
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Explaining Multi-stage Tasks by Learning Temporal
Logic Formulas from Suboptimal Demonstrations

Glen Chou, Necmiye Ozay, and Dmitry Berenson
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109

Email: {gchou, necmiye, dmitryb}@umich.edu

Abstract—We present a method for learning to perform multi-
stage tasks from demonstrations by learning the logical structure
and atomic propositions of a consistent linear temporal logic
(LTL) formula. The learner is given successful but potentially
suboptimal demonstrations, where the demonstrator is optimizing
a cost function while satisfying the LTL formula, and the
cost function is uncertain to the learner. Our algorithm uses
the Karush-Kuhn-Tucker (KKT) optimality conditions of the
demonstrations together with a counterexample-guided falsifi-
cation strategy to learn the atomic proposition parameters and
logical structure of the LTL formula, respectively. We provide
theoretical guarantees on the conservativeness of the recovered
atomic proposition sets, as well as completeness in the search
for finding an LTL formula consistent with the demonstrations.
We evaluate our method on high-dimensional nonlinear systems
by learning LTL formulas explaining multi-stage tasks on 7-
DOF arm and quadrotor systems and show that it outperforms
competing methods for learning LTL formulas from positive
examples.

I. INTRODUCTION

Imagine demonstrating a multi-stage task to a robot arm
barista, such as preparing a drink for a customer (Fig. 1). How
should the robot understand and generalize the demonstration?
One popular method is inverse reinforcement learning (IRL),
which assumes a level of optimality on the demonstrations,
and aims to learn a reward function that replicates the demon-
strator’s behavior when optimized [1, 4, 32, 36]. Due to this
representation, IRL works well on short-horizon tasks, but can
struggle to scale to multi-stage, constrained tasks [14, 28, 40].
Transferring reward functions across environments (i.e. from
one kitchen to another) can also be difficult, as IRL may
overfit to aspects of the training environment. It may instead
be fruitful to decouple the high- and low-level task structure,
learning a logical/temporal abstraction of the task that is
valid for different environments which can combine low-level,
environment-dependent skills. Linear temporal logic (LTL) is
well-suited for representing this abstraction, since it can unam-
biguously specify high-level temporally-extended constraints
[5] as a function of atomic propositions (APs), which can be
used to describe salient low-level state-space regions. To this
end, a growing community in controls and anomaly detection
has focused on learning linear temporal logic (LTL) formulas
to explain trajectory data. However, the vast majority of these
methods require both positive and negative examples in order
to regularize the learning problem. While this is acceptable
in anomaly detection, where one expects to observe formula-
violating trajectories, in the context of robotics, it can be
unsafe to ask a demonstrator to execute formula-violating
behavior, such as spilling the drink or crashing into obstacles.

Fig. 1. Multi-stage manipulation: first fill the cup, then grasp it, and then
deliver it. To avoid spills, a pose constraint is enforced after the cup is grasped.

In this paper, our insight is that by assuming that demonstra-
tors are goal-directed (i.e. approximately optimize an objective
function that may be uncertain to the learner), we can regu-
larize the LTL learning problem without being given formula-
violating behavior. In particular, we learn LTL formulas which
are parameterized by their high-level logical structure and low-
level AP regions, and we show that to do so, it is important to
consider demonstration optimality both in terms of the quality
of the discrete high-level logical decisions and the continuous
low-level control actions. We use the Karush-Kuhn-Tucker
(KKT) optimality conditions from continuous optimization to
learn the shape of the low-level APs, along with notions of
discrete optimality to learn the high-level task structure. We
solve a mixed integer linear program (MILP) to jointly recover
LTL and cost function parameters which are consistent with
the demonstrations. We make the following contributions:
1) We develop a method for time-varying, constrained inverse

optimal control, where the demonstrator optimizes a cost
function while respecting an LTL formula, where the
parameters of the atomic propositions, formula structure,
and an uncertain cost function are to be learned. We require
only positive demonstrations, can handle demonstration
suboptimality, and for fixed formula structure, can extract
guaranteed conservative estimates of the AP regions.

2) We develop conditions on demonstrator optimality needed
to learn high- and low-level task structure: AP regions can
be learned with discrete feasibility, while logical structure
requires various levels of discrete optimality. We develop
variants of our method under these different assumptions.

3) We provide theoretical analysis of our method, showing
that under mild assumptions, it is guaranteed to return the
shortest LTL formula which is consistent with the demon-
strations, if one exists. We also prove various results on
our method’s conservativeness and on formula learnability.

4) We evaluate our method on learning complex LTL formu-
las demonstrated on nonlinear, high-dimensional systems,
show that we can use demonstrations of the same task on
different environments to learn shared high-level task struc-
ture, and show that we outperform previous approaches.

II. RELATED WORK

There is extensive literature on inferring temporal logic
formulas from data via decision trees [9], genetic algorithms
[11], and Bayesian inference [38, 40]. However, most of
these methods require positive and negative examples as
input [13, 26, 27, 31], while our method is designed to
only use positive examples. Other methods require a space-
discretization [3, 39, 40], while our approach learns LTL
formulas in the original continuous space. Some methods learn
AP parameters, but do not learn logical structure or perform an
incomplete search, relying on formula templates [6, 29, 42],
while other methods learn structure but not AP parameters
[38]. Perhaps the method most similar to ours is [23], which
learns parametric signal temporal logic (pSTL) formulas from
positive examples by fitting formulas that the data tightly
satisfies. However, the search over logical structure in [23]
is incomplete, and tightness may not be the most informative
metric given goal-directed demonstrations (c.f. Sec. VIII). To
our knowledge, this is the first method for learning LTL
formula structure and parameters in continuous spaces on
high-dimensional systems from only positive examples.

IRL [1, 19, 24, 25, 36] searches for a reward function that
replicates a demonstrator’s behavior when optimized, but these
methods can struggle to represent multi-stage, long-horizon
tasks [28]. To alleviate this, [28, 35] learn sequences of reward
functions, but in contrast to temporal logic, these methods are
restricted to learning tasks which can be described by a single
fixed sequence. Temporal logic generalizes this, being able to
represent tasks that involve more choices and can be completed
with multiple different sequences. Some work [34, 43] aims
to learn a reward function given that the demonstrator satisfies
a known temporal logic formula; we will learn both jointly.

Finally, there is relevant work in constraint learning. These
methods generally focus on learning time-invariant constraints
[12, 14, 15, 17] or a fixed sequence of task constraints
[33], which our method subsumes by learning time-dependent
constraints that can be satisfied by different sequences.

III. PRELIMINARIES AND PROBLEM STATEMENT

We consider discrete-time nonlinear systems xt+1 =
f(xt, ut, t), with state x ∈ X and control u ∈ U , where we de-
note state/control trajectories of the system as ξxu

.
= (ξx, ξu).

We use linear temporal logic (LTL) [5], which augments
standard propositional logic to express properties holding on
trajectories over (potentially infinite) periods of time. In this
paper, we will be given finite-length trajectories demonstrating
tasks that can be completed in finite time. To ensure that the
formulas we learn can be evaluated on finite trajectories, we
focus on learning formulas, given in positive normal form,
which are described in a parametric temporal logic similar to
bounded LTL [21], and which can be written with the grammar

ϕ ::= p | ¬p | ϕ1∨ϕ2 | ϕ1∧ϕ2 | �[t1,t2]ϕ | ϕ1 U[t1,t2] ϕ2, (1)

where p ∈ P .
= {pi}NAP

i=1 are atomic propositions (APs) and
NAP is known to the learner. t1 ≤ t2 are nonnegative integers.
The semantics, describing satisfaction of an LTL formula ϕ

by a trajectory ξxu, denoted ϕ |= ξxu, are given in App. A of
[16]. Note that negation only appears directly before APs. Let
the size of the grammar be Ng = NAP +No, where No is the
number of temporal/boolean operators in the grammar. A use-
ful derived operator is “eventually” ♦[t1,t2]ϕ

.
= > U[t1,t2] ϕ.

We assume the demonstrator optimizes a parametric cost func-
tion (encoding efficiency concerns, etc.) while satisfying LTL
formula ϕ(θs, θp) (encoding constraints defining the task):

Problem 1 (Forward problem):
minimize

ξxu

c(ξxu, θ
c)

subject to ξxu |= ϕ(θs, θp)
η̄(ξxu) ∈ S̄ ⊆ C

where c(·, θc) is a potentially non-convex cost function, pa-
rameterized by θc ∈ Θc. The LTL formula ϕ(θs, θp) is
parameterized by θs ∈ Θs, encoding the logical and temporal
structure of the formula, and by θp .

= {θpi }NAP
i=1 , where θpi ∈ Θp

i

defines the shape of the region where pi holds. Specifically,
we consider APs of the form: x |= pi ⇔ gi(ηi(x), θpi) ≤ 0,
where ηi(·) : X → C is a known nonlinear function,
gi(·, ·) .

= [gi,1(·, ·), . . . , gi,N ineq
i

(·, ·)]> is a vector-valued para-
metric function, and C is the space in which the constraint
is evaluated, elements of which are denoted constraint states
κ ∈ C. In the manipulation example, the joint angles are x, the
end effector pose is κ, and η(·) are the forward kinematics. As
shorthand, let Gi(κ, θ

p
i)

.
= maxm∈{1,...,N ineq

i }
(
gi,m(κ, θpi)

)
.

Define the subset of C where pi holds/does not hold, as

Si(θpi)
.
= {κ | Gi(κ, θpi) ≤ 0} (2)

Ai(θpi)
.
= cl({κ | Gi(κ, θpi) > 0}) = cl(Si(θpi)c) (3)

To ensure that Problem 1 admits an optimum, we have defined
Ai(θpi) to be closed; that is, states on the boundary of an AP
can be considered either inside or outside. For these boundary
states, our learning algorithm can automatically detect if the
demonstrator intended to visit or avoid the AP (c.f. Sec. IV-B).
Any a priori known constraints are encoded in S̄, where η̄(·)
is known. In this paper, we encode in S̄ the system dynamics,
start state, and if needed, a goal state separate from the APs.

We are given Ns demonstrations {ξdem
j }Ns

j=1 of duration Tj ,
which approximately solve Prob. 1, in that they are feasible
(satisfy the LTL formula and known constraints) and achieve
a possibly suboptimal cost. Note that Prob. 1 can be modeled
with continuous (ξxu) and boolean decision variables (referred
to collectively as Z) [41]; the boolean variables determine the
high-level plan, constraining the trajectory to obey boolean de-
cisions that satisfy ϕ(θs, θp), while the continuous component
synthesizes a low-level trajectory implementing the plan. We
will use different assumptions of demonstrator optimality on
the continuous/boolean parts of the problem, depending on if
θp (Sec. IV), θs (Sec. V), or θc (Sec. VI) are being learned,
and discuss how these different degrees of optimality can affect
the learnability of LTL formulas (Sec. VII).

Our goal is to learn the unknown structure θs and AP
parameters θp of the LTL formula ϕ(θs, θp), as well as
unknown cost function parameters θc, given demonstrations
{ξdem
j }Ns

j=1 and the a priori known safe set S̄ .

IV. LEARNING ATOMIC PROPOSITION PARAMETERS (θp)

We develop methods for learning unknown AP parameters
θp when the cost function parameters θc and formula structure
θs are known. We first review recent results [17] on learning
time-invariant constraints via the KKT conditions (Sec. IV-A),
show how the framework can be extended to learn θp (Sec.
IV-B), and develop a method for extracting states which are
guaranteed to satisfy/violate pi (Sec. IV-C). In this section,
we will assume that demonstrations are locally-optimal for the
continuous component and feasible for the discrete component.

A. Learning time-invariant constraints via KKT

Consider a simplified variant of Prob. 1 that only involves
always satisfying a single AP; this reduces Prob. 1 to a
standard trajectory optimization problem:

minimize
ξxu

c(ξxu)

subject to g(η(x), θp) ≤ 0, ∀x ∈ ξxu
η̄(ξxu) ∈ S̄ ⊆ C

(4)

To ease notation, θc is assumed known in Sec. IV-V and rein-
troduced in Sec. VI. Suppose we rewrite the constraints of (4)
as hk(η(ξxu)) = 0, gk(η(ξxu)) ≤ 0, and g¬k(η(ξxu), θp) ≤
0, where k/¬k group together known/unknown constraints.
Then, with Lagrange multipliers λ and ν, the KKT conditions
(first-order necessary conditions for local optimality [10]) of
the jth demonstration ξdem

j , denoted KKT(ξdem
j), are:

Primal hk(η(xjt)) = 0, t = 1, . . . , Tj (5a)
feasibility: gk(η(xjt)) ≤ 0, t = 1, . . . , Tj (5b)

g¬k(η(xjt), θ
p) ≤ 0, t = 1, . . . , Tj (5c)

Lagrange mult. λj,kt ≥ 0, t = 1, . . . , Tj (5d)
nonnegativity: λj,¬kt ≥ 0, t = 1, . . . , Tj (5e)

Complementary λj,kt � gk(η(xjt)) = 0, t = 1, . . . , Tj (5f)
slackness: λj,¬kt � g¬k(η(xjt), θ

p) = 0, t = 1, . . . , Tj (5g)
Stationarity: ∇xtc(ξ

dem
j) + λj,kt

>∇xtg
k(η(xjt))

+ λj,¬kt
>∇xtg

¬k(η(xjt), θ
p) (5h)

+ νj,kt
>∇xth

k(η(xjt)) = 0, t = 1, . . . , Tj

where � denotes elementwise multiplication. We vectorize the
multipliers λj,kt ∈ RN

ineq
k , λj,¬kt ∈ RN

ineq
¬k , and νj,kt ∈ RN

ineq
k ,

i.e. λj,kt = [λj,kt,1 , . . . , λ
j,k

t,Nk
ineq

]>. We drop (5a)-(5b), as they
involve no decision variables. Then, we can find a constraint
which makes the Ns demonstrations locally-optimal by finding
a θp that satisfies the KKT conditions for each demonstration:

Problem 2 (KKT, exact):
find θp, {λj,kt ,λj,¬kt ,νj,kt }

Tj

t=1, j = 1, ..., Ns
subject to {KKT(ξdem

j)}Ns
j=1

If the demonstrations are only approximately locally-optimal,
Prob. 2 may become infeasible. In this case, we can relax
stationarity and complementary slackness to cost penalties:

Problem 3 (KKT, suboptimal):
minimize

θp,λj,k
t ,λj,¬k

t ,νj,k
t

∑Ns

j=1

(
‖stat(ξdem

j)‖1 + ‖comp(ξdem
j)‖1

)

subject to (5c)− (5e), ∀ξdem
j , j = 1, . . . , Ns

where stat(ξdem
j) denotes the LHS of Eq. (5h) and comp(ξdem

j)
denotes the concatenated LHSs of Eqs. (5f) and (5g). For some

♦ ♦
∧

p1 p2[Zj
1,1, ..., Z

j
1,Tj

]

[
∨Tj

i=1Z
j
1,i, ...,

∨Tj

i=Tj
Zj

1,i]

[Zj
2,1, ..., Z

j
2,Tj

]

[
∨Tj

i=1Z
j
2,i, ...,

∨Tj

i=Tj
Zj

2,i]

(
[
∨Tj

i=1Z
j
1,i, ...,

∨Tj

i=Tj
Zj

1,i]
)∧(

[
∨Tj

i=1Z
j
2,i, ...,

∨Tj

i=Tj
Zj

2,i]
)

Fig. 2. A DAG model of ϕ = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2). ξdem
j |= ϕ

iff the first entry at the root node, (
∨Tj

i=1 Z
j
1,i)

∧
(
∨Tj

i=1 Z
j
2,i), is true.

constraint parameterizations (i.e. unions of boxes [17]), Prob.
2-3 are MILP-representable and can be efficiently solved; we
discuss this in further detail in Sec. IV-B.

B. Modifying KKT for multiple atomic propositions

Having built intuition with the single AP case, we return
to Prob. 1 and discuss how the KKT conditions change in
the multiple-AP setting. We first adjust the primal feasibility
condition (5c). Recall from Sec. III that we can solve Prob.
1 by finding a continuous trajectory ξxu and a set of boolean
variables Z enforcing that ξxu |= ϕ(θs, θp). For each ξdem

j ,
let Zj(θpi) ∈ {0, 1}NAP×Tj , and let the (i, t)th index Zji,t(θ

p
i)

indicate if on ξdem
j , constraint state κt |= pi for parameters θpi :

Zji,t(θ
p
i) = 1⇔ κt ∈ Si(θpi); Zji,t(θ

p
i) = 0⇔ κt ∈ Ai(θpi) (6)

Since LTL operators have equivalent boolean encodings [41],
the truth value of ϕ(θs, θp) can be evaluated as a function of
Zj , θp, and θs, denoted as Φ(Zj , θp, θs) (we suppress θs, as
it is assumed known for now). For example, we can evaluate
the truth value of ϕ(θs, θp) = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2)

on ξdem
j by calculating Φ(Zj , θp) = (

∨Tj

t=1 Z
j
1,t(θ

p
1)) ∧

(
∨Tj

t=1 Z
j
2,t(θ

p
2)) (c.f. Fig. 2). Boolean encodings of common

temporal and logical operators can be found in [8]. Enforcing
that Zji,t(θ

p
i) satisfies (6) can be done with a big-M formulation

and binary variables sji,t ∈ {0, 1}N
ineq
i [7]:

gi(κ
j
t , θ

p
i) ≤M(1− sji,t), 1>

N
ineq
i

sji,t −N
ineq
i ≤MZji,t −Mε

gi(κ
j
t , θ

p
i) ≥ −Msji,t, 1>

N
ineq
i

sji,t −N
ineq
i ≥ −M(1− Zji,t)

(7)

where 1d is a d-dimensional ones vector, M is a large positive
number, and Mε ∈ (0, 1). In practice, M and Mε can be
carefully chosen to improve the solver’s performance. Note
that sji,m,t, the mth component of sji,t, encodes if κjt satisfies
a negated gi,m(κjt , θ

p
i), i.e. if sji,m,t = 1 or 0, then κjt satisfies

gi,m(κjt , θ
p
i) ≤ or ≥ 0. We can rewrite the enforced constraint

as gi(κ
j
t , θ

p
i)� (2sji,t−1) ≤ 0 for each i, t; we use this form

to adapt the remaining KKT conditions. While enforcing (7)
is hard in general, if gi(κ, θ

p
i) is affine in θpi for fixed κ,

(7) is MILP-representable; henceforth, we assume gi(κ, θ
p
i)

is of this form. Note that this can still describe non-convex
regions, as the dependency on κ can be nonlinear. To modify
complementary slackness (5g) for the multi-AP case, we note
that the elementwise product in (5g) is MILP-representable:[
λj,¬ki,t , −gi(κjt , θ

p
i)� (2sji,t − 1)

]
≤MQj

i,t, Qj
i,t12 ≤ 1

N
ineq
i

(8)

where Qj
i,t ∈ {0, 1}N

ineq
i ×2. Intuitively, (8) enforces that either

1) the Lagrange multiplier is zero and the constraint is inactive,

i.e. gi,m(κ, θpi) ∈ [−M, 0] or ∈ [0,M] if sji,m,t = 0 or 1, 2)
the Lagrange multiplier is nonzero and gi,m(κt, θ

p
i) = 0, or

both. The stationarity condition (5h) must also be modified to
consider whether a particular constraint is negated; this can be
done by modifying the second line of (5h) to terms of the form(
λj,¬ki,t

>� (2sji,t−1)
)
∇xt

g¬ki (η(xt), θ
p). The KKT conditions

for the multi-AP case, denoted KKTLTL(ξdem
j), then are:

Primal Equations (5a)− (5b), t = 1, . . . , Tj (9a)
feasibility: Equation (7), i = 1, . . . , NAP, t = 1, . . . , Tj (9b)

Lagrange Equation (5d), t = 1, . . . , Tj (9c)
nonneg.: λj,¬ki,t ≥ 0, i = 1, . . . , NAP, t = 1, . . . , Tj (9d)

Complem. Equation (5f), t = 1, . . . , Tj (9e)
slackness: Equation (8), i = 1, . . . , NAP, t = 1, . . . , Tj (9f)

Stationarity: ∇xtc(ξ
dem
j) + λj,kt

>∇xtg
k(η(xjt))

+

Nineq∑
i=1

[(
λj,¬ki,t

>� (2sji,t − 1)
)
∇xtg

¬k
i (η(xjt), θ

p
i)
]
(9g)

+ νj,kt
>∇xth

k(η(xjt)) = 0, t = 1, . . . , Tj

As mentioned in Sec. III, if κjt lies on the boundary of AP i, the
KKT conditions will automatically determine if κjt ∈ Si(θpi)
or κjt ∈ Ai(θpi) based on whichever option enables sji,t to
take values that satisfy (9). To summarize, our approach is
to 1) find Zj , which determines the feasibility of ξdem

j for
ϕ(θs, θp), 2) find sji,m,t, which link the value of Zj from
the AP-containment level (i.e. κjt ∈ Si(θpi)) to the single-
constraint level (i.e. gi,m(κjt , θ

p
i) ≤ 0), and 3) enforce that ξdem

j

satisfies the KKT conditions for the continuous optimization
problem defined by θp and fixed values of sji,t. Finally, we
can write the problem of recovering θp for a fixed θs as:

Problem 4 (Fixed template):

find θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
subject to {KKTLTL(ξdem

j)}Ns
j=1

We can also encode prior knowledge in Prob. 4, i.e. known
AP labels or a prior on θpi ; we discuss this in App. B of [16].

C. Extraction of guaranteed learned AP
As with the constraint learning problem, the LTL learning

problem is also ill-posed: there can be many θp which explain
the demonstrations. Despite this, we can measure our confi-
dence in the learned APs by checking if a constraint state κ is
guaranteed to satisfy/not satisfy pi. Denote Fi as the feasible
set of Prob. 4, projected onto Θp

i (feasible set of θpi). Then,
we say κ is learned to be guaranteed contained in/excluded
from Si(θpi) if for all θpi ∈ Fi, Gi(κ) ≤ 0 / ≥ 0. Denote by:

Gis
.
=
⋂
θ∈Fi

{κ | Gi(κ, θ) ≤ 0} (10) Gi¬s
.
=
⋂
θ∈Fi

{κ | Gi(κ, θ) ≥ 0}(11)

as the sets of κ which are guaranteed to satisfy/not satisfy pi.
To query if κ is guaranteed to satisfy/not satisfy pi, we can

check the feasibility of the following problem:
Problem 5 (Query containment of κ in/outside of Si(θpi)):

find θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
subject to {KKTLTL(ξdem

j)}Ns
j=1

Gi(κ, θ
p
i) ≥ 0 OR Gi(κ, θ

p
i) ≤ 0

If forcing κ to (not) satisfy pi renders Prob. 5 infeasible, we
can deduce that to be consistent with the KKT conditions,
κ must (not) satisfy pi. Similarly, continuous volumes of κ
which must (not) satisfy pi can be extracted by solving:

Problem 6 (Volume extraction):
minimize

ε,κnear,θ
p,λj,k

t ,λj,¬k
i,t ,

νj,k
t ,sji,t,Q

j
i,t,Z

j

ε

subject to {KKTLTL(ξdem
j)}Ns

j=1

‖κnear − κquery‖∞ ≤ ε
Gi(κnear, θ

p
i) > 0 OR Gi(κnear, θ

p
i) ≤ 0

Prob. 6 searches for the largest box centered around κquery
contained in Gis/Gi¬s. An explicit approximation of Gis/Gi¬s can
then be obtained by solving Prob. 6 for many different κquery.

V. LEARNING TEMPORAL LOGIC STRUCTURE (θp, θs)

We will discuss how to frame the search over LTL structures
θs (Sec. V-A), the learnability of θs based on demonstration
optimality (Sec. V-B), and how we combine notions of discrete
and continuous optimality to learn θs and θp (Sec. V-C).

A. Representing LTL structure

We adapt [31] to search for a directed acyclic graph (DAG),
D, that encodes the structure of a parametric LTL formula and
is equivalent to its parse tree, with identical subtrees merged.
Hence, each node still has at most two children, but can have
multiple parents. This framework enables both a complete
search over length-bounded LTL formulas and encoding of
specific formula templates through constraints on D [31].

Each node in D is labeled with an AP or operator from (1)
and has at most two children; binary operators like ∧ and ∨
have two, unary operators like ♦[t1,t2] have one, and APs have
none (see Fig. 2). Formally, a DAG with NDAG nodes, D =
(X,L,R), can be represented as: X ∈ {0, 1}NDAG×Ng , where
Xu,v = 1 if node u is labeled with element v of the grammar
and 0 else, and L,R ∈ {0, 1}NDAG×NDAG , where Lu,v = 1 /
Ru,v = 1 if node v is the left/right child of node u and 0 else.
The DAG is enforced to be well-formed (i.e. there is one root
node, no isolated nodes, etc.) with further constraints; see [31]
for more details. Since D defines a parametric LTL formula,
we set θs = D. To ensure that demonstration j satisfies the
LTL formula encoded by D, we introduce a satisfaction matrix
Sdem
j ∈ {0, 1}NDAG×Tj , where Sdem

j,(u,t) encodes the truth value
of the subformula for the subgraph with root node u at time t
(i.e., Sdem

j,(u,t) = 1 iff the suffix of ξdem
j starting at time t satisfies

the subformula). This can be encoded with constraints:

|Sdem
j,(u,t) − Φtuv| ≤M(1−Xu,v) (12)

where Φtuv is the truth value of the subformula for the
subgraph rooted at u if labeled with v, evaluated on the suffix
of ξdem

j starting at time t. The truth values are recursively
generated, and the leaf nodes, each labeled with some AP i,
have truth values set to Zji (θ

p
i). Next, we can enforce that the

demonstrations satisfy the formula encoded in D by enforcing:

Sdem
j,(root,1) = 1, j = 1, . . . , Ns (13)

We will also use synthetically-generated invalid trajectories
{ξ¬s}N¬s

j=1 (Sec. V-C). To ensure {ξ¬s}N¬s
j=1 do not satisfy the

formula, we add more satisfaction matrices S¬sj and enforce:
S¬sj,(root,1) = 0, j = 1, . . . , N¬s. (14)

After discussing learnability, we will show how D can be
integrated into the KKT-based learning framework in Sec. V-C.

B. A detour on learnability

When learning only the AP parameters θp (Sec. IV), we as-
sumed that the demonstrator chooses any feasible assignment
of Z consistent with the specification, then finds a locally-
optimal trajectory for those fixed Z. Feasibility is enough if the
structure θs of ϕ(θs, θp) is known: to recover θp, we just need
to find some Z which is feasible with respect to the known θs

(i.e. Φ(Zj , θp, θs) = 1) and makes ξdem
j locally-optimal; that

is, the demonstrator can choose an arbitrarily suboptimal high-
level plan as long as its low-level plan is locally-optimal for the
chosen high-level plan. However, if θs is also unknown, only
using boolean feasibility is not enough to recover meaningful
logical structure, as this makes any formula ϕ for which
Φ(Zj , θp, θs) = 1 consistent with the demonstration, including
trivially feasible formulas always evaluating to >. Consider
the example in Fig. 3: θp1 , θ

p
2 are known and we are given two

kinematic demonstrations minimizing path length under input
constraints, formula ϕ = (¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1]p2, and
start/goal constraints. Assuming boolean feasibility, we cannot
distinguish between formulas in ϕf , the set of formulas for
which the demonstrations are feasible in the discrete variables
and locally-optimal in the continuous variables.

On the other end of the spectrum, we can assume the
demonstrator is globally-optimal. This invalidates many struc-
tures in ϕf , i.e. the blue trajectory should not visit both S1 and
S2 if ϕ = (♦[0,Tj−1]p1) ∨ (♦[0,Tj−1]p2); we achieve a lower
cost by only visiting one. Using global optimality, we can
distinguish between all but the formulas with globally-optimal
trajectories of equal cost (formulas in ϕg), i.e. we cannot learn
the ordering constraint (¬p2 U[0,Tj−1] p1) from only the blue
trajectory, as it coincides with the globally-optimal trajectory
for ϕ = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2); we need the yellow
trajectory to distinguish the two. We now define an optimality
condition between feasibility and global optimality:

Definition 1 (Spec-optimality): A demonstration ξdem
j is µ-

spec-optimal (µ-SO), where µ ∈ Z+, if for every index set
ι
.
= {(i1, t1), ..., (iµ, tµ)} in I .

= {ι | im ∈ {1, ..., NAP}, tm ∈
{1, ..., Tj},m = 1, ..., µ}, at least one of the following holds:
• ξdem

j is locally-optimal after removing the constraints
associated with pim on κjtm , for all (im, tm) ∈ ι.

• For each index (im, tm) ∈ ι, the formula is not satisfied
for a perturbed Z, denoted Ẑ, where Ẑim,tm(θpim) =

¬Zim,tm(θpim), for all m = 1, . . . , µ, and Ẑi′,t′(θ
p
i′) =

Zi′,t′(θ
p
i′) for all (i′, t′) /∈ ι.

• ξdem
j is infeasible with respect to Ẑ.

Spec-optimality enforces a level of logical optimality: if a
state κjt on demonstration ξdem

j lies inside/outside of AP i (i.e.
Gi(κ

j
t , θ

p
i) ≤ 0 / ≥ 0), and the cost c(ξdem

j) can be lowered if

that AP constraint is relaxed, then the constraint must hold
to satisfy the specification. Intuitively, this means that the
demonstrator does not visit/avoid APs which will needlessly
increase the cost and are not needed to complete the task.
Further spec-optimality details are presented in App. B of [16].
As globally-optimal demonstrations must also be spec-optimal,
i.e. ϕg ⊆ ϕµ-SO (c.f. Lem. 1), we will use spec-optimality to
vastly reduce the search space when searching for formulas
which make the demonstrations globally-optimal (Sec. V-C).

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

ϕf

ϕµ-SO ϕg(♦p1)
∨(♦p2)

(♦p1) ∧ (♦p2)

♦((p1 ∨ ¬p1) ∧ (p2 ∨ ¬p2))

(¬p2 U p1) ∧ ♦p2

♦(p1∨¬p1)∨p2 p1∨♦(p2∨¬p2)

Fig. 3. L: demonstrations satisfyingϕ= (¬p2U[0,Tj]
p1)∧♦[0,Tj]

p2. R: some
demonstration-consistent formulas under various discrete optimality conditions.

Algorithm 1: Falsification

1 Input: {ξdem
j }Ns

j=1, S̄, Output: θ̂s, θ̂p
2 NDAG ← 0, {ξ¬s} ← {}
3 while ¬ consistent do
4 NDAG ← NDAG + 1
5 while Problem 8 is feasible do
6 θ̂s, θ̂p ← Problem 8({ξdem

j }Ns
j=1, {ξ

¬s}, NDAG)
7 for j = 1 to Ns do
8 ξjxu ← Problem 7(ξdem

j)

9 if c(ξjxu) <
c(ξdem

j)

(1+δ)
then {ξ¬s} ← {ξ¬s} ∪ ξxu ;

10 if
∨Ns
j=1(c(ξjxu) <

c(ξdem
j)

(1+δ)
) then consistent ← >; break;

C. Counterexample-guided framework
In this section, we will assume that the demonstrator returns

a solution to Prob. 1 which is boundedly-suboptimal with
respect to the globally optimal solution, in that c(ξdem

j) ≤
(1 + δ)c(ξ∗j), for a known δ, where c(ξ∗j) is the cost of
the optimal solution. This is reasonable as the demonstration
should be feasible (completes the task), but may be suboptimal
in terms of cost (i.e. path length, etc.), and δ can be estimated
from repeated demonstrations. Under this assumption, any
trajectory ξxu satisfying the known constraints η̄(ξxu) ∈ S̄
at a cost lower than the suboptimality bound, i.e. c(ξxu) ≤
c(ξdem

j)/(1 + δ), must violate ϕ(θs, θp) [14, 15]. We can use
this to reject candidate structures θ̂s and parameters θ̂p. If we
can find a counterexample trajectory that satisfies the candidate
LTL formula ϕ(θ̂s, θ̂p) at a lower cost by solving Prob. 7,

Problem 7 (Counterexample search):
find ξxu

subject to ξxu |= ϕ(θ̂s, θ̂p)

η̄(ξxu) ∈ S̄(ξdem
j) ⊆ C

c(ξxu) < c(ξdem
j)/(1 + δ)

then ϕ(θ̂s, θ̂p) cannot be consistent with the demonstration.
Using this insight, we search for consistent θ̂s, θ̂p by iteratively
proposing candidate θ̂s, θ̂p by solving Prob. 8 (a modified
Prob. 4, to be discussed shortly) and searching for counterex-
amples proving the parameters are invalid, eventually returning
a consistent formula; this is summarized in Alg. 1. We present
falsification loop heuristics in App. C of [16]. We now discuss
the core components of Alg. 1 (Probs. 7 and 8) in detail.

Counterexample generation: We propose different methods
to solve Prob. 7 based on the dynamics. For piecewise affine
systems, Prob. 7 can be solved directly as a MILP [41].
However, the LTL planning problem for general nonlinear
systems is challenging [20, 30]. Probabilistically-complete
sampling-based methods [20, 30] or falsification tools [2] can
be applied, but can be slow on high-dimensional systems.
For simplicity and speed, we solve Prob. 7 by finding a
trajectory ξ̂xu |= ϕ(θ̂s, θ̂p) and boolean assignment Z for a
kinematic approximation of the dynamics via solving a MILP,
then warm-start the nonlinear optimizer with ξ̂xu and constrain
it to be consistent with Z, returning some ξxu. If c(ξxu) <
c(ξdem

j)/(1 + δ), then we return, otherwise, we generate a
new ξ̂xu. Whether this method returns a valid counterexample
depends on if the nonlinear optimizer converges to a feasible
solution; hence, this approach is not complete. However, we
show that it works well in practice (see Sec. VIII).
Unifying parameter and structure search: When both θp

and θs are unknown, they must be jointly learned due to their
interdependence: learning the structure involves finding an
unknown boolean function of θp, parameterized by θs, while
learning the AP parameters θp requires knowing which APs
were selected or negated, determined by θs. This can be done
by combining the KKT (9) and DAG constraints (12)-(14) into
a single MILP, which can then be integrated into Alg. 1:

Problem 8 (Learning θp, θs by global optimality, KKT):
find D,Sdem

j ,S¬sj , θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
s.t. {KKTLTL(ξdem

j)}Ns
j=1

well-formedness constraints for D
Equations (12)− (13), j = 1, . . . , Ns
Equation (14), j = 1, . . . , N¬s

In Prob. 8, since 1) the Zji (θ
p
i) at the leaf nodes of D are

constrained via (7) to be consistent with θp and ξdem
j and 2) the

formula defined by D is constrained to be satisfied for the Z
via (12), the low-level demonstration ξdem

j must be feasible for
the overall LTL formula defined by the DAG, i.e. ϕ(θs, θp),
where θs = D. KKTLTL(ξdem

j) then chooses AP parameters θp

to make ξdem
j locally-optimal for the continuous optimization

induced by a fixed realization of boolean variables. Overall,
Prob. 8 finds a pair of θp and θs which makes ξdem

j locally-
optimal for a fixed Zj which is feasible for ϕ(θs, θp), i.e.
Φ(Zj , θp, θs) = 1, for all j. To also impose the spec-optimality
conditions (Def. 1), we can add these constraints to Prob. 8:

S
dem,Ẑj

n
j,(root,1) ≤ b

1
nj (15a)

‖λj,¬kim,tm

>∇xtg
¬k
im(η(xjt), θ

p
im

)‖ ≤M(1− b2nj), m = 1, ..., µ (15b)

g¬kim(η(xjt), θ
p
im

) ≥ −M(1− ejnm), m = 1, ..., µ (15c)

1>
N

im
ineq

ejnm ≥ Ẑjimtm(θpim)− b3nj , m = 1, ..., µ (15d)

g¬kim(η(xjt), θ
p
im

) ≤M(Ẑjim,tm + b3nj) (15e)

b1nj + b2nj + b3nj ≤ 1, bnj ∈ {0, 1}3, ejnm ∈ {0, 1}N
im
ineq (15f)

for n = 1, . . . , |I|, where S
dem,Ẑj

n
j is the satisfaction matrix

for ξdem
j where the leaf nodes are perturbed to take the values

of Ẑjn, where n indexes an ι ∈ I. (15a) models the case when
the formula is not satisfied, (15b) models when ξdem

j remains

locally-optimal upon relaxing the constraint (zero stationarity
contribution), and (15c)-(15e) model the infeasible case.

Remark 1: If µ = 1, the infeasibility constraints (15c)-(15e)
can be ignored (since together with (15a), they are redundant),
and we can modify (15f) to b1nj + b2nj ≤ 1, bnj ∈ {0, 1}2.

Remark 2: It is only useful to enforce spec-optimality on
index pairs (i1, t1), . . . , (iµ, tµ) where Gim(κjtm , θ

p
im

) = 0 for
all m = 1, ..., µ; otherwise the infeasibility case automatically
holds. If θp is unknown, we won’t know a priori when this
holds, but if θp are (approximately) known, we can pre-process
so that spec-optimality is only enforced for salient ι ∈ I.

Remark 3: Prob. 8 with spec-optimality constraints (15) can
be used to directly search for a ϕ(θ̂s, θ̂p) which can be satisfied
by visiting a set of APs in any order (i.e. surveillance-type
tasks) without using the loop in Alg. 1, since (15) directly
enforces that any AP (1-SO) or a set of APs (µ-SO) which
were visited and which prevent the trajectory cost from being
lowered must be visited for any candidate ϕ(θ̂s, θ̂p).

VI. LEARNING COST FUNCTION PARAMETERS (θp, θs, θc)
If θc is unknown, it can be learned by modifying KKTLTL

to also consider θc in the stationarity condition: all terms like
∇ξxu

c(ξdem
j) should be modified to ∇ξxu

c(ξdem
j , θc). When

c(·, ·) is affine in θc for fixed ξdem
j , the stationarity condition

is representable with a MILP constraint. However, the falsifi-
cation loop in Alg. 1 requires a fixed cost function in order
to judge if a trajectory is a counterexample. Thus, one valid
approach is to first solve Prob. 8, searching also for θc, then
fixing θc, and running Alg. 1 for the fixed θc (see App. A
of [16]). Note that this procedure either eventually returns an
LTL formula consistent with the fixed θc, or Alg. 1 becomes
infeasible, and a new θc must be generated and Alg. 1 rerun.
While this procedure is guaranteed to eventually return a set
of θc, θs, and θp which make each ξdem

j globally-optimal with
respect to c(ξxu, θc) under ϕ(θs, θp), it may require iterating
through an infinite number of candidate θc and hence is not
guaranteed to terminate in finite time (Cor. C.3). Nevertheless,
we note that for certain simple classes of formulas (Rem. 3),
a consistent set of θc, θs, and θp can be recovered in one shot.

VII. THEORETICAL ANALYSIS

In this section, we prove that our method is complete under
some assumptions, without (Thm. 1) or with (Cor. 2) spec-
optimality, and that we can compute guaranteed conservative
estimates of Si/Ai (Thm. 2). Finally, we show using stronger
optimality assumptions on the demonstrator shrinks the set of
consistent formulas (Thm. 3). See App. C of [16] for proofs.

Assumption 1: Prob. 7 is solved with a complete planner.
Assumption 2: Each demonstration is locally-optimal (i.e.

satisfies the KKT conditions) for fixed boolean variables.
Assumption 3: The true parameters θp, θs, and θc are in

the hypothesis space of Prob. 8: θp ∈ Θp, θs ∈ Θs, θc ∈ Θc.
Theorem 1 (Completeness & consistency, unknown θs, θp):

Under Assumptions 1-3, Alg. 1 is guaranteed to return a
formula ϕ(θs, θp) such that 1) ξdem

j |= ϕ(θs, θp) and 2) ξdem
j

is globally-optimal under ϕ(θs, θp), for all j, 3) if such a
formula exists and is representable by the provided grammar.

Corollary 1 (Shortest formula): Let N∗ be the minimal
size DAG for which there exists (θp, θs) such that ξdem

j |=
ϕ(θs, θp) for all j. Under Assumptions 1-3, Alg. 1 is guaran-
teed to return a DAG of length N∗.

Lemma 1: All globally-optimal trajectories are µ-SO.
Corollary 2 (Alg. 1 with spec-optimality): By modifying

Alg. 1 so that Prob. 8 uses constraints (15), Alg. 1 still returns
a consistent solution ϕ(θ̂s, θ̂p) if one exists, i.e. each ξdem

j is
feasible and globally optimal for each ϕ(θ̂s, θ̂p).

Remark 4: Please refer to App. C of [16] for a corollary
proving that the modified falsification loop described in Sec.
VI is guaranteed to return a consistent formula, if it terminates.

Theorem 2 (Conservativeness for unknown θp): Suppose
that θs and θc are known, and θp is unknown. Then, extracting
Gis and Gi¬s, as defined in (10)-(11), from the feasible set of
Prob. 4 projected onto Θp

i (denoted Fi), returns Gis ⊆ Si and
Gi¬s ⊆ Ai, for all i ∈ {1, . . . , NAP}.

Theorem 3 (Distinguishability): For the consistent formula
sets defined in Sec. V-B, we have ϕg ⊆ ϕµ̃-SO ⊆ ϕµ̂-SO ⊆ ϕf ,
for µ̃ > µ̂.

VIII. EXPERIMENTAL RESULTS

We show that our algorithm outperforms a competing
method, can learn shared task structure from demonstrations
across environments, and can learn LTL formulas θp, θs and
uncertain cost functions θc on high-dimensional problems.
Please refer to the supplementary video for visualizations of
the results: https://youtu.be/cpUEcWCUMqc.

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

2

3

4

Fig. 4. Toy example for baseline comparison [23].

Baseline comparison: Likely the closest method to ours is
[23], which learns a pSTL formula that is tightly satisfied by
the demonstrations via solving a nonconvex problem to lo-
cal optimality: arg maxθp minj τ(θp, ξdem

j), where τ(θp, ξdem
j)

measures how tightly ξdem
j fits the learned formula. We run the

authors’ code [22] on a toy problem (see Fig. 4), where the
demonstrator has kinematic constraints, minimizes path length,
and satisfies start/goal constraints and ϕ = ♦[0,8]p1, where
x |= p1 ⇔ [I2×2,−I2×2]>x ≤ [3, 2,−1, 2]> = [3, θp1]

>. We
assume the structure θs is known, and we aim to learn θp

to explain why the demonstrator deviated from an optimal
straight-line path to the goal. Solving Prob. 6 returns G1s = S1
(Fig. 4, right). On the other hand, we run TeLEx multiple
times, converging to different local optima, each corresponding
to a “tight” θp (Fig. 4, center): TeLEx cannot distinguish
between multiple different “tight” θp, which makes sense, as
the method tries to find any “tight” solution. This example
suggests that if the demonstrations are goal-directed, a method
that leverages their optimality is likely to better explain them.
Learning shared task structure: In this example, we show
that our method can extract logical structure shared between
demonstrations that complete the same high-level task, but in

different environments (Fig. 5). A point robot must first go to
the mug (p1), then go to the coffee machine (p2), and then
go to goal (p3) while avoiding obstacles (p4, p5). As the floor
maps differ, θp also differ, and are assumed known. We add
two relevant primitives to the grammar, sequence: ϕ1 Q ϕ2

.
=

¬ϕ2 U[0,Tj−1] ϕ1, enforcing that ϕ2 cannot occur until after ϕ1

has occurred for the first time, and avoid: Vϕ .
= �[0,Tj−1]¬ϕ,

enforcing ϕ never holds over [1, Tj]. Then, the true formula
is: ϕ∗ = Vp4 ∧ Vp5 ∧ (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3.

Suppose first that we are given the blue demonstration in
Env. 2. Running Alg. 1 with 1-SO constraints (15) terminates
in one iteration at NDAG = 14 with ϕ0 = Vp4 ∧ Vp5 ∧
♦[0,Tj−1]p2 ∧♦[0,Tj−1]p3 ∧ (p1 Q p2): always avoid obstacles
1 and 2, eventually reach coffee and goal, and visit mug
before coffee. This formula is insufficient to complete the true
task (the ordering constraint between coffee and goal is not
learned). This is because the optimal trajectories satisfying ϕ0

and ϕ∗ are the same cost, i.e. both ϕ0 and ϕ∗ are consistent
with the demonstration and could have been returned, and
ϕ0, ϕ

∗ ∈ ϕg (c.f. Sec. VII). Now, we also use the blue
demonstration from Env. 1 (two examples total). Running Alg.
1 terminates in two iterations at NDAG = 14 with the formulas
ϕ1 = Vp4 ∧ Vp5 ∧ ♦[0,Tj−1]p1 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3
and ϕ2 = ϕ∗. Since the demonstration in Env. 1 doubles back
to the coffee before going to goal, increasing its cost over
first going to goal and then to coffee, the ordering constraint
between the two is learnable. We also plot the generated coun-
terexample (Fig. 5, yellow), which achieves a lower cost, as ϕ1

involves no ordering constraints. We use the learned formula
to plan a path completing the task in a new environment
(App. E of [16]). Overall, this example suggests we can use
demonstrations in different environments to learn shared task
structure and disambiguate between potential explanations.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

Fig. 5. Different environments (different θp) with shared task (same θs).

p6

p5

p3p2
p1

Fig. 6. Demonstrations and counterexamples for the manipulation task.

Multi-stage manipulation task: We consider the setup in
Figs. 1, 6 of teaching a 7-DOF Kuka iiwa robot arm to
prepare a drink: first move the end effector to the button on the
faucet (p1), then grasp the cup (p2), then move the cup to the
customer (p3), all while avoiding obstacles. After grasping the
cup, an end-effector pose constraint (α, β, γ) ∈ S4(θp4) (p4)
must be obeyed. We add two “distractor” APs: a different cup
(p5) and a region (p6) where the robot can hand off the cup.
We also modify the grammar to include the sequence operator
Q, (defined as before), and add an “after” operator ϕ1 T ϕ2

.
=

https://youtu.be/cpUEcWCUMqc

�[0,Tj−1](ϕ2 → �[0,Tj−1]ϕ1), that is, ϕ1 must hold after and
including the first timestep where ϕ2 holds. The true formula
is: ϕ∗ = (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3 ∧ (p4 T p2).
We use a kinematic arm model: jit+1 = jit + uit, i = 1, . . . , 7,
where ‖ut‖22 ≤ 1 for all t. Two suboptimal human demon-
strations (δ = 0.7) optimizing c(ξxu) =

∑T−1
t=1 ‖jt+1 − jt‖22

are recorded in virtual reality. We assume we have nominal
estimates of the AP regions Si(θpi,nom) (i.e. from a vision
system), and we want to learn the θs and θp of ϕ∗.

We run Alg. 1 with the 1-SO constraints (15), and encode
the nominal θpi by enforcing that Θp

i = {θpi | ‖θpi −θpi,nom‖1 ≤
0.05}. At NDAG = 11, the inner loop runs for 3 iterations
(each taking 30 minutes on an i7-7700K processor), returning
candidates ϕ1 = (p1Qp3)∧(p2Qp3)∧(♦[0,Tj−1]p3)∧(p4T p3),
ϕ2 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1]p3) ∧ (p4T p2), and
ϕ3 = ϕ∗. ϕ1 says that before going to the customer, the
robot has to visit the button and cup in any order, and then
must satisfy the pose constraint after visiting the cup. ϕ2 has
the meaning of ϕ∗, except the robot can go to the button
or cup in any order. Note that ϕ3 is a stronger formula
than ϕ2, and ϕ2 than ϕ1; this is a natural result of the
falsification loop, which returns incomparable or stronger
formulas with more iterations, as the counterexamples rule out
weaker or equivalent formulas. Also note that the distractor
APs don’t feature in the learned formulas, even though both
demonstrations pass through p6. This happens for two reasons:
we increase NDAG incrementally and there was no room to
include distractor objects in the formula (since spec-optimality
may enforce that p1-p3 appear in the formula), and even if
NDAG were not minimal, p6 would not be guaranteed to show
up, since visiting p6 does not increase the trajectory cost.

We plot the counterexamples in Fig. 6: blue/purple are from
iteration 1; orange is from iteration 2. They save cost by violat-
ing the ordering and pose constraints: from the left start state,
the robot can save cost if it visits the cup before the button
(blue, orange trajectories), and loosening the pose constraint
can reduce joint space cost (orange, purple trajectories). The
right demonstration produces no counterexample in iteration
2, as it is optimal for this formula (changing the order does not
lower the optimal cost). For the learned θp, θpi = θpi,nom except
for p2, p3, where the box shrinks slightly from the nominal;
this is as doing so enables a Lagrange multiplier can be
increased to reduce the KKT residual. We use the learned θp,
θs to plan formula-satisfying trajectories from new start states
(see App. F of [16]). Overall, this example suggests that Alg.
1 can recover θp and θs on a high-dimensional problem and
ignore distractor APs, despite demonstration suboptimality.
Multi-stage quadrotor surveillance: We demonstrate that we
can jointly learn θp, θs, and θc in one shot on a 12D nonlinear
quadrotor system (see App. G of [16]). We are given four
demonstrations of a quadrotor surveilling a building (Fig. 7):
it needs to visit three regions of interest (Fig. 7, green) while
not colliding with the building. All visitation constraints can
be learned directly with 1-SO (see Rem. 3) and collision-
avoidance can also be learned with 1-SO, with enough demon-
strations. The true formula is ϕ∗ = ♦[0,Tj−1]p1∧♦[0,Tj−1]p2∧

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

Fig. 7. Quadrotor surveillance demonstrations and learning curves.

♦[0,Tj−1]p3∧�[0,Tj−1]¬p4, where p1-p3 represent the regions
of interest and p4 is the building. We aim to learn θpi for the
parameterization Si(θpi) = {[I3×3,−I3×3]>[x, y, z]> ≤ θpi },
assuming θp4,6 = 0 (the building is not hovering). The demon-
strations minimize c(ξxu, θc) =

∑
r∈R

∑T−1
t=1 γr(rt+1 − rt)2,

where R = {x, y, z, α̇, β̇, γ̇} and γr = 1, i.e. equal penalties to
path length and angular acceleration. We assume γr ∈ [0.1, 1]
and is unknown: we want to learn the weights for each state.

Solving Prob. 8 with 1-SO conditions (at NDAG = 12) takes
44 minutes and recovers θp, θs, and θc in one shot. To evaluate
the learned θp, we show in Fig. 7 that the coverage of the
Gis and Gi¬s for each pi (computed by fixing the learned θs

and running Prob. 6) monotonically increases with more data.
In terms of recovered θs, with one demonstration, we return
ϕ1 = ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3 ∧ ♦[0,Tj−1]p4 ∧�[0,Tj−1]¬p1.
This highlights the fact that since we are not provided labels,
there is an inherent ambiguity of how to label the regions
of interest (i.e. pi, i = 1, . . . , 3 can be associated with any
of the green boxes in Fig. 7 and be consistent). Also, one
of the regions of interest in ϕ gets labeled as the obstacle
(i.e. p1 and p4 are swapped), since one demonstration is not
enough to disambiguate which of the four pi should touch the
ground. Note that this ambiguity can be eliminated if labels are
provided (see App. B of [16]) or if more demonstrations are
provided: for two and more demonstrations, we learn ϕi =
ϕ∗, i = 2, . . . , 4. When using all four demonstrations, we
recover the cost parameters θc and structure θs exactly, i.e.
ϕ(θ̂s, θ̂p) = ϕ∗, and fixing the learned θs and running Prob. 6
returns Gis = Si and Gi¬s = Ai, for all i. The learned θc, θs,
and θp are used to plan trajectories that efficiently complete the
task for different initial and goal states (see App. G of [16]).
Overall, this example suggests that our method can jointly
recover consistent θp, θs, and θc for high-dimensional systems.

IX. CONCLUSION

We present an method that learns LTL formulas with
unknown atomic propositions and logical structure from only
positive demonstrations, assuming the demonstrator is opti-
mizing an uncertain cost function. We use both implicit (KKT)
and explicit (algorithmically generated lower-cost trajectories)
optimality conditions to reduce the hypothesis space of LTL
specifications consistent with the demonstrations. In future
work, we aim to robustify our method to mislabeled demon-
strations, explicitly consider demonstration suboptimality aris-
ing from risk, and reduce our method’s computation time.
Acknowledgments: We thank Daniel Neider for insightful discussions. This
work is supported in part by an NDSEG fellowship, NSF grants IIS-1750489,
ECCS-1553873, and ONR grants N00014-17-1-2050, N00014-18-1-2501.

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learn-
ing via inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2004. doi:
10.1145/1015330.1015430.

[2] Yashwanth Annpureddy, Che Liu, Georgios E. Fainekos,
and Sriram Sankaranarayanan. S-taliro: A tool for tem-
poral logic falsification for hybrid systems. In Tools and
Algorithms for the Construction and Analysis of Systems
- 17th International Conference, TACAS 2011, Held
as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings, pages
254–257, 2011.

[3] Brandon Araki, Kiran Vodrahalli, Thomas Leech, Cris-
tian Ioan Vasile, Mark Donahue, and Daniela Rus. Learn-
ing to plan with logical automata. In Robotics: Science
and Systems XV, University of Freiburg, Freiburg im
Breisgau, Germany, June 22-26, 2019, 2019.

[4] Brenna Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57:469–483,
2009.

[5] Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT Press, 2008. ISBN 978-0-262-
02649-9.

[6] Alexey Bakhirkin, Thomas Ferrère, and Oded Maler.
Efficient parametric identification for STL. In Proceed-
ings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week),
HSCC 2018, Porto, Portugal, April 11-13, 2018, pages
177–186, 2018. doi: 10.1145/3178126.3178132. URL
https://doi.org/10.1145/3178126.3178132.

[7] Dimitris Bertsimas and John Tsitsiklis. Introduction to
Linear Optimization. Athena Scientific, 1st edition, 1997.
ISBN 1886529191.

[8] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo
Latvala, and Viktor Schuppan. Linear encodings of
bounded LTL model checking. Logical Methods in
Computer Science, 2(5), 2006.

[9] Giuseppe Bombara, Cristian Ioan Vasile, Francisco
Penedo, Hirotoshi Yasuoka, and Calin Belta. A decision
tree approach to data classification using signal temporal
logic. In Proceedings of the 19th International Con-
ference on Hybrid Systems: Computation and Control,
HSCC 2016, Vienna, Austria, April 12-14, 2016, pages
1–10, 2016.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, New York, NY,
USA, 2004. ISBN 0521833787.

[11] Sara Bufo, Ezio Bartocci, Guido Sanguinetti, Massimo
Borelli, Umberto Lucangelo, and Luca Bortolussi. Tem-
poral logic based monitoring of assisted ventilation in
intensive care patients. In Leveraging Applications of
Formal Methods, Verification and Validation. Specialized

Techniques and Applications - 6th International Sympo-
sium, ISoLA 2014, Imperial, Corfu, Greece, October 8-
11, 2014, Proceedings, Part II, pages 391–403, 2014.

[12] Sylvain Calinon and Aude Billard. A probabilistic
programming by demonstration framework handling con-
straints in joint space and task space. In International
Conference on Intelligent Robots and Systems (IROS),
2008. doi: 10.1109/IROS.2008.4650593.

[13] Alberto Camacho and Sheila A. McIlraith. Learning
interpretable models expressed in linear temporal logic.
In Proceedings of the Twenty-Ninth International Con-
ference on Automated Planning and Scheduling, ICAPS
2018, Berkeley, CA, USA, July 11-15, 2019, pages 621–
630, 2019.

[14] Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learn-
ing constraints from demonstrations. Workshop on the Al-
gorithmic Foundations of Robotics (WAFR), 2018. URL
https://arxiv.org/abs/1812.07084.

[15] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learn-
ing parametric constraints in high dimensions from
demonstrations. 3rd Conference on Robot Learning
(CoRL), 2019. URL https://arxiv.org/abs/1910.03477.

[16] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Ex-
planing multi-stage tasks by learning temporal logic
formulas from suboptimal demonstrations. Robotics:
Science and Systems XVI (RSS), extended version, 2020.
URL https://arxiv.org/abs/2006.02411.

[17] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learn-
ing constraints from locally-optimal demonstrations un-
der cost function uncertainty. In Robotics and Automa-
tion Letters (RA-L), 2020. URL https://arxiv.org/abs/
2001.09336.

[18] Stéphane Demri and Philippe Schnoebelen. The com-
plexity of propositional linear temporal logics in simple
cases. Inf. Comput., 174(1):84–103, 2002.

[19] Peter Englert, Ngo Anh Vien, and Marc Toussaint.
Inverse kkt: Learning cost functions of manipulation
tasks from demonstrations. International Journal of
Robotics Research (IJRR), 36(13-14):1474–1488, 2017.
doi: 10.1177/0278364917745980.

[20] Jie Fu, Ivan Papusha, and Ufuk Topcu. Sampling-
based approximate optimal control under temporal logic
constraints. In Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2017, Pittsburgh, PA, USA, April 18-20,
2017, pages 227–235, 2017.

[21] Sumit Kumar Jha, Edmund M. Clarke, Christopher James
Langmead, Axel Legay, André Platzer, and Paolo Zuliani.
A bayesian approach to model checking biological sys-
tems. In Computational Methods in Systems Biology, 7th
International Conference, CMSB 2009, Bologna, Italy,
August 31-September 1, 2009. Proceedings, pages 218–
234, 2009.

[22] Susmit Jha. susmitjha/telex. URL https://github.com/
susmitjha/TeLEX.

[23] Susmit Jha, Ashish Tiwari, Sanjit A. Seshia, Tuhin Sahai,

https://doi.org/10.1145/3178126.3178132
https://arxiv.org/abs/1812.07084
https://arxiv.org/abs/1910.03477
https://arxiv.org/abs/2006.02411
https://arxiv.org/abs/2001.09336
https://arxiv.org/abs/2001.09336
https://github.com/susmitjha/TeLEX
https://github.com/susmitjha/TeLEX

and Natarajan Shankar. Telex: learning signal temporal
logic from positive examples using tightness metric.
Formal Methods in System Design, 54(3):364–387, 2019.

[24] Miles Johnson, Navid Aghasadeghi, and Timothy Bretl.
Inverse optimal control for deterministic continuous-time
nonlinear systems. In IEEE Conference on Decision and
Control (CDC), 2013.

[25] Arezou Keshavarz, Yang Wang, and Stephen P. Boyd.
Imputing a convex objective function. In IEEE Inter-
national Symposium on Intelligent Control (ISIC), pages
613–619. IEEE, 2011.

[26] Zhaodan Kong, Austin Jones, Ana Medina Ayala,
Ebru Aydin Gol, and Calin Belta. Temporal logic
inference for classification and prediction from data.
In 17th International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), HSCC’14,
Berlin, Germany, April 15-17, 2014, pages 273–282,
2014.

[27] Zhaodan Kong, Austin Jones, and Calin Belta. Temporal
logics for learning and detection of anomalous behavior.
IEEE Transactions on Automatic Control, 62(3):1210–
1222, 2017.

[28] Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen
Thananjeyan, Lauren Miller, Florian T. Pokorny, and
Ken Goldberg. SWIRL: A sequential windowed inverse
reinforcement learning algorithm for robot tasks with
delayed rewards. International Journal of Robotics
Research (IJRR), 38(2-3), 2019.

[29] Karen Leung, Nikos Aréchiga, and Marco Pavone. Back-
propagation for parametric STL. In 2019 IEEE Intelligent
Vehicles Symposium, IV 2019, Paris, France, June 9-
12, 2019, pages 185–192, 2019. doi: 10.1109/IVS.
2019.8814167. URL https://doi.org/10.1109/IVS.2019.
8814167.

[30] Lening Li and Jie Fu. Sampling-based approximate opti-
mal temporal logic planning. In 2017 IEEE International
Conference on Robotics and Automation, ICRA 2017,
Singapore, Singapore, May 29 - June 3, 2017, pages
1328–1335, 2017.

[31] Daniel Neider and Ivan Gavran. Learning linear temporal
properties. In 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, October 30 -
November 2, 2018, pages 1–10, 2018.

[32] Andrew Y. Ng and Stuart J. Russell. Algorithms for
inverse reinforcement learning. In International Confer-
ence on Machine Learning (ICML), pages 663–670, San
Francisco, CA, USA, 2000. ISBN 1-55860-707-2.

[33] A. L. Pais, Keisuke Umezawa, Yoshihiko Nakamura,
and A. Billard. Learning robot skills through motion
segmentation and constraints extraction. ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), 2013.

[34] Ivan Papusha, Min Wen, and Ufuk Topcu. Inverse
optimal control with regular language specifications. In
2018 Annual American Control Conference, ACC 2018,
Milwaukee, WI, USA, June 27-29, 2018, pages 770–777,

2018.
[35] Pravesh Ranchod, Benjamin Rosman, and George Dim-

itri Konidaris. Nonparametric bayesian reward segmen-
tation for skill discovery using inverse reinforcement
learning. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2015, Hamburg,
Germany, September 28 - October 2, 2015, pages 471–
477, 2015.

[36] Nathan D. Ratliff, J. Andrew Bagnell, and Martin Zinke-
vich. Maximum margin planning. In Machine Learning,
Proceedings of the Twenty-Third International Confer-
ence (ICML 2006), Pittsburgh, Pennsylvania, USA, June
25-29, 2006, pages 729–736, 2006.

[37] Francesco Sabatino. Quadrotor control: modeling, non-
linearcontrol design, and simulation, 2015.

[38] Ankit Shah, Pritish Kamath, Julie A. Shah, and Shen
Li. Bayesian inference of temporal task specifications
from demonstrations. In Advances in Neural Information
Processing Systems (NeurIPS) 2018, pages 3808–3817,
2018.

[39] Prashant Vaidyanathan, Rachael Ivison, Giuseppe Bom-
bara, Nicholas A. DeLateur, Ron Weiss, Douglas Dens-
more, and Calin Belta. Grid-based temporal logic infer-
ence. In 56th IEEE Annual Conference on Decision and
Control, CDC 2017, Melbourne, Australia, December 12-
15, 2017, pages 5354–5359, 2017.

[40] Marcell Vazquez-Chanlatte, Susmit Jha, Ashish Tiwari,
Mark K. Ho, and Sanjit A. Seshia. Learning task specifi-
cations from demonstrations. In Advances in Neural In-
formation Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pages
5372–5382, 2018.

[41] Eric M. Wolff, Ufuk Topcu, and Richard M. Murray.
Optimization-based trajectory generation with linear tem-
poral logic specifications. In 2014 IEEE International
Conference on Robotics and Automation, ICRA 2014,
Hong Kong, China, May 31 - June 7, 2014, pages 5319–
5325, 2014.

[42] Zhe Xu, Alexander J. Nettekoven, A. Agung Julius,
and Ufuk Topcu. Graph temporal logic inference for
classification and identification. In 58th IEEE Conference
on Decision and Control, CDC 2019, Nice, France,
December 11-13, 2019, pages 4761–4768. IEEE, 2019.

[43] Weichao Zhou and Wenchao Li. Safety-aware appren-
ticeship learning. In Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part I, pages 662–680,
2018.

https://doi.org/10.1109/IVS.2019.8814167
https://doi.org/10.1109/IVS.2019.8814167

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Learning Atomic Proposition Parameters (p)
	Learning time-invariant constraints via KKT
	Modifying KKT for multiple atomic propositions
	Extraction of guaranteed learned AP

	Learning Temporal Logic Structure (p , s)
	Representing LTL structure
	A detour on learnability
	Counterexample-guided framework

	Learning Cost Function Parameters (p , s , c)
	Theoretical Analysis
	Experimental Results
	Conclusion

