
As z varies depending on application-specific goals, in
Section VI we report the results of minimizing the makespan
(i.e., overall process duration, z = maxi fi) as a generic
objective function. To show the generalization of our method,
we also consider an application-specific case where we try
to minimize the weighted sum of the completion time of all
tasks (z =

∑
i cifi). We use this objective function as an

analogy to the minimization of weighted tardiness in job-shop
scheduling [5].

B. MDP Formulation

Given the problem statement, we learn greedy heuristics
that construct solutions by appending tasks to an individual
robot’s partial schedule based on maximizing a score Q-
function approximated with a neural network parameterized
by θ. We formalize the problem of constructing the schedule
as a Markov Decision Process (MDP) using a five-tuple
<xt, u, T,R, γ> that includes:
• State xt at a decision-step t includes the temporal

constraints of the problem, represented by a STN, the
location information, and all robots’ partial schedules
constructed so far.

• Action u = <τi, rj> corresponds to appending an un-
scheduled task τi at the end of the partial schedule of
robot rj .

• Transition T corresponds to deterministically adding the
edges associated with the action into the STN and updat-
ing the partial schedule of the selected robot.

• Reward R of a state-action pair is defined as the change
in objective values after taking the action, calculated as
R = −1× (Zt+1 − Zt). Zt denotes the partial objective
function at state xt and is calculated only using sched-
uled tasks. For example, while minimizing makespan,
Zt = maxifi, τi ∈ {partial schedules}. The reward
is multiplied by -1.0 as the objective is minimization.
We further divide Zt by a factor D > 1 if xt is not a
termination state. We use D to balance between finding
the highest immediate reward (local optimal) and finding
the global optimal schedules. If the action results in an
infeasible schedule in the next state, a large negative
reward Minf is assigned to Zt+1.

• Discount factor, γ.

C. Schedule Generation

Our learned heuristic relies on the evaluation function
Q(x, u), which will be learned using a collection of problem
instances to estimate the total discounted future reward of
state-action pairs and select accordingly. We use scheduling-
through-simulation to generate schedules as it has been shown
in [27] that this process achieves better performance than
using decision-step-based generation. In scheduling-through-
simulation, starting from t = 0 (here t refers to time points
instead of decision steps), at each time step the policy first
collects all the available robots not working on a task into
a set ravail = {rj |rj is available}. Then, ∀rj ∈ ravail, the
policy tries to assign τi using τ := argmaxτ∈τavail

Qθ(x, u),

where τavail is the set of unscheduled tasks and only Q values
associated with rj are considered. To stay in accordance with
problem requirements, we impose two rules when adding a
new task during transition: 1) the start time of all unscheduled
tasks should be no earlier than the start time of the newly
added task; and 2) the start time of all unscheduled tasks that
share the same location should be no earlier than the finish
time of the newly added task.

IV. HETEROGENEOUS GRAPH ATTENTION NETWORK

Traditional graph neural networks (GNNs) operate on ho-
mogeneous graphs to learn a universal feature update scheme
for all nodes. We instead cast the task scheduling prob-
lem into a heterogeneous graph structure, and propose a
novel heterogeneous graph attention network, ScheduleNet,
that learns per-edge-type message passing and per-node-type
feature reduction mechanisms on this graph. One advantage of
ScheduleNet is that it directly estimates the Q-value of state-
action pairs as its output node feature. In this section, we first
describe how to construct the heterogeneous graph given a
problem state, xt. Then we present the building block layer
used to assemble a ScheduleNet of arbitrary depth (through
stacking this layer), which we call the heterogeneous graph
attention layer (HetGAT).

A. Heterogeneous Graph Representation

The temporal constraints in multi-robot task allocation and
scheduling problems have been commonly modeled as STNs
because the consistency of the upper and lower bound con-
straints can be efficiently verified in polynomial time [21].
STNs also allow for encoding set-bounded uncertainty. How-
ever, as we develop multiple agents, physical constraints, etc.,
we also have latent disjunctive variables that augment the
graph to account for each agent being able to perform only
one task at a time and for only one robot occupying a work
location at a time, which is known as the Disjunctive Temporal
Problem [22]. To learn a more expressive and scalable repre-
sentation of the problem, we extend the STN formulation into a
heterogeneous graph using the construction process illustrated
in Algorithm 1. In a heterogeneous graph, we use a three-
tuple, in the form of <srcName, edgeName, dstName>,
to specify the edge type/relation that connects the two node
types (from source node to destination node), which can also
be denoted as (srcName

edgeName−−−−−−−→ dstName).
In traditional STN formulations, each task, τi, is represented

by two event nodes: its start time node, si, and finish time
node, fi. The directed, weighted edges encode the temporal
constraints associating corresponding nodes. Exploiting the
fact that task duration is deterministic, we develop a novel
simplification trick to reduce the model complexity. That is,
after running Floyd Warshall’s algorithm [6] on the original
STN to find its minimum distance graph, we remove all finish
time nodes (except f0) from the distance graph to obtain a
new STN. The simplified STN, using only half the nodes, still
reserves all the necessary temporal constraints. In this way,
each task can be represented by its start time node with task

Algorithm 1: Construct the heterogeneous graph
Input: STN, locations L, robots r and their partial

schedules, available actions uavail
Output: Heterogeneous graph representation

1 Run Floyd Warshall’s algorihtm on STN to find its
minimum distance graph, gd;

2 Remove all fi’s from gd, except f0;
3 Use gd as the new STN and si as the task node of τi;
4 foreach robot rj do
5 Add a robot node, rj ;
6 foreach τm assigned to rj do
7 Add an edge τm → rj ;
8 end
9 end

10 Connect robot nodes with each other;
11 foreach location Lk do
12 Add a location node, Lk;
13 foreach τm located in Lk do
14 Add an edge τm → Lk;
15 end
16 end
17 Connect location nodes with each other;
18 Add a state node st, connect all other nodes to it;
19 foreach un =< τn, rn >∈ uavail do
20 Add a value nodes vn;
21 Add an edge τn → vn;
22 Add an edge rn → vn;
23 Add an edge st→ vn;
24 end
25 Add self-loops;
26 return gd.

duration now serving as its node feature. Given the partial
schedule at the current state, we generate the initial input
features of each task node as follows: the first two dimensions
are the one-hot encoding of whether a task has been scheduled
[1 0] or not [0 1]; the next dimension is the task duration. We
denote the edge type from STNs using (task

temporal−−−−−−→ task)
as they encode the temporal constraints.

To extend the simplified STN, we add robot and location
nodes equaling the number of different robots and locations
in the problem, respectively. A robot node is connected to the
task nodes that have been assigned to it, with edge relation
(task

assignedTo−−−−−−−→ robot). All robots are connected with each
other to enable message flow between them, with edge relation
(robot

communicate−−−−−−−−−→ robot). The initial feature of a robot
node is the number of tasks assigned so far. In a similar
manner, a location node is connected to the tasks nodes in
that location, with edge relation (task

locatedIn−−−−−−→ location).
All location nodes are connected with each other, with the
relation (location

near−−−→ location). The initial feature of a
location node is the number of tasks in that location.

As the Q-function is based on state-action pairs, we also
expect the network to learn a state embedding of the problem
from all the task, robot, and location node embeddings. To

Fig. 2. Meta-graph of the heterogeneous graph built from the STN by adding
robot, location, state, and value nodes.

achieve this, we add a state summary node into the graph
structure. The state summary node is connected to all the task,
robot and location nodes, with edge types (task

in−→ state),
(robot

in−→ state), (location
in−→ state), respectively. The

initial features of the graph summary node include number of
total tasks, number of currently scheduled tasks, number of
robots and number of locations.

Once the node embeddings are computed using the hetero-
geneous graph, it is possible to learn a separate Q network
consisting of several fully-connected (FC) layers to predict the
Q-value of a state-action pair, taking as input the concatenation
of embeddings from corresponding state, task, and robot
nodes. However, designing a separate Q network on top of
GNNs is computationally expensive and not memory efficient,
especially when evaluating a large number of state-action
pairs at once for parallel computing. Instead, we propose
to add value nodes in the graph to directly estimate the Q-
values. A value node is connected to corresponding nodes with
edge types denoted as (task

to−→ value), (robot to−→ value),
(state

to−→ value). The initial feature of a value node is set to
0. During evaluation, the heterogeneous graph is constructed
with the needed Q-value nodes covering task nodes in τavail
and robot node of rj , as mentioned in Section III.C. As we
are calculating the minimum distance graph of a STN while
constructing the heterogeneous graph, we can further filter out
the tasks in τavail of which the lower bound of task start
time is greater than the current time. For all nodes, self-loops
are added so that their own features from previous layers are
considered for the next layer’s computation. Fig. 2 shows the
meta-graph containing all the node types and edge types.

B. Heterogeneous Graph Attention Layer

The feature update process in a HetGAT layer is conducted
in two steps: per-edge-type message passing followed by per-
node-type feature reduction. During message passing, each
edge type uses a distinct weight matrix, WedgeName ∈ RD×S ,
to transform the input feature from the source node and then
sends the computation result to the destination node, where
S is the input feature dimension of the source node, and D
is the output feature dimension of the destination node. In
the case that several edge types share the same name, we use
WsrcName,edgeName to distinguish between them. As for edge
type (task

temporal−−−−−−→ task) which is the only weighted edge

in our heterogeneous graph formulation, the edge attribute, w,
is also sent after transformed by WtempEdge ∈ RD×1. During
feature reduction, for each edge type that a destination node
has, the HetGAT layer computes per-edge-type aggregation
result by weighing incoming neighbor features (plus edge
attributes if applicable) along the same edge type with feature-
dependent and structure-free normalization, in forms of atten-
tion coefficients. Those results are then merged to compute the
destination node’s output feature. The feature update formulas
of different node types are listed in Eq. 10-14.

Task h′i = σ
(∑
j∈Ntemporal(i)

αtemporalij (Wtemporalhj

+WtempEdgewji)
)

(10)

Robot h′i = σ
(∑
j∈NassginedTo(i)

αassignedToij WassignedTohj

+
∑

k∈Ncomm.(i)

αcomm.ik Wcomm.hk

)
(11)

Location h′i = σ
(∑
j∈NlocateIn(i)

αlocatedInij WlocatedInhj

+
∑

k∈Nnear(i)

αnearik Wnearhk

)
(12)

State h′i = σ
(∑
j∈Ntask,in(i)

αtask,inij Wtask,inhj

+
∑

k∈Nrobot,in(i)

αrobot,inik Wrobot,inhk

+
∑

m∈Nloc.,in(i)

αloc.,inim Wloc.,inhm

+Wstate,inhi

)
(13)

Value h′q = σ
(
Wtask,toht +Wrobot,tohr

+Wstate,tohs +Wvalue,tohq

)
(14)

In Eq. 10-14, NedgeName(i) is the set of incoming neighbors
of node i along a certain edge type, and σ() represents
the ReLU nonlinearity. The per-edge-type attention coeffi-
cient, αedgeNameij , is calculated based on source node features
and destination node features (plus edge attributes if appli-
cable). More specifically, the attention coefficient for edge
type (task

temporal−−−−−−→ task) is calculated by Eq. 15, where
~aTtemporal is the learnable weights, || is the concatenation
operation, and σ′() is the LeakyReLU nonlinearity (with a
negative input slope of 0.2). Softmax function is used to
normalize the coefficients across all choices of j.

αtemp.ij = softmaxj

(
σ′
(

~aTtemp.

[
Wtemp.

~hi||Wtemp.
~hj ||WtempEdgewji

]))
(15)

The attention coefficients for other edge types are calculated
by Eq. 16. We choose WdstType depending on the destination
node type. We use Wcomm. for robot nodes, Wnear for
location nodes, and Wstate,in for the state node.

αedgeNameij = softmaxj

(
σ′
(

~aTedgeName

[
WedgeName

~hi||WdstType
~hj

]))
(16)

To stabilize the learning process, we utilize the multi-
head attention proposed from [23], adapting it to fit the
heterogeneous case. We use K independent HetGAT layers
to compute nodes features in parallel, and then merge the
results as the multi-head output, either by concatenation or
by averaging.

V. IMITATION LEARNING

Under the MDP formulation, our goal is to learn a greedy
policy for sequential decision making. Thus, it is natural to
consider reinforcement learning algorithms (e.g., Q-learning)
for training ScheduleNet. However, reinforcement learning
relies on finding feasible schedules to learn useful knowledge.
In our problems, most permutations of the schedule are infea-
sible. As a result, reinforcement learning spends much more
time than allowed before learning anything of value exploring
infeasible solutions.

Instead, we leverage imitation learning methods that learn
from high-quality schedules to accelerate the learning process
for quick deployment. In real-world scheduling environments,
we often have access to high-quality, manually-generated
schedules from human experts who currently manage the
logistics in manufacturing environments. Moreover, it is prac-
tical to optimally solve small-scale problems with exact meth-
ods. Given the scalability of the heterogeneous graph, we
expect that exploiting such expert data on smaller problems
to train the ScheduleNet can generalize well towards solving
unseen problems, even in a larger scale.

Let Dex denote the expert dataset that contains all the state-
action pairs of schedules either from exact solution methods
or the domain experts. For each transition, we calculate the
total reward from current step t until termination step n using
R

(n)
t =

∑n−t
k=0 γ

kRt+k and regress the corresponding Q-value
from ScheduleNet towards this value as shown in Eq. 17,
where the supervised learning loss, Lex, is computed as the
mean squared error between R(n)

t and our current estimate of
the expert action uex.

Lex =
∥∥∥Q(x, uex)−R

(n)
t

∥∥∥2 (17)

To fully exploit the expert data, we ground the Q values of
alternative actions ualt (not selected by the expert) to a value
below R

(n)
t using the loss shown in Eq. 18, where qo is a

positive constant empirically picked as an offset, and Nalt is
the number of alternate actions at step t. In accordance with
the schedule generation scheme, Nalt only considers actions

involving the same robot selected by the expert.

Lalt =

∑∥∥∥∥Q(x, ualt)−min

([
Q(x, ualt)

R
(n)
t − qo

])∥∥∥∥2
Nalt

(18)

The min term in Eq. 18 ensures that the gradient propagates
through all the unselected actions that have Q values higher
than R

(n)
t − qo. The difference from [17] lies in that they

only train on the unselected action with the max Q value.
The total supervised loss is shown in Eq. 19, where L2 is the
L2 regularization term on the network weights, and λ1, λ2
are weighting parameters assigned to different loss terms
empirically.

Ltotal = Lex + λ1Lalt + λ2L2 (19)

VI. EXPERIMENTAL RESULTS

We show the results of optimizing a generic objective
function, which is the minimization of total makespan. In Sec-
tion VI-D, we also consider the application-specific objective
function mentioned in Section III-A, in which we minimize
the weighted sum of task completion time, to investigate how
ScheduleNet generalizes under different use cases.

A. Dataset

To evaluate the performance of ScheduleNet, we generate
random problems based on [8]. We simulate multi-agent con-
struction of a large workpiece, e.g. an airplane fuselage, with
three different configurations: a two-robot team, a five-robot
team, and a ten-robot team. Task duration is generated from a
uniform distribution in the interval [1, 10]. Approximately 25%
of the tasks have absolute deadlines drawn from a uniform
distribution in the interval [1, N × T], where N is the
number of total tasks. We use T = 5 for two-robot teams,
T = 2 for five-robot teams, and T = 1 for ten-robot teams.
Approximately 25% of the tasks have wait constraints, and
the duration of non-zero wait constraints is drawn from a
uniform distribution in the interval [1, 10]. We set the number
of locations in a problem to be the same as the number of
robots, and each task’s location is picked randomly.

For each team configuration, problems are generated in three
scales: small (16-20 tasks), medium (40-50 tasks) and large
(80-100). For each problem scale, we generate 1,000 problems
for testing. To train the ScheduleNet model, we generate 1,000
small problems of two-robot teams. We run Gurobi with a
cutoff time of 15 minutes on generated problems to serve as
exact baselines. This resulted in a total of 17,513 transitions
for training. To further examine the scalability of ScheduleNet,
we also generate 100 ten-robot team problems in extra-large
scale (160-200 tasks), and set the Gurobi cutoff time to be
1 hour, as the MILP formulation involves 300,000+ general
constraints and 160,000+ binary variables.

B. Benchmark

We benchmark ScheduleNet against the following methods:
• EDF – A ubiquitous heuristic algorithm, earliest deadline

first (EDF), that selects from a list of available tasks the

one with the earliest deadline, assigning it to the first
available worker.

• Tercio – A state-of-the-art scheduling algorithm for this
problem domain, Tercio [9]. Tercio is a hybrid algorithm
that combines mathematical optimization for task allo-
cation and an analytical sequencing test to ensure tem-
poral and spatial feasibility. Hyperparameters are chosen
from [9]

• HomGNN – A neural-network-based method proposed
in [27]. Their method uses a homogeneous GNN to exact
problem embedding from the STN, and a separate Q-
network consisting of two FC layers to predict the Q-
value. We denote this model as HomGNN and use the
same hyper-parameters in [27].

• Exact – Gurobi, a commercial optimization solver widely
used for mixed integer linear programming. Its results
represent the exact baseline.

C. Evaluation Results

Metrics – For minimizing the makespan, we use the
following metric for evaluation purposes. M1: Percentage
of problems solved within optimality ratio. A problem is
considered solved by an algorithm if the ratio, r, between
the objective value it finds and the optimal value is within a
certain range (e.g., r =

zalgorithm

zoptimal
≤ 1.1). Gurobi solutions

are used as the optimal value. If the algorithm finds a solution
of the problem which Gurobi fails to solve, we set r = 1 on
this problem during evaluation. By calculating this metric with
different optimal ratios, we can obtain a comprehensive view
of how the solution quality an algorithm finds is distributed.

Model Details – We implement ScheduleNet using Py-
Torch [16] and Deep Graph Library [24]. The ScheduleNet
used in training/testing is constructed by stacking four multi-
head HetGAT layers (the first three use concatenation, and
the last one uses averaging). The feature dimension of hidden
layers = 64, and the number of heads = 8. We set γ = 0.99,
D = 3.0 and used Adam optimizer [11] through training. The
training procedure used a learning rate of 10−4, λ1 = 0.9, λ2 =
0.1, qo = 3.0 and batch size = 8. Both training and evaluation
are conducted on a Quadro RTX 8000 GPU.

The ScheduleNet was trained on small problems of two-
robot teams and the same model was evaluated on all the dif-
ferent problem scales and team configurations. As HomGNN is
not scalable in number of robots, for each team configuration,
we trained a new model on 1000 small problems and used it for
evaluation on the rest. Fig. 3-Fig. 5 compared the evaluation
results of different methods using M1, where optimality ratio
ranges from 1 to 2 with intervals of 0.05 by default.

For small problems, as far as small optimal ratio (r ≤ 1.2)
is concerned, ScheduleNet outperformed three other heuristics
(EDF, Tercio, and HomGNN) by a large margin, and achieved
significantly closer results to the exact method. This result
shows the effectiveness of ScheduleNet in finding high-quality
feasible schedules. The only case where HomGNN performed
similarly was when examined under a large optimal ratio (r ≥

(a) (b) (c)

Fig. 3. Evaluation results on problems of two-robot teams: (a) Small problems; (b) Medium problems; (c) Large problems.

(a) (b) (c)

Fig. 4. Evaluation results on problems of five-robot teams: (a) Small problems; (b) Medium problems; (c) Large problems. For 40% of the large problems,
ScheduleNet’s solutions outperform Gurobi within cutoff time as denoted by data points left of the 1.0 optimality ratio.

(a) (b) (c) (d)

Fig. 5. Evaluation results on problems of ten-robot teams: (a) Small problems; (b) Medium problems; (c) Large problems; (d) Ex-Large problems. In the
Large and Ex-Large problems cases, ScheduleNet is able to find solutions that outperform Gurobi as denoted by data points left of a 1.0 optimality ratio.

1.8), indicating HomGNN was able to find more low-quality
solutions, which is often not preferred.

For medium problems, both EDF and Tercio tended to
find high-quality schedules, but with a low percentage, while
HomGNN found more feasible low-quality solutions. Again,
ScheduleNet model significantly outperformed the other three
methods. Even though only trained with small problems, the
performance of ScheduleNet remained consistent in solving
medium and large problems, where a notable performance
drop was observed for other methods. HomGNN failed to
find solutions on large problems within Gurobi cuttoff time
(at least 40 minutes vs. 15 minutes), thus was not reported.
During evaluation on large and ex-large problems, we found
that for some problems the solutions found by SchedulerNet
had better makespans than those found by Gurobi under its
cutoff time. Therefore, we extended the opimality ratio to
the smallest value under which ScheduleNet still solved at
least one problem in Fig. 4(c), Fig. 5(c) and Fig. 5(d). For
ex-large problems, Gurobi failed to find most of the feasible
solutions within the one hour cuttoff time (8 solved out of
100), while ScheduleNet managed to find substantially more
feasible schedules (79 solved). These results demonstrated that

our model can transfer knowledge learned on small problem
to help solve larger problems, by exploiting the scalabililty
within heterogeneous graph formulation.

We reported computation time of different methods in
Fig. 6, where only feasible solutions were counted for
each method. Due to differences in implementation details,
CPU/GPU utilization, besides directly comparing the raw
numbers, we also focused on the time changes of each method
with respect to increasing problem sizes. When problem size
increased, the performance of ScheduleNet stayed consistent
with an affordable increase in computation time, which was
less than Gurobi. This was largely due to the fully convolu-
tional structure as well as the STN simplification trick that
greatly reduced its model complexity and computation cost.
As ten-robot team imposes a larger number of robot-related
constraints than other team sizes, it took Gurobi less time
to find solutions for ten-robot problems than two- and five-
robot problems. In contrast, HomGNN failed to scale up to
100 tasks within Gurobi cuttoff time. This was mainly due
to its structure, where FC layers are stacked on top of a
GNN for Q value prediction, making the model complexity
proportional to 2 × Ntask × Naction during parallel evalua-

(a) (b) (c)

Fig. 6. Running time statistics on different problems: (a) Two-robot teams; (b) Five-robot teams; (c) Ten-robot teams. Error bars denote the 25th and 75th
percentile. Results for EDF, Tercio, and HomGNN are not shown in cases when no solutions are found within the allowed cutoff time.

tion. As a comparison, the structure complexity of Schedu-
leNet is only proportional to Ntask + Naction, considering
Nrobot, Nlocation � Ntask.

D. Application-Specific Objective Function

To evaluate the performance of our proposed method under
a different objective function, z =

∑
i cifi, we generated

problems involving five-robot teams with two scales: small
and medium, following the same parameters as used in Sec-
tion VI-A. Additionally, each task was associated with a real
number cost, c, drawn from a uniform distribution in the
interval [1, 10]. For each problem scale, 1,000 problems were
generated for testing. We generated 1000 small problems for
training the ScheduleNet. We ran Gurobi on all problems with
a cutoff time of 15 minutes to serve as exact baselines. We
used the same set of parameters during training as used in
the total makespan case, except qo = 30, considering the
reward was generally larger. We compare ScheduleNet against
a Highest Cost Tardiness First (HCTF) priority heuristic which
assigns the task with the highest cost to the first available
worker in every scheduling decision. Fig. 7 shows the eval-
uation results. For r ≤ 1.2 both methods solved similar
number of problems. However, under larger optimaliy ratios,
ScheduleNet started to outperform HCTF, resulting in a better
overall performance.

E. ScheduleNet Takeaways

Our empirical analysis demonstrates that ScheduleNet es-
tablishes a state-of-the-art in autonomously learning heuristics
for coordinating teams of robots in a computationally efficient
framework. In particular, we are to:

1) Outperform prior work in multi-robot scheduling both
in terms of schedule optimality and the total number of
feasible schedules found (Fig. 3-5).

2) Achieve this superior performance in a flexible frame-
work that allows us to train via imitation-based Q-
learning on smaller problems to provide high-quality
schedules on larger problems.

3) Autonomously learn scalable scheduling heuristics on
multiple application domains (Fig. 3 vs. Fig. 7), attaining
an order of magnitude speedup vs. an exact method
(Fig. 6).

(a)

(b)
Fig. 7. Evaluation results of minimizing the weighted sum of completion
times on five-robot teams: (a) Small problems; (b) Medium problems.

VII. CONCLUSION

We presented a novel heterogeneous graph attention net-
work model, called ScheduleNet, to learn scalable policy for
multi-robot task allocation and scheduling problems. By in-
troducing robot- and proximity-specific nodes into the simple
temporal network that encodes the temporal constraints, we
obtained a heterogeneous graph structure that is nonparametric
in the number of tasks, robots and task resources. We showed
that the model is end-to-end trainable via imitation learning
with expert demonstrations. Empirically, we showed that our
method outperformed existing state-of-the-art methods in a
variety of testing scenarios.

REFERENCES

[1] Jacques F Benders. Partitioning procedures for solving
mixed-variables programming problems. Numerische
mathematik, 4(1):238–252, 1962.

[2] Elkin Castro and Sanja Petrovic. Combined mathemat-
ical programming and heuristics for a radiotherapy pre-
treatment scheduling problem. Journal of Scheduling, 15
(3):333–346, 2012.

[3] Jiaqiong Chen and Ronald G Askin. Project selection,
scheduling and resource allocation with time dependent
returns. European Journal of Operational Research, 193
(1):23–34, 2009.

[4] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal
constraint networks. Artificial intelligence, 49(1-3):61–
95, 1991.

[5] Imen Essafi, Yazid Mati, and Stéphane Dauzère-Pérès.
A genetic local search algorithm for minimizing total
weighted tardiness in the job-shop scheduling problem.
Computers & Operations Research, 35(8):2599–2616,
2008.

[6] Robert W Floyd. Algorithm 97: shortest path. Commu-
nications of the ACM, 5(6):345, 1962.

[7] Eduardo Feo Flushing, Luca M Gambardella, and Gi-
anni A Di Caro. Simultaneous task allocation, data
routing, and transmission scheduling in mobile multi-
robot teams. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1861–
1868. IEEE, 2017.

[8] Matthew Gombolay, Ronald Wilcox, and Julie Shah.
Fast scheduling of multi-robot teams with temporospatial
constraints. In Robotics: Science and System, pages 49–
56, 2013.

[9] Matthew C Gombolay, Ronald J Wilcox, and Julie A
Shah. Fast scheduling of robot teams performing tasks
with temporospatial constraints. IEEE Transactions on
Robotics, 34(1):220–239, 2018.

[10] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina,
and Le Song. Learning combinatorial optimization algo-
rithms over graphs. In Advances in Neural Information
Processing Systems, pages 6348–6358, 2017.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[12] Wouter Kool, Herke van Hoof, and Max Welling. Atten-
tion, Learn to Solve Routing Problems! In International
Conference on Learning Representations, 2019.

[13] G Ayorkor Korsah, Anthony Stentz, and M Bernardine
Dias. A comprehensive taxonomy for multi-robot task al-
location. The International Journal of Robotics Research,
32(12):1495–1512, 2013.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436–444, 2015.

[15] Ernesto Nunes, Marie Manner, Hakim Mitiche, and
Maria Gini. A taxonomy for task allocation problems
with temporal and ordering constraints. Robotics and

Autonomous Systems, 90:55–70, 2017.
[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035, 2019.

[17] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted
bellman residual minimization handling expert demon-
strations. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages
549–564. Springer, 2014.

[18] Hema Raghavan, Omid Madani, and Rosie Jones. Active
learning with feedback on features and instances. Jour-
nal of Machine Learning Research, 7(Aug):1655–1686,
2006.

[19] Huizhi Ren and Lixin Tang. An improved hybrid milp/cp
algorithm framework for the job-shop scheduling. In
2009 IEEE International Conference on Automation and
Logistics, pages 890–894. IEEE, 2009.

[20] Marius M Solomon. On the worst-case performance of
some heuristics for the vehicle routing and scheduling
problem with time window constraints. Networks, 16(2):
161–174, 1986.

[21] Ioannis Tsamardinos. Reformulating temporal plans
for efficient execution. Master’s thesis, University of
Pittsburgh, 2000.

[22] Ioannis Tsamardinos and Martha E Pollack. Efficient
solution techniques for disjunctive temporal reasoning
problems. Artificial Intelligence, 151(1-2):43–89, 2003.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

[24] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma,
Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin,
Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng
Zhang. Deep Graph Library: Towards Efficient and
Scalable Deep Learning on Graphs. ICLR Workshop
on Representation Learning on Graphs and Manifolds,
2019.

[25] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The World Wide Web Conference,
pages 2022–2032. ACM, 2019.

[26] Yi-Chi Wang and John M Usher. Application of rein-
forcement learning for agent-based production schedul-
ing. Engineering Applications of Artificial Intelligence,
18(1):73–82, 2005.

[27] Zheyuan Wang and Matthew Gombolay. Learning to
Dynamically Coordinate Multi-Robot Teams in Graph
Attention Networks. arXiv preprint arXiv:1912.02059,

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://www.nature.com/articles/nature14539
https://www.sciencedirect.com/science/article/abs/pii/S0921889016306157
https://www.sciencedirect.com/science/article/abs/pii/S0921889016306157
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1912.02059
https://arxiv.org/abs/1912.02059

2019.
[28] Jun Wu, Xin Xu, Pengcheng Zhang, and Chunming Liu.

A novel multi-agent reinforcement learning approach for
job scheduling in grid computing. Future Generation
Computer Systems, 27(5):430–439, 2011.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How Powerful are Graph Neural Networks? In
International Conference on Learning Representations,
2019.

[30] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A
survey and analysis of multi-robot coordination. Inter-
national Journal of Advanced Robotic Systems, 10(12):
399, 2013.

[31] Wei Zhang and Thomas G Dietterich. A reinforcement
learning approach to job-shop scheduling. In IJCAI,
volume 95, pages 1114–1120. Citeseer, 1995.

[32] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. Graph neural networks: A review of meth-
ods and applications. arXiv preprint arXiv:1812.08434,
2018.

https://openreview.net/forum?id=ryGs6iA5Km
https://journals.sagepub.com/doi/full/10.5772/57313
https://journals.sagepub.com/doi/full/10.5772/57313

	Introduction
	Related Work
	Problem Overview
	Problem Statement
	MDP Formulation
	Schedule Generation

	Heterogeneous Graph Attention Network
	Heterogeneous Graph Representation
	Heterogeneous Graph Attention Layer

	Imitation Learning
	Experimental Results
	Dataset
	Benchmark
	Evaluation Results
	Application-Specific Objective Function
	ScheduleNet Takeaways

