form of
information asymmetry [[15} 52, 21] that enables the low-level
policies to acquire general, task-independent behaviours. This
choice strengthens the decomposition of tasks across domains
and prevents degenerate solutions that bypass the high-level
controller. Intuitively, these sub-policies can be understood
as building reflex-like low-level control loops, which perform
domain-dependent but task-independent behaviours and can
be modulated by higher cognitive functions with knowledge
of the task at hand. Figure [2] illustrates the used hierarchical
policy architecture.
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Fig. 2: The hierarchical multitask policy architectures used in this
paper. Note that only the high-level controller of mixture distribution
is conditioned on the task ID and low level components are shared
among tasks. A detailed description can be found in Appendix B3.

B. Data-efficient Multitask Policy Optimization

In the following sections, we present the core principles
underlying RHPO; for the complete pseudocode algorithm
please see Algorithm [I] and Appendix B1. We build on an
Expectation-Maximization based policy optimization algorithm
(similar to MPO [2]]) and adapt it to the application to hierar-
chical policies in the multitask case. We update the parametric
policy in 2 stages and decouple the policy improvement step
from the fitting of the parametric policy.

We begin by describing the policy improvement steps below,
assuming that we have an approximation of the ground-truth
state-action value function Q(s,a,i) ~ Q™ (s, a,i) available
(see Equation for details on learning Q from off-policy

data). Starting from an initial policy mg, we can then iterate
the following steps to improve the policy g, :

leftmargin="*
Policy Evaluation: Update Q such that Q(s,a7z’) ~
Q7 (s,a,1), see Equation (7).
Policy Improvement:
— Step 1: Obtain ¢; = argmax,J(g), under KL
constraints with m,..r = 7, (Equation (3)).
— Step 2: Obtain
Octs = argming Eyp s [KL (g (-|5.) [ma(]s, 1)
under additional regularization (Equation (6))).

Policy Improvement 1: Obtaining Non-parametric Policies:
Concretely, we first introduce an intermediate non-parametric
policy q(als,i) and optimize J(q) while staying close, in
expectation, to a reference policy . s(als,?)

max J(q) = Eint [Eqonn[Q(s,a,9)] |,
’ 3)

St gt [KL(a(|s, Dllmres (15,1)) | < e,

where KL(+||-) denotes the Kullback Leibler divergence, €
defines a bound on the KL, D denotes the data contained in a
replay buffer.

We find the intermediate policy ¢ by maximizing Equation
(@) and can obtain a closed-form solution with a non-parametric
policy for each task, as

aials. ) o, (als, ) exp <%) -

where 7 is a temperature parameter (corresponding to a given
bound ¢) that is obtained by optimizing the dual function,

g(n) = ne+ nNEsp,ins [log (/m (als, )

exp <7Q(S;7a’ Z)) da)} )

(see Appendix Al for a detailed derivation of the dual function).
This policy representation is independent of the form of the
parametric policy 7, ; i.e. ¢ only depends on 7, through its
requirement for obtaining samples. This, crucially, makes it
easy to employ complicated structured policies (such as the
one introduced in Section [[II-A). The only requirement here,
and in the following steps, is that we must be able to sample
from 7y, and calculate the gradient (w.r.t. f) of its log density
(but the sampling process itself need not be differentiable).
Policy Improvement 2: Fitting Parametric Policies: In the
second step we fit a policy to the non-parametric distribution
obtained from the previous calculation by minimizing the
divergence Egp i1 [KL(qr(-|s,9)||mg(-|s,%))]. Assuming that
we can sample from g this step corresponds to maximum
likelihood estimation (MLE). Furthermore, we introduce a
trust-region constraint on policy updates. In this way, we
can regularize towards a target policy, effectively mitigating

(&)



optimization instabilities. Trust-region constraints have been
used in on- and off-policy RL [42] 2]]. We adapt the formulation
of [2] to our hierarchical setting, and as the analysis in Section
[[V-A] shows, it is critical for the success of our algorithm.
Formally, we aim to obtain the solution in Equation [6} where
€m defines a bound on the change of the new policy.

Here, we drop constant terms and the negative sign in the
second line (turning min into max), and explicitly insert the
definition 7p(als, i) = Zé\il 71, (als,0) mr (o|s, i), highlight-
ing that we are marginalizing over the high-level choices in this
fitting step. The update is independent of the specific policy
component from which the action was sampled, enabling joint
updates of all components. This reduces the variance of the
update and also enables efficient off-policy learning.

Opy1 = arg mein Esp int [KL(qk(~|s, i)||mo(-|s, z))}

= arg m(SlXESNDJN] Eﬂek {exp(Q(S,mi)/n)

M
log Y 7 (als,0) my’ <o|s7z'>”,

o=1

(6)

st. B imt KL(wer (o|s, )|t (o]s, 1))+

M

1

i > KL(g, (als,0)|[7§ (als, 0))] < ém
o=1

Different approaches can be used to control convergence for
both the high-level categorical choices and the action choices to
change slowly throughout learning. The average KL constraint
in Equation (6 is similar in nature to an upper bound on the
computationally intractable KL divergence between the two
mixture distributions and has been determined experimentally
to perform better in practice than simple bounds. In practice,
in order to control the change of the high level and low
level policies independently we decouple the constraints to be
able to set different € for the means (¢,), covariances (ex)
and the categorical distribution (e,) in case of a mixture
of Gaussian policy. To solve Equation (6), we first employ
Lagrangian relaxation to make it amenable to gradient based
optimization and then perform a fixed number of gradient
descent steps (using Adam [235])); a detailed overview can be
found in Algorithm [T] as well as with further information in
the Appendix A2.

Policy Evaluation: For data-efficient off-policy learning
of Q we experience sharing across tasks and switching between
tasks within one episode for improved exploration by adapting
the initial state distribution of each task based on other tasks
[38].

Formally, we assume access to a replay buffer containing
data gathered from all tasks. For each trajectory snippet 7 =
{(s0, @0, Ro),.-.,(sL,ar, Rr)} we record the rewards for all
tasks Ry = [ry, (S, a1), ..., 7i;; (8¢,a¢)] as a vector in the
buffer. Using this data we define the retrace objective for

Algorithm 1 RHPO - Asynchronous Learner

Input: N5 number of update steps, NirgetUpdae Update
steps between target update, [N, number of action samples
per state, KL regularization parameters ¢, initial parameters
for 7w, 1 and ¢
initialize N = 0
while k& < Nyeps do
for k in [0... Niargetupdate] do
sample a batch of trajectories 7 from replay buffer B
sample NN actions from 7y, to estimate expectations
below
/Il compute mean gradients over batch for policy,
Lagrangian multipliers and Q-function

§r < —Vg ZStET Z] 1[eXp (Q(Sf a5, z))
log mg(ay]|s¢,)] following Eq. [6]
N,
Vane + 1, e, 10g 5= D50

exp ( (se, a] 2))} following Eq. I

5@ — v¢ sz] Z(s, at)eT (Q¢(st7 at, ) Qret)
with Q™ following Eq.[7]

oy Vng( )=

/I apply gradient updates
T6,,, = optimizer_update(, ),
n = optimizer_update(r, d;)
Q, = optimizer_ update(Q¢, 00)
E=k+1

end for

// update target networks

7T/ =T, Q, = Q

end while

learning Q, parameterized via ¢, following [31} [38] as

Z ETND [ T Stv at)+

i~
Q" (se1 v 1) = Qolsesan,))?]

where Q¢ is the L-step retrace target [31]], see the Appendix
B2 for details.
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IV. EXPERIMENTS

In the following sections, we investigate the effects of
training hierarchical policies in single and multitask domains. In
particular, we demonstrate that RHPO can provide compelling
benefits for multitask learning in real and simulated robotic
manipulation tasks and significantly reduce platform interaction
time. For the final experiment, a stacking task on a physical
Sawyer robot arm, RHPO achieves a dramatic performance
improvement after a week of training compared to several
strong baselines. We further investigate RHPO in a sequential
transfer setting and find that when pre-trained skills (i.e. low-
level components) are available RHPO can provide additional
improvements in data efficiency.

Finally, we perform a number of ablations to emphasize
the importance of trust-region constraints for the high-level
controller and to understand the relative role of hierarchy



in the single-task and multitask setting: In the single-task
case, using domains from the DeepMind Control Suite [49],
we first demonstrate that our hierarchy on its own can fail
to improve performance and that for the model to exploit
compositionality in this setting, additional incentives for
component specialization are required.

For all tasks and algorithms, we use a distributed actor-critic
framework (similar to [12]) with flexible hardware assignment
[8]. We perform critic and policy updates from a replay buffer,
which is asynchronously filled by a set of actors. In all figures
with error bars, we visualize mean and variance derived from
3 runs. Additional details of task hyperparameters as well as
results for ablations and the full set of tasks from the multitask
domains are provided in the Appendix D. [f]

A. Simulated Multitask Experiments

We use three simulated multitask scenarios with the Kinova
Jaco and Rethink Robotics Sawyer robot arms to test in a
variety of conditions. The three scenarios each consist of tasks
of different difficulties and vary in their overall complexity.
The least difficult scenario is Pilel: Here, the seven tasks of
interest range from simple reaching for a block over tasks like
grasping it, to the final task of stacking the block on top of
another block. The two more difficult scenarios are Pile2 and
Cleanup2. Pile2 includes stacking with both blocks on top of
the respective other block, resulting in a setting with 10 tasks.
Cleanup2 includes harder tasks such as opening a box and
placing blocks into this box, consisting of a total of 13 tasks. In
addition to the experiments in simulation, which are executed
with 5 actors in a distributed setting, we also investigate the
Pilel multitask domain (same rewards and setup) on a single,
physical robot in Section [[V-B]

Our main comparison evaluates RHPO with hierarchical
policies against SAC [38] with a flat, monolithic policy shared
across all tasks which is provided with the additional task id
as input (displayed as SAC-U-Monolithic) as well as policies
with task dependent heads (displayed as SAC-U-Independent)
following [38] — both using MPO as the optimizer. Furthermore,
we compare against a re-implementation of SAC using SVG
[20] as actor-critic based optimizer which uses the reparam-
eterization trick (displayed as SAC-U[SVG]). In order to
compare with gradient-based hierarchical policy updates (such
option critic [6]) as well as investigating the application of
the proposed hierarchical model for other RL algorithms; we
also use SVG (with continuous relaxation of the Categorical
distribution [27, 24]) instead of MPO to optimize the hierar-
chical model with results included in the Pilel experiments
(displayed as RHPO[SVG]) with additional results in Appendix
H. These comparisons furthermore strengthen our choice for
critic-weighted likelihood instead of reparametrization gradient-
based policy optimizer.

The main SAC baselines provide the two opposite, naive
perspectives on transfer: by using the same monolithic policy
across tasks we enable positive as well as negative interference

*Additional details and the appendix can be found under https:/sites
google.com/corp/view/rhpo

and independent policies prevent policy-based transfer. After
experimentally confirming the robustness of RHPO with respect
to the number of low-level sub-policies (see Appendix G3),
we set M proportional to the number of tasks in each domain.
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Fig. 3: Results for the multitask robotic manipulation experiments in
simulation. The dashed line corresponds to the performance of the
SVG-based implementation of SAC-U. From top to bottom: 2 tasks
from the Pilel, Pile2 & Cleanup2 domains. We show averages over 3
runs each, with corresponding standard deviation. RHPO outperforms
both baselines across all tasks with the benefits increasing for more
complex domains.

Figure 3| demonstrates that RHPO outperforms the monolithic
as well as the independent baselines (based on SAC). For simple
tasks such as the Pilel domain, the difference is small, but as
the number of tasks grows and the complexity of the domain
increases (cf. Pile2 and Cleanup2), the advantage of composing
learned behaviours across tasks becomes more significant. We
further observe that using MPO instead of SVG [20]] as policy
optimizer results in an improvement for the baselines. This
effect becomes more pronounced for the hierarchical policies.
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Fig. 4: Robot Experiments. Left: While simpler tasks such as reaching
are learned with comparable efficiency, the later, more complex tasks
are acquired significantly faster with RHPO.

B. Physical Robot Experiments

For real-world experiments, data-efficiency is crucial. We
perform all experiments in this section relying on a single robot
(single actor) — demonstrating the benefits of RHPO in the low
data regime. The performed task is the real world version of the
Pilel task described in Section [V-A] Given the higher cost of
experiment time, the robot experiments additionally emphasize
the requirements for hyperparameter robust algorithms which
is further investigated in Section [[V-E]

The setup for the experiments consists of a Sawyer robot arm
mounted on a table, equipped with a Robotiq 2F-85 parallel
gripper. A basket of size 20cm? in front of the robot contains
the three cubes. Three cameras on the basket track the cubes
using fiducials (augmented reality tags). As in simulation,
the agent is provided with proprioception information (joint
positions, velocities and torques), a wrist sensor’s force and
torque readings, as well as the cubes’ poses — estimated via the
fiducials. The agent’s action is five dimensional and consists of
the three Cartesian translational velocities, the angular velocity
of the wrist around the vertical axis and the speed of the
gripper’s fingers.

Figure [] plots the learning progress on the real robot for
four of the tasks, from simpler reach and lift tasks and the
stack and final stack-and-leave task — which is the main task
of interest. Plots for the learning progress of all tasks are given
in the appendix F. As can be observed, all methods manage
to learn the reach task quickly (within about a few thousand
episodes) but only RHPO with a hierarchical policy is able to
learn the stacking task (taking about 15 thousand episodes to
obtain good stacking success), which takes about 8 days of
training on the real robot with considerably slower progress
for all baselines taking multiple weeks for completion.

To provide further insight into the learned representation we

compute distributions for each component over the tasks which
activate it, as well as distributions for each task over which
components are being used. For each set of distributions, we
determine the Battacharyya distance metric to determine the
similarity between tasks and the similarity between components
in Figure [3] (right). The plots demonstrate how the components
specialize, but also provide a way to investigate our tasks,
showing e.g. that the first reach task is fairly independent and
that the last four tasks are comparably similar regarding the
high-level components applied for their solution.
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Fig. 5: Similarities between tasks (based on their distribution over
components) and similarities between components (based on the
distribution over tasks which apply them).

C. Sequential Transfer
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Fig. 6: Sequential transfer experiments: the models are first trained
with all but the final task in the Pilel and Cleanup2 domains, and
finally we train the models to adapt to the final task by either training
1- only a high-level controller or 2-a high-level controller as well as
an additional component.

RHPO is well suited for sequential transfer learning as
it allows to use pre-trained low-level components to solve
new tasks. To investigate performance in adapting pre-trained
multitask policies to novel tasks, we train agents to fulfill
all but the final task in the Pilel and Cleanup2 domains and
subsequently evaluate training the models on the final task. We
consider two settings for the final policy: we either introduce
only a new high-level controller (Sequential-Only-HL) or both
an additional shared component as well as a new high-level
controller (Sequential). Figure [6| displays that in the sequential
transfer setting, starting from a policy trained on a set of related
tasks results in up to 5 times more data-efficiency in terms of
actor episodes on the final task than training the same policy
from scratch. We observe that the final task can be solved
by only reusing low-level components from previous tasks if
the final task is the composition of previous tasks. This is the
case for the final task in Cleanup2 which can be completed by
sequencing the previously learned components and in contrast



to Pilel where the final letting go of the block after stacking
is not required for earlier tasks.

D. Simulated Single Task Experiments

We consider two high-dimensional tasks for continuous

control: humanoid-run and humanoid-stand from Tassa et al.

[49] and compare MPO with a flat Gaussian policy to

RHPO with a mixture of Gaussians with three components.
Figure |7| shows the results in terms of the number of episodes.

When both the flat and hierarchical policies are initialized
with means close to zero, RHPO performs comparable to
a flat policy and learns similar means and variances for all
components as the model fails to decompose the learned
behavior. If, however, the hierarchical policy is initialized with
distinct means for different components (here, for the three
components ranging for all dimensions from the minimum
to maximum of the allowed action range, i.e. -1, 1), we
observe significantly improved performance and component
specialization.

domain_name=humanoid, task_name=run domain_name=humanoid, task_name=stand

600- — RHPO+DiffIntialization
— RHPO+Samelnitialization
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Fig. 7: Using RHPO with different component initialization (red
curve) demonstrates benefits over homogeneous initialization as well
as the flat Gaussian policy. The plot shows that the simple change in
initialization is sufficient to enable component specialization and the
correlated improvement in performance.

E. Performance Ablations

We perform a series of ablations based on the earlier
introduced Pilel domain, providing additional insights into

benefits, shortcomings and relevant hyperparameters of RHPO.

First, we display the importance of choice of regularization
in Figure [§] with complete results in Appendix G1. We are able
to demonstrate the effect of weakening the constraint by setting
the epsilon value higher (here: to 1.). This setting prevents
convergence of the policy to capable solutions and emphasizes
the necessity of constraining the update steps. In addition, very
small values can slow down convergence. However, in the
present experiments a range of about 2 orders of magnitude
results in good performance.

We additionally ablate over the number of data-generating
actors in Figure 0] to evaluate all approaches with respect to data
rate and illustrate how RHPO is particularly relevant at lower
data rates such as given by real-world robotics applications
(with results for all tasks in Appendix G2). Here, RHPO always
provides stronger final performance and learns significantly
faster in one actor case as common for robot experiments.
By running with multiple actors, we increase the rate of data
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Fig. 8: Results for sweeping the KL constraint between le-6 and 1.
for 2 tasks in the Pilel domain. For very weak constraints the model
does not converge successfully, while for very strong constraints it
only converges very slowly.

generation such that in asynchronous settings, the speed of the
learner becomes more important. Since training our hierarchical
policies is computationally slightly more costly, the benefits
become smaller for easier task:
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Fig. 9: Results for ablating the number of data-generating actors in
the Pilel domain. We can see that the benefit of hierarchical policies
is stronger for more complex tasks and lower data rates. However,
even with 20 actors we see better final performance and stability

Finally, we demonstrate the robustness of RHPO with respect
to the number of sub-policies in Figure [9] (with complete results
in Appendix G3) and connected simplicity of determining this
hyperparameter which for all other experiments is simply set
proportionally to the number of tasks.

In asynchronous RL systems, the update rate of the learner can have a
significant impact on the performance when evaluated over data generated.



V. RELATED WORK

Transfer learning, in particular in the multitask context, has
long been part of machine learning (ML) for data-limited
domains [9} 153} [35) [50]]. Commonly, it is not straightforward to
train a single model jointly across different tasks as the solutions
to tasks might not only interfere positively but also negatively
[56]. Preventing this type of forgetting or negative transfer
presents a challenge for biological [45] as well as artificial
systems [14]. In the context of ML, a common scheme is
the reduction of representational overlap [14} 41, |56]. Bishop
[7] utilize neural networks to parametrize mixture models
for representing multi-modal distributions thus mitigating
shortcomings of non-hierarchical approaches. Rosenstein et al.
[40] demonstrate the benefits of hierarchical classification
models to limit the impact of negative transfer.

Hierarchical approaches have a long history in the reinforce-
ment learning literature [e.g. 48, [11]. Prior work commonly
benefits from combining hierarchy with additional inductive
biases such as [54} 33} 32, 58] which employ different rewards
for different levels of the hierarchy rather than optimizing a
single objective for the entire model as we do. Other works
have shown the additional benefits for the stability of training
and data-efficiency when sequences of high-level actions are
given as guidance during optimization in a hierarchical setting
[43} 14} 152]]. Instead of introducing additional training signals,
we directly investigate the benefits of compositional hierarchy
as provided structure for transfer between tasks.

Hierarchical models for probabilistic trajectory modelling
have been used for the discovery of behavior abstractions as
part of an end-to-end reinforcement learning paradigm [e.g.
51, 122, 152, [15] where the models act as learned inductive
biases that induce the sharing of behavior across tasks. In a
vein similar to the presented algorithm, [e.g 21} 52| share a low-
level controller across tasks but modulate the low-level behavior
via a continuous embedding rather than picking from a small
number of mixture components. In related work [19} [16] learn
hierarchical policies with continuous latent variables optimizing
the entropy regularized objective.

Similar to our work, the options framework [48] 36] supports
behavior hierarchies, where the higher level chooses from a
discrete set of sub-policies or “options” which commonly are
run until a termination criterion is satisfied. The framework
focuses on the notion of temporal abstraction. A number of
works have proposed practical and scalable algorithms for
learning option policies with reinforcement learning [e.g. |6} [59]
461 139, [17] or criteria for option induction [e.g. [17, [18]. Rather
than the additional inductive bias of temporal abstraction, we
focus on the investigation of composition as type of hierarchy in
the context of single and multitask learning while demonstrating
the strength of hierarchical composition to lie in domains with
strong variation in the objectives - such as in multitask domains.
We additionally introduce a hierarchical extension of SVG [20],
to investigate similarities to work on the option critic [6].

With the use of KL regularization to different ends in RL,
work related to RHPO focuses on contextual bandits [10]]. The

algorithm builds on a 2-step EM like procedure to optimize
linearly parametrized mixture policies. However, their algorithm
has been used only with low dimensional policy representations,
and in contextual bandit and other very short horizon settings.
Our approach is designed to be applicable to full RL problems
in complex domains with long horizons and with high-capacity
function approximators such as neural networks. This requires
robust estimation of value function approximations, off-policy
correction, and additional regularization for stable learning.

VI. DISCUSSION

We introduce RHPO, a novel algorithm for robust training of
hierarchical policies in multitask settings. RHPO consistently
outperforms competitive baselines which either handle tasks
independently or implicitly share experience by reusing data
across tasks. Especially for complex tasks or in a low data
regime, as encountered in robotics applications, we strongly
reduce the number of environment interactions and improve
final performance as well as learning robustness and sensitivity
to hyper-parameters. Our results show that the algorithm scales
to complex, real-world domains and provides an important step
towards the deployment of RL algorithms on robotic systems.

Algorithmically, our method highlights the importance of
trust-region-like regularization for stable optimization of hier-
archical policies. Furthermore, our update rules in combination
with mixture policies and hindsight reward assignments enable
training for any task and skill independent of the data source.
This enables efficient learning of the hierarchical policies in an
off-policy setting, which is important for data efficient learning.

Conceptually, our results demonstrate that hierarchical poli-
cies can be an effective way of sharing skills or behavior
components across tasks, both in multitask (Sections
IV-B) as well as in transfer settings (Section [[V-C) and
partially mitigate negative interference between tasks in the
parallel multitask learning scenario. Furthermore, we find
that their benefits are complementary to off-policy sharing
of transition data across tasks (e.g. SAC-X [38], HER [5]).
Valuable directions for future work include the direct extension
to multilevel hierarchies and the identification of basis sets
of behaviours which perform well on wide ranges of possible
tasks given a known domain.

We believe that especially in domains with consistent agent
embodiment and high costs for data generation learning tasks
jointly and information sharing is imperative. Our results
suggest that a system that is exposed to a rich set of tasks or
experiences and has appropriate means for reusing knowledge
can learn to solve non-trivial problems directly from interaction
with its environment. RHPO combines several ideas that we
believe will be important: sharing data across tasks and skills
across tasks with compositional policy representations, robust
optimization, and efficient off-policy learning. Although we
have found this particular combination of components to be
very effective we believe it is just one instance of — and step
towards — a spectrum of efficient learning architectures that
will unlock further applications of RL both in simulation and,
more importantly, on physical hardware.
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