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Abstract—This paper presents INVIGORATE, a robot system
that interacts with human through natural language and grasps
a specified object in clutter. The objects may occlude, obstruct, or
even stack on top of one another. INVIGORATE embodies several
challenges: (i) infer the target object among other occluding
objects, from input language expressions and RGB images, (ii)
infer object blocking relationships (OBRs) from the images,
and (iii) synthesize a multi-step plan to ask questions that
disambiguate the target object and to grasp it successfully.
We train separate neural networks for object detection, for
visual grounding, for question generation, and for OBR detection
and grasping. They allow for unrestricted object categories and
language expressions, subject to the training datasets. However,
errors in visual perception and ambiguity in human languages
are inevitable and negatively impact the robot’s performance.
To overcome these uncertainties, we build a partially observable
Markov decision process (POMDP) that integrates the learned
neural network modules. Through approximate POMDP plan-
ning, the robot tracks the history of observations and asks
disambiguation questions in order to achieve a near-optimal
sequence of actions that identify and grasp the target object.
INVIGORATE combines the benefits of model-based POMDP
planning and data-driven deep learning. Preliminary experiments
with INVIGORATE on a Fetch robot show significant benefits of
this integrated approach to object grasping in clutter with natural
language interactions. A demonstration video is available online1.

I. INTRODUCTION

Robots are gradually, but surely entering into our daily life.
To become effective human helpers, robots must understand
our physical world through visual perception and interact with
humans through natural languages. Consider the robot task of
following a human instruction to retrieve an object from a
cluttered kitchen table (Fig. 1). This seemingly simple task
presents multiple challenges:
• Infer the target object among other occluding objects

from input language expressions and images;
• Infer object blocking relationships from images;
• Synthesize a multi-step plan to ask questions, if neces-

sary, to disambiguate the target object, and retrieve it
successfully despite other obstructing objects.

Advances in deep learning provide powerful neural network
(NN) models to process complex visual and language inputs
and thus address the first two challenges. However, they alone
are not sufficient for two main reasons. First, visual inputs are
complex and noisy, which invariably cause errors in perceptual
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“Pass me my blue notebook” “Pass me the remote controller”

Do you mean the 
remote on the right?

(a) (b)

Fig. 1: Interactive visual grounding and grasping in clutter. The
robot receives from the human a natural language instruction
to retrieve an object. It tries to identify the target object
visually, asks questions to disambiguate the target object, if
necessary, and eventually grasps the object. (a) Perceptual
uncertainties. The object detection module fails to detect
the target object because of visual occlusion. (b) Language
ambiguity. The instruction is ambiguous, as there are two
objects both satisfying the instruction. The robot then asks
questions to disambiguate.

processing. Cluttered scenes are inherently partially observ-
able and exacerbate the difficulty of perceptual processing.
For example, the target object may not be detected at all
because of visual occlusions (Fig. 1a). Second, despite their
richness, human languages are sometimes ambiguous. Two
distinct objects may perfectly match the language specification
(Fig. 1b). A natural question then arises: How can we harness
the power of these learned NN models for perceptual and
language processing and achieve robust robot performance?

To this end, we have developed and experimented
with a robot system, INteractive VIsual GrOunding and
gRAsp in clutTEr (INVIGORATE). See Fig. 1 for examples.
INVIGORATE integrates data-driven learning and model-based
planning. To handle complex visual inputs and language
interactions, we train separate NN models for object detection,
for visual grounding, for question generation, and for object re-
lationship detection and grasping. We then build a partially ob-
servable Markov decision process (POMDP) that integrates the
learned NN modules. In the INVIGORATE POMDP, we model
the NN outputs—the detected target object, other objects,
and object blocking relationships—as noisy observations and
learn a probabilistic observation model of detection failures.
Through POMDP planning, INVIGORATE tracks the history
of observations over time and obtains a robust probabilistic
estimate of the true underlying state, despite uncertainties
in perceptual and language processing. Further, we introduce
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an explicit action for asking disambiguation questions in the
POMDP model. If the language instruction for the target object
is ambiguous and there are multiple candidates, INVIGORATE
may ask questions and gather information actively for dis-
ambiguation. It reasons systematically about the uncertainty
of the estimated target object and trades off the benefit of
additional information for disambiguation against the cost of
asking questions.

We deployed INVIGORATE on a Fetch robot. Experimental
results show that INVIGORATE achieves an overall success
rate of 83% on our test dataset and consistently outperforms a
baseline without POMDP integration. Ablation studies further
confirm the importance of reasoning about uncertainties in
dealing with noisy visual perception and language ambiguity.

One main contribution of this work is to demonstrate a
principled approach that integrates data-driven deep learning
and model-based planning for a complex robot task. We
build a POMDP model connecting three key elements: robot
perception, action, and human interaction. The learned NN
models enable INVIGORATE to handle complex visual inputs
and language interactions. Model-based POMDP planning
enables INVIGORATE to achieve robust performance overall,
despite uncertainties in perceptual and language processing.

II. RELATED WORK

1) Visual grounding: Visual grounding has been studied
extensively in the computer vision community [28]. Early
work usually restricts the language expressions or visual
concepts [17, 26, 27]. With advances in deep learning, sig-
nificant progress has been achieved in visual grounding of
objects in the open world [4, 20, 25, 31, 35, 40, 41], but
usually objects are clearly visible with few occlusions. In
contrast, INVIGORATE focuses on visual grounding in clut-
ter. It achieves robust performance by integrating historical
observations and actively interacting with the world.

2) Human-robot language interaction: Visual grounding
allows the human to specify an object for grasping through the
natural language. However, the robot may fail to identify the
intended object because of uncertainties in visual perception or
language ambiguities. To disambiguate, the robot needs addi-
tional information, which can be acquired by asking questions.
Some earlier HRI systems can interact with humans verbally
[12, 30, 37]. However, they typically use predefined visual or
linguistic concepts for interaction. In contrast, INVIGORATE
takes advantage of recent advances in deep learning for visual
grounding and generates object-specific questions to facilitate
goal-directed grasping.

3) Goal-directed object grasping in clutter: Object grasp-
ing is a long-standing challenge in robotics [1]. In recent years,
both data-driven deep learning and model-based planning
helped bring about significant progress in object grasping in
general [9, 21, 22, 29] and goal-directed object grasping in
particular [8, 13, 24, 42, 44]. Several recent methods aim
at goal-directed object grasping in clutter scenes [6, 18, 44].
Specifically, Zhang et al. [44] propose to learn object blocking
relationships for grasping. However, they do not address the

issue of language interactions between the robot and the
human. To this end, Chen et al. [5] and Hatori et al. [11]
propose to directly fuse visual and linguistic features in neural
networks. Shridhar et al. [31] formulate a POMDP to ask
disambiguating questions in interactive grasping tasks. Mees
and Burgard [23] propose a robot system capable of grounding
language instructions for both object picking and placement.
They, however, do not consider visual occlusion and physical
obstruction in dense object clutter. INVIGORATE tackles both
challenges together: object grasping in clutter and natural
language interaction with the human.

4) Integrating learning and planning: INVIGORATE bene-
fits significantly from the integration of learning and planning,
an active research direction that has attracted much attention
recently. Learning and planning interact in many interesting
ways. One very common idea is to learn models for planning.
To scale up complex decision making, both Silver et al.
[32, 33, 34] and Cai et al. [2] use planning in the short
term and use learning for long-term prediction. They aim
to avoid the prohibitive cost of long-horizon search and
improve computational efficiency. Another idea is to embed a
planning algorithm in the neural network and train it end-to-
end [15, 36]. These differentiable algorithm networks [16] are
structured, interpretable, task-driven, and robust, thus combing
the benefits of model-based planning and data-driven learning.
INVIGORATE uses a model-based approach to integrate multi-
ple learned NN modules and reasons about their uncertainties
systematically in order to achieve robust robot performance.

III. OVERVIEW

INVIGORATE takes from the human a natural language
instruction that refers to an object of interest. It uses both the
referring expression and the image from the visual sensor to
identify the target object in a clutter. If the referring expression
is ambiguous, INVIGORATE asks the human simple questions
for disambiguation and eventually grasps the target object
without unnecessarily perturbing other objects. See Fig. 2 for
an overview of the system.

INVIGORATE integrates data-driven deep learning with
model-based POMDP planning. We train four NN modules,
O-Net, R-Net, G-Net, and Q-Net, from data. At each time
step, O-Net extracts from the input image I a set of object
proposals. Based on these object proposals, R-Net further pro-
cesses I and extracts pairwise blocking relationships among
the objects, as well as candidate object grasps. G-Net uses
the input referring expression E and the object proposals for
visual grounding and outputs a set of candidates for the target
object. If E is ambiguous, there may be multiple candidates.
INVIGORATE uses Q-Net to generate a referring expression
to a candidate. It fits the generated expression into a question
template and asks the human a disambiguation question, e.g.,
“Do you mean the cup on top?”.

The trained NN models are powerful and allow for unre-
stricted object categories and language expressions, subject
to the training datasets. However, the outputs of O-Net, R-
Net, and G-Net are all noisy, because of sensor noise, visual
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Fig. 2: An overview of INVIGORATE.

occlusions, and ambiguity in human languages. To achieve
robust robot performance despite these uncertainties, we build
a POMDP model that integrates the learned NN modules.
INVIGORATE maintains a belief, i.e., a distribution over the
underlying state, which consists of the target object, the other
objects, and their blocking relationships. It treats the NN
outputs as noisy observations on the state. At each step,
INVIGORATE updates the belief with new observations and
actions, through Bayesian filtering. The belief summarizes
the history of observations and actions; it quantifies the
uncertainties probabilistically and provides the basis for princi-
pled decision-making. Given a belief, INVIGORATE performs
POMDP planning through look-ahead search to choose the
best action. INVIGORATE models two types of actions: ask a
disambiguation question or grasp an object. If the uncertainty
on the target object is high according to the belief, then
INVIGORATE invokes Q-Net to generate a question to gather
additional information. If the uncertainty is low, INVIGORATE
grasps either the target object directly or an obstructing
object according to the estimated object blocking relationships.
By reasoning about the belief, POMDP planning enables
INVIGORATE to choose a near-optimal sequence of actions.

IV. NEURAL NETWORKS FOR VISUAL PERCEPTION AND
LANGUAGE INTERACTION

INVIGORATE takes advantage of deep learning to build
back-end perceptual and interaction modules. We describe
each of these modules here.

A. O-Net for Object Detection and Tracking
Object detection provides a set of object proposals B for

INVIGORATE. Noticeably, our states and beliefs are all object-
based. Thus, it is necessary to not only detect objects but also
track objects across different steps so as to update the belief
according to the observations.

In INVIGORATE, we apply the well-known Cascade R-
CNN [3] as the base detector O-Net to provide object propos-
als for every single step. The detector is trained on the union

of COCO [19] and VMRD [43] to support a wide variety of
objects while keeping good generality. To track objects across
multiple steps, we maintain an object pool B. In each step, we
first feed the raw image to the base detector to obtain a set of
proposals BD. Then, we feed all historical proposals in B to
the object detector to re-classify them and get a historical set
BH . Subsequently, we merge BH into BD using Hungarian
algorithm with the cost function defined as:

H(Bi, Bj) = α1IoU(Bi, Bj) + α2 ‖Scorei − Scorej‖ (1)

where IoU(Bi, Bj) is the intersection of union (IoU) between
Bi and Bj , and Score means the normalized class scores given
by the object detector. Intuitively, bounding boxes with large
IoU and the same category will be merged into one. Finally,
the object pool B will be updated by BD∪BH using Hungarian
algorithm again with the same cost function defined in Eq.
1. Such a detection procedure is more robust against false
positives and false negatives. The merging process based on
the Hungarian algorithm also enables object tracking across
different steps, which is a prerequisite for belief update.

B. G-Net for Visual Grounding

G-Net takes an image I , a referring expression E, and
detected object proposals in B to estimate the matching scores
between each detected object i and the referring expression E:

fgi = fgθ (i, E|I) (2)

where fgθ denotes G-Net and fgi denotes the output matching
score. In INVIGORATE, we train G-Net following Yu et al.
[41] on RefCOCO dataset. G-Net splits the user expression
into three parts, subject description, locational description, and
relational description. It extracts the visual feature for each
proposal and performs separate visual linguistic matching.
To illustrate, given the expression “the blue cup to the right
of the book”, such a sentence would be decomposed into a
subject description, “the blue cup”, a locational description
“to the right of” and a relational description “the book”.
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An embedding is obtained for each description through a
language attention network. The image is fed into a CNN-
based neural network to generate a visual feature map, which
is then pooled into region features using proposals in B.
After that, we estimate a similarity score between phrases and
pooled visual features together with their location information
with a trainable layer. Finally, an attention-based summation
of similarity scores for three phrases is used to determine
the referred object. All layers are trained in an end-to-end
manner. As a result, G-Net is scalable and can handle almost
unrestricted referring expressions. e.g., “the red apple”, “the
apple on top”, “the blue cup to the right of the book”, etc.

C. Q-Net for Question Generation

Q-Net generates object-specific questions when needed.
In INVIGORATE, we apply relational captioning to generate
object descriptions since self-referential captioning [31], which
describes an object in terms of its attributes, e.g. name, color
or shape, suffers severely from occlusions in clutters.

Our Q-Net takes as input the visual and spatial features of
the object of interest i and a context object ic, which may be
the whole image. It then generates a relational caption in an
auto-regressive manner, i.e., words are generated one by one
based on the input features and previous words. To ensure
that the description is informative, we feed all possible pairs
consisting of the object of interest and a context object to
Q-Net and selects the caption that has the largest probability.

S∗ = arg max
Sc∈S

P (Sc|i, ic, I) (3)

where S includes all pair-wise captions w.r.t. object i. We
follow Shridhar et al. [31] and Nagaraja et al. [25] to train
our LSTM-based Q-Net on RefCOCO dataset using Multi-
Instance Learning.

Subject to the dataset, it typically generates descriptions
such as “the apple on the right of the cup” and “the apple
in the back of the image”.

D. R-Net for OBR and Grasp Detection

In INVIGORATE, a single network R-Net outputs both grasps
and OBRs of detected objects in B.

For OBR detection, we formulate it as a classification
problem, which takes object pairs as inputs and classifies pair-
wise OBRs. Following [43], there are three kinds of OBRs:
“parent”, “child”, and “none”. “Parent” relation between A
and B means A should be grasped after B, and vice versa
for the “child” relation. To classify OBR, we first represent
each object by a pooled feature with a fixed size (7 × 7).
Then we form all possible pair-wise permutations of object
features. The feature of an object pair (i, j) includes the
features of i, j, and the union bounding box. Finally, the pair-
wise OBR for object (i, j) is directly classified based on the
corresponding pair-wise feature and results in an OBR score
frij . For grasp detection, since our task is goal-directed, the
grasp should be object-specific. To do so, we detect grasps on
each object instead of the input scene. Concretely, the grasp

detector regresses grasps using the 7 × 7 pooled feature of
each object with a few convolutional layers.

We follow Zhang et al. [44] to train our R-Net on
VMRD [43], which contains around 4300 images and 100k
grasps. In practice, we found that the grasp detector sometimes
returns unstable grasps. Therefore, based on the detection
result, we finetune the grasp pose through local search. In
detail, we do a grid search by discretizing the area along
five dimensions (x, y, z, w, θ) near the detected grasp, where
(x, y, z) is the center of the grasp, w is the width of the gripper,
and θ represents the rotation angle w.r.t. the approaching
vector. We traverse all possible grasp poses to find the best
one, whose closing area contains more points of the object.

V. INVIGORATE POMDP

A. State Space

To grasp the specified target in clutter, the state of
INVIGORATE can be decomposed into two parts, the visual
grounding state sg and OBR state sr, i.e., s = sg ∪ sr.
sg = ∪Nobj

i=1 s
g
i is an object-oriented state [7, 39], with each

sgi indicating whether object i is a target. sr = ∪Nobj

ij=1s
r
ij

is a graph of all pair-wise OBRs, i.e., the correct grasping
order of detected objects, with each srij denoting the true
OBR between object i and j. Since the underlying true state
is not available, we maintain a belief bt at time step t over the
state st, which represents a distribution over the state space.
Similarly, bt = bgt ∪ brt .

B. Action Space and Transition Model

To handle possible ambiguity, INVIGORATE allows active
interaction with human to gather more information. There-
fore, INVIGORATE has two types of actions: 1) asking a
question; 2) grasping.

For each object i, action aqi means asking the human
whether i is the target. The question follows a template “Do
you mean Si?”, where Si is a relational caption from Q-Net.

Grasp actions are defined by grasp macros. Each grasp
macro is a sequence of grasps resulting in a terminal state.
Assuming Nobj objects is detected, there will be Nobj + 1
grasp macros, including Nobj goal-directed choices and 1
clearing choice. Each goal-directed grasp macro agi targets
at object i. According to br, it sequentially removes exposed
objects that most likely blocks object i, until it retrieves i.
The clearing grasp macro ag−1 is used to remove all detected
objects when none of them is the target. According to br, it
sequentially removes the most exposed objects. It is non-trivial
to analytically find the most exposed object blocking one
specified target since all relations are probabilistic. Therefore,
we apply Monte Carlo method to estimate the probability of
each object to be exposed and block the target, and then select
the most probable one. As a result, the size of action space
|A| = 2Nobj +1. Note that in practice, for each step, we only
execute the first grasp and then do re-planning, which helps
to improve robustness.
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TABLE I: Linguistic Observation Model Zl(ansr|sgi , aq)

P (ansr ∈ Resp) P (ansr ∈ Resn)

sgi = 1, aq = aqi 1 0
sgi = 0, aq = aqi 0 1
sgi = 1, aq 6= aqi 0 1
sgi = 0, aq 6= aqi ε 1− ε

Since we assume that human does not change their mind
about the target object, for any aqi , the transition model is:

T (s′|s, aqi ) =

{
1, s′ = s

0, s′ 6= s
(4)

On the other hand, any grasp macro results in a terminal state.
Therefore, we simply ignore the associated transition model.

C. Visual Observations

INVIGORATE takes the output of the G-Net and R-Net as the
visual observations after each grasping action. At time step t,
we denote the visual grounding observation from G-Net as ogt
and OBR observation from R-Net as ort , which are also object-
oriented and accord with the state, i.e., ogt = ∪Nobj

i=1 f
g
i,t and

ort = ∪Nobj

ij=1f
r
ij,t. Accordingly, our visual observation model

captures the distribution over ogt and ort using visual grounding
observation model Zg and OBR observation model Zr in a
factorized way. Formally:

Zg = P (fgi |s
g
i ) Zr = P (frij |srij) (5)

where fgi is the output of G-Net and frij is the output of R-Net.
Unfortunately, Zg and Zr cannot be specified directly.

Instead, we resort to data-driven methods. Specifically, we
collect a dataset in clutter using G-Net, in which each data is
represented by {fgi , ĝi} where ĝi is a binary label that indicates
whether the object i is the referred target. Similarly, we collect
a dataset in clutter using R-Net containing tuples {frij , r̂ij},
where r̂ij is the ground truth OBR between object i and j.
We then apply Gaussian kernel density estimation to learn an
approximate model for Zg and Zr.

D. Linguistic Observations

After the robot asks a question, it receives an answer
ans from the human, which is the linguistic observation in
INVIGORATE. Each linguistic observation is an unrestricted
natural language expression including a response phrase ansr
(e.g. “Yes” or “No”) that may be followed by an additional
description ansd (e.g. “No, the left one”). To reduce the
computation cost of POMDP planning, during the forward
search, we use a simplified observation model that effectively
ignores the additional description.

Zl(o|s, aq) = Zl(ans|s, aq) ≈ Zl(ansr|s, aq) (6)

where ansr belongs to either positive phrases Resp ={“Yes”,
“Yeah”, “Yep”, “Sure”} or negative phrases Resn ={“No”,
“Nope”}. During the belief update, we handle ansr according
to Eqn. 6, but merge ansd into E which will be used for visual
grounding in subsequent steps.

We assume that the human is trustful, and once the human
confirms a target, the robot needs not consider other objects
anymore. Under this assumption, the factorized observation
model for asking questions is shown in Table I. ε is a small
positive constant, and in practice, it is set to 0.01. Intuitively,
a positive answer for object i makes object i the only target
while a negative answer eliminates object i as a target but does
not affect the belief of other objects.

E. Reward

We want the robot to grasp the correct target while asking
a minimal number of questions. Thus, we impose a small
penalty, i.e. a reward of -2, when it asks a question, and a large
penalty when it fails the task (e.g. grasping the wrong object).
When multiple objects seemingly satisfy the user expression,
the robot cannot accurately differentiate between ambiguity
and multi-target. Thus, to encourage disambiguation and avoid
grasping wrong targets in such cases, we empirically engineer
the reward for goal-directed grasp macros R(s, agi ):

R(s, agi ) =

− 10 +
10∑
sg
, sgi = 1

− 10, sgi = 0

(7)

If there is only one object satisfying the human’s instruction,
grasping it will result in no penalty. Otherwise, to encourage
disambiguation, the reward of grasping decreases as the num-
ber of targets increases. The robot receives a reward of -10 if
it fails to grasp the target.

For the clearing grasp macro ag−1, the reward is:

R(s, ag−1) =

{
0, ∀sgi = 0

− 10, otherwise
(8)

That is, the robot will not be penalized only if all detected
objects are not the target. Otherwise, it receives a reward of
-10 since it removes the target without passing it to the human.

F. Belief Tracking

Based on the imperfect observation ot in each step, we
update the belief bt to obtain a more accurate estimate of the
underlying true state. Since our state is object-oriented, it can
naturally be factorized. We factor target belief bgt into belief
over each object bgt (s

g
i ), and relationship belief brt into belief

over each pair of object brt (s
r
ij). This factorization allows

us to perform belief tracking on each object and object pair
separately.

The robot receives visual observations ogt and ort after it per-
forms a grasping and a linguistic observation ans after it asks
a question. As mentioned, we factor ogt into target observation
over each objects, ogt = ∪Nobj

i=1 f
g
i,t and ort into relationship

observation over each pair of objects, ort = ∪Nobj

ij=1f
r
ij,t. We

then track each factorized belief using Bayesian filter:

bgt+1(s
g
i ) ∝ Z

g(fgi |s
g
i , a)b

g
t (s

g
i )

brt+1(s
r
ij) ∝ Zr(frij |srij , a)brt (srij) (9)
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Fig. 3: An overview of policy tree search. Circles denote
beliefs and squares denote possible actions. It searches all
possible trajectories to find the optimal one (noted as the red
path). Then the robot will execute the first action (noted as the
pink square) with the highest expected cumulative reward.

where Zg and Zr are learned observation model for target
and relation respectively. Since the human’s answer does not
affect OBR, ans is only used to update bg

bt+1(s
g
i ) ∝ Z

l(ot|sgi , a)bt(s
g
i ) (10)

G. POMDP Planning

Intuitively, our POMDP planner evaluates the trade-off
between gathering more information and directly retrieving
the target. This setting is similar to the Tiger problem[14].
Therefore, we utilize the policy tree search introduced by [14])
as the POMDP planner.

As shown in Fig. 3, our POMDP planner takes the current
belief bt as the input, and performs look-ahead search for the
optimal action that maximizes the cumulative reward:

a∗ = argmax
a

E

[ ∞∑
t

R(st, at)

]
(11)

In our policy tree, each node bt represents a belief. The
parent node bt and child node bt+1 are connected with an
observation-action pair. Since ag results in a terminal state,
observation-action pairs are all based on aq during planning.
The maximum search depth is set to 3 to limit the number
of questions the robot can ask. By traversing all possible
trajectories, the planner returns an optimal trajectory that
maximizes the expected cumulative reward (denoted as the
red path in Fig. 3). The robot then executes the first action
in the optimal trajectory (denoted as the pink square). If the
action is a grasp macro, the robot grasps the first object in the
grasp sequence. If the action is to ask a question, the robot
simply says the caption generated by Q-Net. After the action
is performed, the robot transits into the next step where it
receives a new observation, updates its belief, and performs
the search again.

VI. EXPERIMENTS

Our experiments aim to investigate three questions:
Q1. Does INVIGORATE perform well overall in interac-
tive visual grounding and grasping tasks?
Q2. What are the main contributors to INVIGORATE’s
performance?

Fig. 4: Test dataset, consisting of 10 scenes in toal. The test
dataset will be available online.

Q3. Does INVIGORATE perform well in visual grounding
in clutter, a key component of the system?

For Q1, we compare the performance of INVIGORATE with a
pure deep-learning method without POMDP planning. Results
show that INVIGORATE outperforms the baseline substan-
tially and achieves an overall 83% success rate. For Q2, we
conduct several ablation studies to evaluate various aspects
of INVIGORATE. Results show that language interaction and
observation histories boost overall success. For Q3, we com-
pare INVIGORATE with ViLBERT [20], the current state-of-
the-art visual grounding algorithm and show INVIGORATE
consistently outperforms.

A. Implementation Details

We deploy INVIGORATE on a Fetch robot under the frame-
work of Robot Operating System (ROS). All deep neural
networks run on a single external NVIDIA Titan X GPU. We
use Intel Realsense D435 camera to capture RGB images for
visual inputs and point cloud for grasping and Google Cloud
APIs to translate human verbal instructions into texts as well
as synthesize speech for generated questions.

B. Experimental Settings

1) Dataset: To ensure fair comparisons between different
variants of the system, we run all experiments on a test dataset
consisting of 10 cluttered scenes shown in Fig. 4. We generate
100 test cases by recruiting 10 participants and asking them to
select a target object and give a corresponding description for
each scenario. For a comprehensive evaluation, we split test
cases into two parts:

1) Test 1: Targets are selected before the participants see
the clutter but are described after the clutter is shown.
Participants therefore do not know where the target
object will be located at the time of target selection.

2) Test 2: Targets are selected by participants after they
see the clutter. Participants exactly know which object
is challenging for the robot to grasp.

As we encourage participants to choose challenging targets,
Test 2 is generally harder than Test 1.

2) Baseline: INVIGORATE combines data-driven learning
and model-based planning. Given the success of deep learning,
the natural tendency is to use it directly. We build up the
baseline method based purely on learned NN modules. The
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TABLE II: Comparison of overall performance.

Success Rate

Test 1 Test 2 Overall

MAttNet+VMRN 0.76 0.60 0.68
INVIGORATE 0.86 0.80 0.83

baseline, called MAttNet+VMRN, utilizes MAttNet [41] for
visual grounding and VMRN [44] for OBR and grasp detec-
tion. It greedily follows the output of MAttNet to locate the
most probable target while following the most likely OBRs to
plan the grasp sequence.

3) Ablations: INVIGORATE POMDP consists mainly of
three components: interaction, belief tracking, and policy
tree search. In ablation studies, we aim to determine their
respective contribution. Our ablation studies include:
• w/o interaction: the robot never asks questions but

maintains the visual history to track the belief.
• w/o history: the robot remembers neither visual nor

QA history. The POMDP planner works on the belief
estimated only by the current observation.

• w/o visual history: the robot remembers QA history but
not historical visual observations. The POMDP planner
works on the belief estimated by the current visual
observation and QA history.

• w/o tree search: it utilizes a heuristic method instead
of tree search. Concretely, we apply two-class K-Means
on the expected rewards of all grasp macros to check if
multiple grasp macros have similar expected rewards. If
that is the case, the robot will ask a question. Otherwise,
it will execute the grasp macro with the max reward.

4) Procedures: We conduct two experiments on the real
robot using the collected dataset.

The first experiment aims to compare the overall per-
formance of INVIGORATE against the baseline and conduct
ablation studies. Each variant of the system receives the same
initial image and expression from the dataset as input. It then
computes an action for the robot to execute. In each exper-
imental scene, the experimenter is only required to describe
one of the objects freely using its name, without any further
detailed instructions to avoid possible interaction biases. Dur-
ing the process, if a question is asked, the experimenter will
provide an answer (e.g., “yes/no”) according to whether the
object being asked is the true target. Though the experimenter
is allowed to give additional descriptions when being asked,
we found that in our experiments they did not tend to do
so. Therefore, if there exist multiple ambiguous objects, the
robot might ask several rounds of questions to disambiguate.
Since grasp failures are not handled by any variant of the
system and do not offer a meaningful comparison, if the robot
fails to grasp an object, the experimenter would manually
remove it. We record the success rate of each variant. A test
case is regarded as a success only if the robot retrieves the
true target. For ablation studies, we in addition record the
Normalized Cumulative Reward and Number of Questions to

Fig. 5: Ablation studies. Total reward, failure rate, and the
number of questions asked are averaged over 100 test cases
from our dataset.

give a comprehensive comparison.
The second experiment aims to compare INVIGORATE’s

visual grounding performance against the SOTA method.
We run INVIGORATE and ViLBERT side-by-side. No action
is planned or executed by INVIGORATE. The experimenter
instead manually removes blocking objects sequentially to
retrieve the final target. In each step, we record the target
probabilities estimated by both systems. Since ViLBERT is
trained with cross-entropy loss, we directly apply exponential
on its output to get the target probabilities.

C. Results

a) Does INVIGORATE perform well overall for interac-
tive visual grounding and grasping?: Table II shows that
INVIGORATE outperforms the baseline with an overall success
rate of 83% (p < 0.01 in t-test). And in both Test 1 and Test
2, INVIGORATE achieves higher success rates. On average,
INVIGORATE asks 0.65 questions and spends 0.5 additional
grasp steps per scenario. This shows INVIGORATE achieves
a higher success rate without a large number of redundant
actions.

Furthermore, INVIGORATE’s performance is more sta-
ble than the baseline. While the baseline MAttNet+VMRN
achieves an average success rate of 76% on Test 1, its
performance drops severely to 60% when applied on the harder
Test 2. In contrast, the performance of INVIGORATE only
drops by 6%. A closer look at the experiment result shows
that the baseline’s performance drop in Test 2 is mainly due
to the increase in target detection failures. In fact, the baseline
nearly fails in all cases where the target object is not visible
or not detected at the beginning. In such cases, without a
probabilistic estimate of the true underlying state, the baseline
simply chooses the most likely target among visible objects
and retrieves it for the user. On the other hand, INVIGORATE is
able to reason that the target is not directly visible and would
choose the clearing action to look for the target at the bottom.

b) What are the main contributors to INVIGORATE ’s
performance?: Fig. 5 shows the results of ablation studies.
We found that interaction significantly improves the overall
success rate (p < 0.01 in t-test). w/o Interaction suffers about
17% success rate loss, mainly from grasping the wrong target.
The information gathered from interaction greatly helps to
obtain an accurate belief and prevents the robot from target
failures.
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TABLE III: Comparison of visual grounding performance.

Mean Accuracy Mean L1 Loss

Test 1 Test 2 Overall Test 1 Test 2 Overall

ViLBERT 0.855 0.817 0.831 0.084 0.108 0.099
INVIGORATE 0.879 0.873 0.875 0.049 0.050 0.050

In addition, we conclude that history reduces the number
of questions. Compared to INVIGORATE, w/o History and w/o
Visual History ask more questions (both with p < 0.01 in t-
test). In w/o Visual History, the robot uses only the current
observation to estimate the belief over the state which is less
accurate. Therefore, it has to ask more questions to refine its
belief. Besides, w/o History asks the most number of questions
as the robot does not remember previous answers from the
human. Though it achieves a high success rate, the system’s
behavior is annoying, resulting in a low cumulative reward.

For comparison between INVIGORATE and w/o tree search,
we found that only 100 experiments do not show statistically
significant difference due to high variance. Therefore, we
conducted 100 more experiments with the same procedure.
Compared to w/o tree search, INVIGORATE asks slightly
more questions (with p < 0.01) but leads to fewer failures
(with p < 0.05). Noteworthily, INVIGORATE shows a higher
cumulative reward than w/o tree search. In our experiments,
we also observed that the behavior of w/o tree search is more
aggressive, which means that it tends to be confident about
itself judgment without asking questions. The intrinsic reason
should lie in the two-class K-Means policy, which is quite
close to the one-step planning and might be myopic. Unfor-
tunately, 200 experiments still fail to show some significant
difference. We will conduct more experiments in the future to
explore the effects of the planner.

c) Does INVIGORATE perform well in visual grounding
in clutter, which is a key component of the system?: We
compare target probability L1 loss and mean average accuracy
between INVIGORATE and ViLBERT. Results are shown in
Table III. In order to calculate the accuracy of both systems,
we treat visual grounding as a binary classification problem.
The object is regarded as the target once its target probability
is higher than a certain threshold. The mean accuracy reported
is computed by averaging accuracies computed on 9 different
thresholds (0.1 to 0.9 with interval 0.1).

Our results show that the visual grounding performance
of INVIGORATE consistently outperforms ViLBERT in clut-
ter. Despite its SOTA performance on visual grounding in
uncluttered scenes, ViLBERT suffers from visual occlusions
and language ambiguities in our test dataset and becomes
inaccurate and unstable. On the other hand, INVIGORATE
treats neural network’s outputs as noisy observations. It learns
an observation model and uses the Bayesian filter to constantly
update its belief of the state across multiple steps. Our results
confirm that such a principled approach for visual grounding
exhibits more robust performance in clutter.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Qualitative results. (a-f ): some selected successful
cases of INVIGORATE with different kinds of uncertainty and
ambiguity. (g-i): some selected failures. The sentence on top
is the action of the robot and the sentence at the bottom is the
human’s instruction. Best viewed in color.

D. Examples

Fig. 6 shows examples of INVIGORATE. In Fig. 6(a), the
user gives an ambiguous expression. As there are two mouses
in the scene, INVIGORATE asks a question to disambiguate.
Fig. 6(b-d) show some complex scenarios where the target
cannot be easily identified. In Fig. 6(b), the relational clue
object “book”, which is the blue book lying under the right
apple, is not detected. In Fig. 6(c), the black mouse is covered
by a white toothbrush while the target white mouse is not
detected. In Fig. 6(d), the red box is detected, but its visual
features are not strong since it is occluded by the bottle and
mouse on top. To tackle these difficulties, INVIGORATE asks
questions to query for more information. Fig. 6(e) shows a
case where the target is not detected, INVIGORATE therefore
removes the cup on top to look for the target at the bottom.
Fig. 6(f) shows a simple case where the target is not occluded
or obstructed, INVIGORATE therefore directly grasps the target
without asking any question.

Fig. 6(g) shows that the object detector fails to detect the
scissors that are blocking the true target banana. INVIGORATE
directly grasps the banana and thus violates the true OBR. In
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Fig. 6(h), the user gives an ambiguous expression “remote”
while the true target is the black remote in the back. Due to
occlusion, the visual grounding module places a very low score
on the true target, INVIGORATE therefore grasps the white
remote controller directly, believing that it is the only target
in the scene. Fig. 6(i) shows a case of relationship detection
failure. INVIGORATE directly grasps the banana although it is
blocked by the scissor, violating the true OBR.

VII. CONCLUSION

INVIGORATE enables the robot to interact with human
through the natural language and perform goal-directed ob-
ject grasping in clutter. It takes advantage of a POMDP
model that integrates the learned neural network models for
visual perception and language interaction. By integrating
data-driven deep learning and model-based POMDP planning,
INVIGORATE successfully tackles complex visual inputs and
language interactions and achieves strong overall performance,
despite the inevitable errors of the learned neural network
models in perceptual and language processing.

Many exciting challenges lie ahead. First, the neural net-
work models for visual perception and language interaction
are trained independently. It would be interesting to embed
the INVIGORATE POMDP into the network and apply end-to-
end training. Previous work demonstrates that such an end-to-
end architecture may bring considerable performance improve-
ment [15, 36]. Second, INVIGORATE cannot fully address the
systematic errors from the deep neural network models for
visual perception. Calibration of the learned models [38] can
potentially improve the uncertainty estimate for INVIGORATE
in the future. Finally, INVIGORATE assumes that the human
would get annoyed if the robot asks more than 3 questions. It is
reasonable simplification, but neglects the nuance of human-
robot interaction. For humans, seamless interaction depends
on conventions shaped by shared experiences and culture. For
robots to achieve the same, it may be necessary to model
the human cognitive state and adapt information exchange
accordingly [10], an interesting yet challenging direction for
future work.
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