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STEP: Stochastic Traversability
Evaluation and Planning for Risk-Aware Off-road Navigation

David D. Fan∗1, Kyohei Otsu∗1, Yuki Kubo2, Anushri Dixit3,
Joel Burdick3, and Ali-Akbar Agha-Mohammadi1

Abstract—Although ground robotic autonomy has
gained widespread usage in structured and controlled
environments, autonomy in unknown and off-road
terrain remains a difficult problem. Extreme, off-road,
and unstructured environments such as undeveloped
wilderness, caves, and rubble pose unique and
challenging problems for autonomous navigation. To
tackle these problems we propose an approach for
assessing traversability and planning a safe, feasible,
and fast trajectory in real-time. Our approach, which
we name STEP (Stochastic Traversability Evaluation
and Planning), relies on: 1) rapid uncertainty-
aware mapping and traversability evaluation, 2) tail
risk assessment using the Conditional Value-at-Risk
(CVaR), and 3) efficient risk and constraint-aware kin-
odynamic motion planning using sequential quadratic
programming-based (SQP) model predictive control
(MPC). We analyze our method in simulation and
validate its efficacy on wheeled and legged robotic
platforms exploring extreme terrains including an
abandoned subway and an underground lava tube.
(See video: https://youtu.be/N97cv4eH5c8)

I. Introduction

Consider the problem of a ground robot tasked to
autonomously traverse an unknown environment. In
real-world scenarios, environments which are of interest
to robotic operations are highly risky, containing difficult
geometries (e.g. rubble, slopes) and non-forgiving hazards
(e.g. large drops, sharp rocks) (See Figure 1) [22]. Deter-
mining where the robot may safely travel is a non-trivial
problem, compounded by several issues: 1) Localization
error affects how sensor measurements are accumulated to
generate dense maps of the environment. 2) Sensor noise,
sparsity, and occlusion induces biases and uncertainty
in analysis of traversability. 3) Environments often pose
a mix of various sources of traversability risk, including
slopes, rough terrain, low traction, narrow passages, etc. 4)
These various risks create highly non-convex constraints
on the motion of the robot, which are compounded by
the kinodynamic constraints of the robot itself.

To address these issues we adopt an approach in which
we directly quantify the traversal cost along with the
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Fig. 1. Top left: Boston Dynamics Spot quadruped robot exploring
Valentine Cave at Lava Beds National Monument, CA. Top right,
bottom left: Clearpath Husky robot exploring Arch Mine in Beckley,
WV. Bottom middle, right: Spot exploring abandoned Satsop
power plant in Elma, WA.

uncertainties associated with that cost. We refer to this
cost as traversability, e.g. a region of the environment in
which the robot will suffer or become damaged has a high
traversability cost. Building upon our previous work on
traversability in extreme terrains [38], we formulate the
problem as a risk-aware, online nonlinear Model Predic-
tive Control (MPC) problem, in which the uncertainty
of traversability is taken into account when planning
a trajectory. Our goal is to minimize the traversability
cost, but directly minimizing the mean cost leads to an
unfavorable result because tail events with low probability
of occurrence (but high consequence) are ignored (Figure
2). Instead, in order to quantify the impact of uncertainty
and risk on the motion of the robot, we employ a
formulation in which we find a trajectory which minimizes
the Conditional Value-at-Risk (CVaR) [33]. Because
CVaR captures the expected cost of the tail risk past
a given probability threshold, we can dynamically adjust
the level and severity of uncertainty and risk we are willing
to accept (which depends on mission-level specifications,
user preference, etc.). While online chance-constrained
nonlinear MPC problems often suffer from a lack of
feasibility, our approach allows us to relax the severity of
CVaR constraints by adding a penalizing loss function.
We quantify risk via a traversability analysis pipeline

(for system architecture, see Figure 3). At a high
level, this pipeline creates an uncertainty-aware 2.5D
traversability map of the environment by aggregating
uncertain sensor measurements. Next, the map is used
to generate both environment and robot induced costs
and constraints. These constraints are convexified and
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used to build an online receding horizon MPC problem,
which is solved in real-time. As we will demonstrate, we
push the state-of-the-art in making this process highly
efficient, allowing for re-planning at rates which allow
for dynamic responses to changes and updates in the
environment, as well as high travel speeds.
In this work, we propose STEP (Stochastic

Traversability Evaluation and Planning), that pushes
the boundaries of the state-of-the-practice to enable safe,
risk-aware, and high-speed ground traversal of unknown
environments. Specifically, our contributions include:
1) Uncertainty-aware 2.5D traversability evaluation

which accounts for localization error, sensor noise,
and occlusion, and combines multiple sources of
traversability risk.

2) An approach for combining these traversability risks
into a unified risk-aware CVaR planning framework.

3) A highly efficient MPC architecture for robustly
solving non-convex risk-constrained optimal control
problems.

4) Real-world demonstration of real-time CVaR
planning on wheeled and legged robotic platforms
in unknown and risky environments.

II. Related Work

Our work is related to other classical approaches to
traversability. Most traversability analyses are dependent
on sensor type and measured through geometry-based,
appearance-based, or proprioceptive methods [32].
Geometry-based methods often rely on building a 2.5D
terrain map which is used to extract features such as
maximum, minimum, and variance of the height and
slope of the terrain [18]. Planning algorithms for such
methods take into account the stability of the robot
on the terrain [19]. In [30, 17], the authors estimate
the probability distributions of states based on the
kinematic model of the vehicle and the terrain height
uncertainty. Furthermore, a method for incorporating
sensor and state uncertainty to obtain a probabilistic
terrain estimate in the form of a grid-based elevation
map was considered in [15]. Our work builds upon these
ideas by performing traversability analyses using classical
geometric methods, while incorporating the uncertainty
of these methods for risk-aware planning [2, 38].

Risk can be incorporated into motion planning using a
variety of different methods, including chance constraints
[29, 39], exponential utility functions [24], distributional
robustness [40], and quantile regression [14, 11]. Risk
measures, often used in finance and operations research,
provide a mapping from a random variable (usually the
cost) to a real number. These risk metrics should satisfy
certain axioms in order to be well-defined as well as to en-
able practical use in robotic applications [27]. Conditional
value-at-risk (CVaR) is one such risk measure that has
this desirable set of properties, and is a part of a class of
risk metrics known as coherent risk measures [6] Coherent
risk measures have been used in a variety of decision
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ζ
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Fig. 2. Comparison of the mean, VaR, and CVaR for a given
risk level α ∈ (0,1]. The axes denote the values of the stochastic
variable ζ, which in our work represents traversability cost. The
shaded area denotes the (1−α)% of the area under p(ζ). CVaRα(ζ)
is the expected value of ζ under the shaded area.

making problems, especially Markov decision processes
(MDPs) [10]. In recent years, Ahmadi et al. synthesized
risk averse optimal policies for partially observable MDPs,
constrained MDPs, and for shortest path problems in
MDPs [4, 3, 5]. Coherent risk measures have been used in
a MPC framework when the system model is uncertain
[36] and when the uncertainty is a result of measurement
noise or moving obstacles [12]. In [20, 12], the authors
incorporated risk constraints in the form of distance
to the randomly moving obstacles but did not include
model uncertainty. Our work extends CVaR risk to a
risk-based planning framework which utilizes different
sources of traversability risk (such as collision risk, step
risk, slippage risk, etc.) Morever, this paper introduces the
first field-hardened and theoretically grounded approach
to traversability assessment and risk-constrained planning
using CVaR metrics. Using CVaR to assess traversability
risks allows us to dynamically tune the entire system’s
behavior - from aggressive to highly conservative - by
changing a single value, the risk probability level.

Model Predictive Control has a long history in controls
as a means to robustly control more complex systems,
including time-varying, nonlinear, or MIMO systems
[9]. While simple linear PID controllers are sufficient for
simpler systems, MPC is well-suited to more complex
tasks while being computationally feasible. In this work,
MPC is needed to handle a) complex interactions (risk
constraints) between the robot and the environment,
including non-linear constraints on robot orientation
and slope, b) non-linear dynamics which include non-
holonomic constraints, and c) non-convex, time-varying
CVaR-based constraints and cost functions. In particular,
we take an MPC approach known as Sequential
Quadratic Programming (SQP), which iteratively solves
locally quadratic sub-problems to converge to a globally
(more) optimal solution [7]. Particularly in the robotics
domain, this approach is well-suited due to its reduced
computational costs and flexibility for handling a wide
variety of costs and constraints [35, 25]. A common
criticism of SQP-based MPC (and nonlinear MPC
methods in general) is that they can suffer from being
susceptible to local minima. We address this problem by
incorporating a trajectory library (which can be prede-
fined and/or randomly generated, e.g. as in [21]) to use
in a preliminary trajectory selection process. We use this
as a means to find more globally optimal initial guesses
for the SQP problem to refine locally. Another common
difficulty with risk-constrained nonlinear MPC problems
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is ensuring recursive feasibility [26]. We bystep this
problem by dynamically relaxing the severity of the risk
constraints while penalizing CVaR in the cost function.

III. Risk-Aware Traversability and Planning

A. Problem Statement

We first give a formal definition of the problem of
risk-aware traversability and motion planning. Let xk,
uk, zk denote the state, action, and observation at
the k-th time step. A path x0:N = {x0, x1, ··· , xN} is
composed of a sequence of poses. A policy is a mapping
from state to control u=π(x). A map is represented as
m= (m(1),m(2),···) where mi is the i-th element of the
map (e.g., a cell in a grid map). The robot’s dynamics
model captures the physical properties of the vehicle’s
motion, such as inertia, mass, dimension, shape, and
kinematic and control constraints:

xk+1 =f(xk,uk) (1)
g(uk)�0 (2)

where g(uk) is a vector-valued function which encodes
control constraints/limits.

Following [32], we define traversability as the capability
for a ground vehicle to reside over a terrain region under
an admissible state. We represent traversability as a cost,
i.e. a continuous value computed using a terrain model,
the robotic vehicle model, and kinematic constraints,
which represents the degree to which we wish the robot
to avoid a given state:

r=R(m,x,u) (3)
where r ∈ R, and R(·) is a traversability assessment
model. This model captures various unfavorable events
such as collision, getting stuck, tipping over, high
slippage, to name a few. Each mobility platform has its
own assessment model to reflect its mobility capability.
Associated with the true traversability value is a

distribution over possible values based on the current
understanding about the environment and robot actions.
In most real-world applications where perception capabili-
ties are limited, the true value can be highly uncertain. To
handle this uncertainty, consider a map belief, i.e., a prob-
ability distribution p(m|x0:k,z0:k), over a possible setM.
Then, the traversability estimate is also represented as a
random variable R : (M×X×U)−→R. We call this prob-
abilistic mapping from map belief, state, and controls to
possible traversability cost values a risk assessment model.

A risk metric ρ(R) :R→R is a mapping from a random
variable to a real number which quantifies some notion of
risk. In order to assess the risk of traversing along a path
x0:N with a policy π, we wish to define the cumulative
risk metric associated with the path, J(x0,π). To do this,
we need to evaluate a sequence of random variables R0:N .
To quantify the stochastic outcome as a real number, we
use the dynamic, time-consistent risk metric given by
compounding the one-step risk metrics [34]:
J(x0,π;m)=R0+ρ0

(
R1+ρ1

(
R2+...+ρN−1

(
RN )

))
(4)

where ρk(·) is a one-step coherent risk metric at time k.
This one-step risk gives us the cost incurred at time-step
k+1 from the perspective of time-step k. Any distortion
risk metric compounded as given in (4) is time-consistent
(see [27] for more information on distortion risk
metrics and time-consistency). We use the Conditional
Value-at-Risk (CVaR) as the one-step risk metric:

ρ(R)=CVaRα(R)=inf
z∈R

E

[
z+ (R−z)+

1−α

]
(5)

where (·)+ = max(·,0), and α ∈ (0,1] denotes the risk
probability level.
We formulate the objective of the problem as follows:

Given the initial robot configuration xS and the goal
configuration xG, find an optimal control policy π∗ that
moves the robot from xS to xG while 1) minimizing time
to traverse, 2) minimizing the cumulative risk metric
along the path, and 3) satisfying all kinematic and
dynamic constraints.

B. Hierarchical Risk-Aware Planning

We propose a hierarchical approach to address the
aforementioned risk-aware motion planning problem by
splitting the motion planning problem into geometric and
kinodynamic domains. We consider the geometric domain
over long horizons, while we solve the kinodynamic
problem over a shorter horizon. This is convenient for
several reasons: 1) Solving the full constrained CVaR
minimization problem over long timescales/horizons
becomes intractable in real-time. 2) Geometric
constraints play a much larger role over long horizons,
while kinodynamic constraints play a much larger role
over short horizons (to ensure dynamic feasibility at
each timestep). 3) A good estimate (upper bound) of
risk can be obtained by considering position information
only. This is done by constructing a position-based
traversability model Rpos by marginalizing out non-
position related variables from the risk assessment model,
i.e. if the state x=[px,py,xother]ᵀ consists of position and
non-position variables (e.g. orientation, velocity), then

Rpos(m,px,py)≥R(m,x,u) ∀xother,u (6)
Geometric Planning: The objective of geometric plan-

ning is to search for an optimistic risk-minimizing path,
i.e. a path that minimizes an upper bound approximation
of the true CVaR value. For efficiency, we limit the search
space only to the geometric domain. We are searching for
a sequence of poses x0:N which ends at xG and minimizes
the position-only risk metric in (4), which we define as
Jpos(x0:N ). The optimization problem can be written as:

x∗0:N =argmin
x0:N

[
Jpos(x0:N )+λ

N−1∑
k=0
‖xk−xk+1‖2

]
(7)

s.t. φ(m,xk)�0 (8)
where the constraints φ(·) encode position-dependent
traversability constraints (e.g. constraining the vehicle
to prohibit lethal levels of risk) and λ ∈ R weighs the
tradeoff between risk and path length.
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Fig. 3. Overview of system architecture for STEP. From left to right: Odometry aggregates sensor inputs and relative poses. Next, Risk
Map Processing merges these pointclouds and creates a multi-layer risk map. The map is used by the Geometric Path Planner and the
Kinodynamic MPC Planner. An optimal trajectory is found and sent to the Tracking Controller, which produces control inputs to the robot.

Kinodynamic Planning: We then solve a kinodynamic
planning problem to track the optimal geometric path,
minimize the risk metric, and respect kinematic and
dynamics constraints. The goal is to find a control policy
π∗ within a local planning horizon T ≤N which tracks
the path X∗0:N . The optimal policy can be obtained by
solving the following optimization problem:

π∗=argmin
π∈Π

[
J(x0,π)+λ

T∑
k=0
‖xk−x∗k‖2

]
(9)

s.t. ∀k∈ [0,···,T ] : xk+1 =f(xk,uk) (10)
g(uk)�0 (11)

h(m,xk)�0 (12)
where the constraints g(u) and h(m, xk) are vector-
valued functions which encode controller limits and state
constraints, respectively.

IV. STEP for Unstructured Terrain

Having outlined our approach for solving the
constrained CVaR minimization problem, in this section
we discuss how we compute traversability risk and
efficiently solve the risk-aware trajectory optimization
problem. At a high level, our approach takes the
following steps (see Figure 3): 1) Assuming some
source of localization with uncertainty, aggregate sensor
measurements to create an uncertainty-aware map. 2)
Perform ground segmentation to isolate the parts of
the map the robot can potentially traverse. 3) Compute
risk and risk uncertainty using geometric properties
of the pointcloud (optionally, include other sources of
risk, e.g. semantic or other sensors). 4) Aggregate these
risks to compute a 2.5D CVaR risk map. 5) Solve for an
optimistic CVaR minimizing path over long ranges with
a geometric path planner. 7) Solve for a kinodynamically
feasible trajectory which minimizes CVaR while staying
close to the geometric path and satisfying all constraints.

A. Modeling Assumptions
Among many representation options for rough terrain,

we use a 2.5D grid map in this paper for its efficiency in

processing and data storage [16]. The map is represented
as a collection of terrain properties (e.g., height, risk)
over a uniform grid.
For different vehicles we use different robot dynamics

models. For example, for a system which produces
longitudinal/lateral velocity and steering (e.g. legged
platforms), the state and controls can be specified as:

x=[px,py,pθ,vx,vy,vθ]ᵀ (13)
u=[ax,ay,aθ]ᵀ (14)

While the dynamics xk+1 = f(xk, uk) can
be written as xk+1 = xk + ∆t∆xk, where
∆xk=[vxcos(pθ)−vysin(pθ), vxsin(pθ)+vycos(pθ), κvx+
(1− κ)vθ, ax, ay, aθ]ᵀ. We let κ ∈ [0,1] be a constant
which adjusts the amount of turning-in-place the vehicle
is permitted. In differential drive or ackermann steered
vehicles we can remove the lateral velocity component
of these dynamics if desired. However, our general
approach is applicable to any vehicle dynamics model.
(For differential drive model, see Appendix A)

B. Traversability Assessment Models

The traversability cost is assessed as the combination
of multiple risk factors. These factors are designed to
capture potential hazards for the target robot in the
specific environment (Figure 4). Such factors include:
• Collision: quantified by the distance to the closest
obstacle point.

• Step size: the height gap between adjacent cells in
the grid map. Negative obstacles can also be detected
by checking the lack of measurement points in a cell.

• Tip-over : a function of slope angles and the robot’s
orientation.

• Contact Loss: insufficient contact with the ground,
evaluated by plane-fit residuals.

• Slippage: quantified by geometry and the surface
material of the ground.

• Sensor Uncertainty: sensor and localization error
increase the variance of traversability estimates.

To efficiently compute the CVaR traversability cost for
l>1 risk factors, we assume each risk factor Rl is an in-
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Fig. 4. Multi-layer traversability risk analysis, which first
aggregates recent pointclouds (top). Then, each type of analysis
(slope, step, collision, etc.) generates a risk map along with
uncertainties (middle rows). These risks are aggregated to compute
the final CVaR map (bottom).

dependent random variable which is normally distributed,
with mean µl and variance σl. We take a weighted average
of the risk factors, R =

∑
l wlRl, which will also be

normally distributed as R ∼ N (µ, σ2). Let ϕ and Φ
denote the probability density function and cumulative
distribution function of a standard normal distribution
respectively. The corresponding CVaR is computed as:

ρ(R)=µ+σϕ(Φ−1(α))
1−α (15)

We construct R such that the expectation of R is positive,
to keep the CVaR value positive.
Construction of the mean and variance of each risk

factor depends on the type of risk. For example, collision
risk is determined by checking for points above the eleva-
tion map, and the variance is derived from the elevation
map variance, which is mainly a function of localization
error. In contrast, negative obstacle risk is determined by
looking for gaps in sensor measurements. These gaps tend
to be a function of sensor sparsity, so the risk variance
increases with distance from the sensor frame.

C. Risk-aware Geometric Planning
In order to optimize (7) and (8), the geometric

planner computes an optimal path that minimizes the
position-dependent dynamic risk metric in (4) along the
path. Substituting (15) into (4), we obtain:

Jpos(x0:N )=µ0+
N∑
k=1

[
µk+σk

ϕ(Φ−1(α))
1−α

]
(16)

(For a proof, see Appendix B.)
We use the A∗ algorithm to solve (7) over a 2D grid.

A∗ requires a path cost g(n) and a heuristic cost h(n),
given by:

g(n)=Jpos(x0:n)+λ
n−1∑
k=0
‖xk−xk+1‖2 (17)

h(n)=λ‖xn−xG‖2 (18)

Fig. 5. Diagram of kinodynamic MPC planner, which begins with
evaluating various paths within a trajectory library. The lowest
cost path is chosen as a candidate and optimized by the QP solver.

Algorithm 1 Kinodynamic MPC Planner (sequences
{vark}k=0:T are expressed as {var} for brevity)
Input: current state x0, current control sequence (previous

solution) {u∗}(j)

Output: re-planned trajectory {x∗}(j+1), re-planned control
sequence {u∗}(j+1)

Initialization
1: {xr}= updateReferenceTrajectory()
2: {u∗}(j) = stepControlSequenceForward({u∗}(j))

Loop process
3: for i=0 to qp_iterations do
4: l = generateTrajectoryLibrary(x0)
5: [{xc},{uc}]= chooseCandidateFromLibrary(l)
6: [{δx∗},{δu∗}]= solveQP({xc},{uc},{xr})
7: [γ,solved]= lineSearch({xc},{δx∗},{uc},{δu∗})
8: uck=uc

k+γδu∗
k, ∀k=0:T

9: {xc}= rollOutTrajectory(x0,{uc})
10: end for
11: if solved then
12: {x∗}(j+1),{u∗}(j+1) ={xc},{uc}
13: else
14: {x∗}(j+1),{u∗}(j+1) = getStoppingTrajectory()
15: end if
16: return {x∗}(j+1),{u∗}(j+1)

For the heuristic cost we use the shortest Euclidean
distance to the goal. The value of lambda is a relative
weighting between the distance penalty and risk penalty
and can be thought of as having units of (traversability
cost / m). We use a relatively small value, which means we
are mainly concerned with minimizing traversability costs.

D. Risk-aware Kinodynamic Planning

The geometric planner produces a path, i.e. a sequence
of poses. We wish to find a kinodynamically feasible tra-
jectory which stays near this path, while satisfying all con-
straints and minimizing the CVaR cost. To solve (9)-(12),
we use a risk-aware kinodynamic MPC planner, whose
steps we outline (Figure 5, Algorithm 1, Appendix C).
Trajectory library: Our kinodynamic planner begins

with selecting the best candidate trajectory from a
trajectory library, which stores multiple initial control
and state sequences. The selected trajectory is used as
initial solution for solving a full optimization problem.
The trajectory library can include: 1) the trajectory
accepted in the previous planning iteration, 2) a
stopping (braking) trajectory, 3) a geometric plan
following trajectory, 4) heuristically defined trajectories
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(including v-turns, u-turns, and varying curvatures), and
5) randomly perturbed control input sequences.
QP Optimization: Next, we construct a non-

linear optimization problem with appropriate costs
and constraints (9–12). We linearize the problem
about the initial solution and solve iteratively in a
sequential quadratic programming (SQP) fashion [28].
Let {x̂k, ûk}k=0:T denote an initial solution. Let
{δxk,δuk}k=0:T denote deviation from the initial solution.
We introduce the solution vector variable X:

X=
[
δxT

0 ··· δxT
T δuT

0 ··· δuT
T

]T (19)
We can then write (41–44) in the form:

minimize 1
2X

TPX+qTX (20)

subject to l≤AX≤u (21)
where P is a positive semi-definite weight matrix, q is a
vector to define the first order term in the objective func-
tion, A defines inequality constraints and l and u provide
their lower and upper limit. (See Appendix E.) In the
next subsection we describe these costs and constraints in
detail. This is a quadratic program, which can be solved
using commonly available QP solvers. In our implementa-
tion we use the OSQP solver, which is a robust and highly
efficient general-purpose solver for convex QPs [37].
Linesearch: The solution to the SQP problem returns

an optimized variation of the control sequence {δu∗k}k=0:T .
We then use a linesearch procedure to determine the
amount of deviation γ>0 to add to the current candidate
control policy π: uk=uk+γδu∗k. (See Appendix F.)
Stopping Sequence: If no good solution is found from

the linesearch, we pick the lowest cost trajectory from the
trajectory library with no collisions. If all trajectories are
in collision, we generate an emergency stopping sequence
to slow the robot as much as possible (a collision may
occur, but hopefully with minimal energy).
Tracking Controller: Having found a feasible and CVaR-

minimizing trajectory, we send it to a tracking controller
to generate closed-loop tracking behavior at a high rate
(>100Hz), which is specific to the robot type (e.g. a
simple cascaded PID, or legged locomotive controller).

E. Optimization Costs and Constraints

Costs: Note that (9) contains the CVaR risk. To lin-
earize this and add it to the QP matrices, we compute the
Jacobian and Hessian of ρ with respect to the state x. We
efficiently approximate this via numerical differentiation.
Kinodynamic constraints: Similar to the cost, we

linearize (10) with respect to x and u. Depending on the
dynamics model, this may be done analytically.
Control limits: We construct the function g(u) in

(11) to limit the range of the control inputs. For
example in the 6-state dynamics case, we limit maximum
accelerations: |ax|<amax

x , |ay|<amax
y , and |aθ|<amax

θ .
State limits: Within h(m,x) in (12), we encode velocity

constraints: |vx|<vmax
x , |vy|<vmax

y , and |vθ|<vmax
θ . We

also constrain the velocity of the vehicle to be less than

Fig. 6. Left: Computing convex to convex signed distance function
between the robot footprint and an obstacle. Signed distance is
positive with no intersection and negative with intersection. Right:
Robot pitch and roll are computed from the surface normal rotated
by the yaw of the robot. Purple rectangle is the robot footprint with
surface normal nw. g denotes gravity vector, nrx,y,z are the robot-
centric surface normal components used for computing pitch and roll.

some scalar multiple of the risk in that region, along
with maximum allowable velocities:

|vθ|<γθρ(Rk) (22)√
v2
x+v2

y<γvρ(Rk) (23)
This reduces the energy of interactions the robot has
with its environment in riskier situations, preventing
more serious damage.
Position risk constraints: Within h(m,xk) we would

like to add constraints on position and orientation to
prevent the robot from hitting obstacles. The general
form of this constraint is:

ρ(Rk)<ρmax (24)
To create this constraint, we locate areas on the map
where the risk ρ is greater than the maximum allowable
risk. These areas are marked as obstacles, and are highly
non-convex. To obtain a convex and tractable approxima-
tion of this highly non-convex constraint, we decompose
obstacles into non-overlapping 2D convex polygons, and
create a signed distance function which determines the
minimum distance between the robot’s footprint (also a
convex polygon) and each obstacle [35]. Let A,B⊂R2 be
two sets, and define the distance between them as:

dist(A,B)=inf{‖T‖ | (T+A)∩B 6=∅} (25)
where T is a translation. When the two sets are
overlapping, define the penetration distance as:

penetration(A,B)=inf{‖T‖ | (T+A)∩B=∅} (26)
Then we can define the signed distance between the two
sets as:

sd(A,B)=dist(A,B)−penetration(A,B) (27)
We then include within h(m,xk) a constraint to enforce
the following inequality:

sd(Arobot,Bi)>0 ∀i∈{0,···,Nobstacles} (28)
Note that the robot footprint Arobot depends on the
current robot position and orientation: Arobot(px,py,pθ),
while each obstacle Bi(m) is dependent on the information
in the map (See Figure 6).
Orientation constraints: We wish to constrain the

robot’s orientation on sloped terrain in such a way as
to prevent the robot from rolling over or performing
dangerous maneuvers. To do this, we add constraints to
h(m,xk) which limit the roll and pitch of the robot as it
settles on the surface of the ground. Denote the position
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as p= [px,py]ᵀ and the position/yaw as s= [px,py,pθ]ᵀ.
Let the robot’s pitch be ψ and roll be φ in its body
frame. Let ω = [ψ, φ]ᵀ. The constraint will have the
form |ω| ≺ ωmax. At p, we compute the surface normal
vector, call it nw = [nwx , nwy , nwz ]ᵀ, in the world frame.
Let nr=[nrx,nry,nrz]ᵀ, be the surface normal in the body
frame, where we rotate by the robot’s yaw: nr =Rθn

w

(see Figure 6), where Rθ is a basic rotation matrix by
the angle θ about the world z axis. Then, we define the
robot pitch and roll as ω=g(nr) where:

ω=g(nr)=
[

atan2(nrx,nrz)
−atan2(nry,nrz)

]
(29)

Note that ω is a function of s. Creating a linearly-
constrained problem requires a linear approximation of
the constraint:

|∇sω(s)δs+ω(s)|<ωmax (30)
This is accomplished by finding the gradients with
respect to position and yaw separately (See Appendix D).
Box Constraint: Note that if δx and δu are too large,

linearization errors will dominate. To mitigate this we
also include box constraints within (11) and (12) to
maintain a bounded deviation from the initial solution:
|δx|<εx and |δu|<εu.
Adding Slack Variables: To further improve the

feasibility of the optimization problem we introduce
auxilliary slack variables for constraints on state limits,
position risk, and orientation. For a given constraint
h(x)> 0 we introduce the slack variable ε, and modify
the constraint to be h(x)>ε and ε<0. We then penalize
large slack variables with a quadratic cost: λεε2. These
are incorporated into the QP problem (20) and (21).

F. Dynamic Risk Adjustment
The CVaR metrics allows us to dynamically adjust the

level and severity of risk we are willing to accept. Selecting
low α reverts towards using the mean cost as a metric,
leading to optimistic decision making while ignoring low-
probability but high cost events. Conversely, selecting a
high α leans towards conservatism, reducing the likelihood
of fatal events while reducing the set of possible paths.
We adjust α according to two criteria: 1) Mission-level
states, where depending on the robot’s role, or the balance
of environment and robot capabilities, the risk posture
for individual robots may differ. 2) Recovery Behaviors,
where if the robot is trapped in an unfavorable condition,
by gradually decreasing α, an escape plan can be found
with minimal risk. These heuristics are especially useful in
the case of risk-aware planning, because the feasibility of
online nonlinear MPC is difficult to guarantee. When no
feasible solution is found for a given risk level α, a riskier
but feasible solution can be quickly found and executed.

V. Experiments
In this section, we report the performance of STEP.

We first present a comparative study between different
adjustable risk thresholds in simulation on a wheeled
differential drive platform. Then, we demonstrate
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Fig. 7. Path distributions from four simulated runs. The risk
level α spans from 0.1 (close to mean-value) to 0.95 (conservative).
Smaller α typically results in a shorter path, while larger α chooses
statistically safe paths.
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Fig. 8. Distance vs risk trade-off from 50 Monte-Carlo simulations.
Left: Distributions of path distance. Right: Distributions of max
risk along the traversed paths. Box plot uses standard quartile
format and dots are outliers.

real-world performance using a wheeled robot deployed
in an abandoned subway filled with clutter, and a legged
platform deployed in a lava tube environment.

A. Simulation Study
To assess statistical performance, we perform 50 Monte-

Carlo simulations with randomly generated maps and
goals. Random traversability costs are assigned to each
grid cell. The following assumptions are made: 1) no local-
ization error, 2) no tracking error, and 3) a simplified per-
ception model with artificial noise. We give a random goal
8m away and evaluate the path cost and distance. We use
a differential-drive dynamics model (no lateral velocity).
We compare STEP using different α levels. Figure 7

shows the distribution of paths for different planning
configurations. The optimistic (close to mean-value)
planner α=0.05 typically generates shorter paths, while
the conservative setting α=0.95 makes long detours to
select statistically safer paths. The other α settings show
distributions between these two extremes, with larger α
generating similar paths to the conservative planner and
smaller α generating more time-optimal paths. Statistics
are shown in Figure 8.

B. Hardware Results
We deployed STEP on two different robots (wheeled

and legged) in two different challenging environments (an
abandoned subway and a lava tube). First we tested STEP
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on a Clearpath Husky robot in an abandoned subway
filled with industrial clutter. The robot was equipped
with custom sensing and computing units, and driven by
JPL’s NeBula autonomy software [1]. 3 Velodyne VLP-16s
were used for collecting LiDAR data. Localization was
provided onboard by a LIDAR-based SLAM solution [31,
13]. The entire autonomy stack runs on an Intel Core i7
CPU. The typical CPU usage for the traversability stack
is about a single core. The robot successfully explored two
levels of the approximately 200m x 100m environment.
In Figure 9, we plot the risk map in this environment at
varying levels of α. We clearly see the effects on the risk
map, where higher values of α result in closing narrow
openings, assigning high cost to unknown regions, and
increasing the size of obstacles. The effect of these risk
analyses results in intuitive outcomes - for example, a
low pile of metal, while probably traversable, should
be avoided if possible. When the region has inadequate
sensor coverage, the risk will be high. When the robot is
closer and the sensor coverage is good, then the CVaR cost
will decrease, yielding a more accurate risk assessment.
This results in more efficient and safer planning when
compared to deterministic methods. For example, in
our prior work [38], the deterministic approach led to
frequent oscillations in planning as obstacles appeared
and disappeared with sensor and localization noise.

Next, we deployed STEP on a Boston Dynamics Spot
quadruped robot at the Valentine Cave in Lava Beds
National Monument, Tulelake, CA. The main sensor
for localization and traversability analysis is a Velodyne
VLP-16, fused with Spot’s internal Intel realsense data
to cover blind spots. The payload was similar to that of
Husky, proving on-board, real-time computing.

Figure 10 shows the interior of the cave and algorithm’s
representations. The rough ground surface, rounded
walls, ancient lava waterfalls, steep non-uniform slopes,
and boulders all pose significant traversability stresses.
Furthermore, there are many occluded places which
affect the confidence in traversability estimates.

We tested our risk-aware traversability software during
our fully autonomous runs. The planner was able to
navigate the robot safely to the every goal provided by the
upper-layer coverage planner [8, 23] despite the challenges
posed by the environment. Figure 10 shows snapshots
of elevation maps, CVaR risk maps, and planned paths.
The risk map captures walls, rocks, high slopes, and
ground roughness as mobility risks. STEP enables Spot
to safely traverse the entire extent of the lava tube, fully
exploring all regions. STEP navigates 420 meters over 24
minutes, covering 1205 square meters of rough terrain.

VI. Conclusion

We have presented STEP (Stochastic Traversability
Evaluation and Planning), our approach for autonomous
robotic navigation in unsafe, unstructured, and unknown
environments. We believe this approach finds a sweet-
spot between computation, resiliency, performance, and

flexibility when compared to other motion planning
approaches in such extreme environments. Our method
is generalizable and extensible to a wide range of robot
types, sizes, and speeds, as well as a wide range of
environments. Our future work includes robustification
of subcomponents and extension to higher speeds.
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Appendix

A. Dynamics model for differential drive

For a simple system which produces forward velocity
and steering, (e.g. differential drive systems), we may
wish to specify the state and controls as:

x=[px,py,pθ,vx]ᵀ (31)
u=[ax,vθ]ᵀ (32)

For example, the dynamics xk+1 =f(xk,uk) for a simple
differential-drive system can be written as:

xk+1 =xk+∆t


vxcos(pθ)
vxsin(pθ)

γvx+(1−γ)vθ
ax

 (33)

where γ ∈ [0,1] is a constant which adjusts the amount
of turning-in-place the vehicle is permitted.

B. Computing the dynamic risk metric using CVaR for
Normal distributions

J(x0,π)=R0+ρ0
(
R1+ρ1

(
R2+...+ρT−1(RT )

))
=R0+ρ

(
R1+ρ

(
R2+...+ρ(RT−1+

µT +σT
ϕ(Φ−1(α))

1−α )
))

=R0+ρ
(
R1+ρ

(
R2+...+ρ(RT−2+

µT−1+µT +(σT−1+σT )ϕ(Φ−1(α))
1−α )

))
...

=R0+
T∑
i=1

(
µi+σi

ϕ(Φ−1(α))
1−α

)

=
T∑
i=0

ρ(Ri)

C. Kinodynamic Planning Diagram

Fig. 11. Diagram of kinodynamic MPC planner, which begins with
evaluating various paths within a trajectory library. The lowest
cost path is chosen as a candidate and optimized by the QP solver.

D. Gradients for Orientation Constraint
We describe in further detail the derivation of

the orientation constraints. Denote the position as
p= [px,py]ᵀ and the position/yaw as s= [px,py,pθ]. We
wish to find the robot’s pitch ψ and roll φ in its body
frame. Let ω = [ψ, φ]ᵀ. The constraint will have the
form |ω(s)| <= ωmax. At p, we compute the surface
normal vector, call it nw = [nwx ,nwy ,nwz ]ᵀ, in the world
frame. To convert the normal vector in the body frame,
nr=[nrx,nry,nrz]ᵀ, we rotate by the robot’s yaw: nr=Rθnw
(see Figure 6), where Rθ is a basic rotation matrix by
the angle θ about the world z axis:

Rθ=

 cospθ sinpθ 0
−sinpθ cospθ 0

0 0 1

 (34)

Let the robot pitch and roll vector ω be defined as
ω=g(nr), where:

ω=g(nr)=
[

atan2(nrx,nrz)
−atan2(nry,nrz)

]
(35)

Creating a linearly-constrained problem requires a linear
approximation of the constraint:

|∇sω(s)δs+ω(s)|<=ωmax (36)
Conveniently, computing ∇sω(s) reduces to finding
gradients w.r.t position and yaw separately. Let
∇sω(s)=[∇pω(s),∇θω(s)]ᵀ, then:

∇pω(s)=(∇nrg)(Rθ)(∇pnw) (37)

∇θω(s)=(∇nrg)( d
dθ
Rθ)(nw) (38)

where:

∇nrg=

 nr
z

(nr
x)2+(nr

z)2 0 −nr
x

(nr
x)2+(nr

z)2

0 −nr
z

(nr
y)2+(nr

z)2
nr

y

(nr
y)2+(nr

z)2


(39)

and

∇pnw=


∂nw

x

∂px

∂nw
x

∂py
∂nw

y

∂px

∂nw
y

∂py
∂nw

z

∂px

∂nw
z

∂py

 (40)

The terms with the form ∂nw
x

∂px
amount to computing a

second-order gradient of the elevation on the 2.5D map.
This can be done efficiently with numerical methods [16].

E. Converting non-linear MPC problem to a QP problem
Our MPC problem stated in Equations (9-12) is non-

linear. In order to efficiently find a solution we linearize
the problem about an initial solution, and solve iteratively,
in a sequential quadratic programming (SQP) fashion
[28]. Let {x̂k,ûk}k=0,···,T denote an initial solution. Let
{δxk,δuk}k=0,···,T denote deviation from the initial solu-
tion. We approximate (9-12) by a problem with quadratic
costs and linear constraints with respect to {δx,δu}:

{δx∗,δu∗}=argmin
δx,δu

T∑
k=0
‖x̂k+δxk−x∗k‖Qk

+λJ(x̂k+δxk,ûk+δuk) (41)
s.t. ∀k∈ [0,···,T ] :
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x̂k+1+δxk+1 =f(x̂k,ûk)+∇xf ·δxk+∇uf ·δuk (42)
g(ûk)+∇ug ·δuk�0 (43)

h(m,x̂k)+∇xh·δxk�0 (44)
where J(x̂k + δxk,ûk + δuk) can be approximated with
a second-order Taylor approximation (for now, assume
no dependence on controls):

J(x̂+δx)≈J(x̂)+∇xJ ·δx+δxᵀH(J)δx (45)
and H(·) denotes the Hessian. The problem is now a
quadratic program (QP) with quadratic costs and linear
constraints. To solve Equations (41-44), we introduce the
solution vector variable X:

X=
[
δxT

0 ··· δxT
T δuT

0 ··· δuT
T

]T (46)
We can then write Equations (41-44) in the form:

minimize 1
2X

TPX+qTX (47)

subject to l≤AX≤u (48)
where P is a positive semi-definite weight matrix, q is
a vector to define the first order term in the objective
function, A defines inequality constraints and l and u
provide their lower and upper limit.

F. Linesearch Algorithm for SQP solution refinement
The solution to the SQP problem returns an optimized

control sequence {u∗k}k=0:T . We then use a linesearch
routine to find an appropriate correction coefficient γ,
using Algorithm 2. The resulting correction coefficient
is carried over into the next path-planning loop.

Algorithm 2 Linesearch Algorithm
Input: candidate control sequence {uc

k}k=0:T , QP
solution {δu∗k}k=0:T

Output: correction coefficient γ
Initialization

1: initialize γ by default value or last-used value
2: [c,o]=getCostAndObstacles({uc

k}k=0:T )
Linesearch Loop

3: for i=0 to max_iteration do
4: for k=0 to T do
5: u

c(i)
k =uc

k+γδu∗k
6: end for
7: [c(i),o(i)]=getCostAndObstacles({uc(i)

k }k=0:T )
8: if (c(i)≤c and o(i)≤o) then
9: γ=min(2γ,γmax)
10: break
11: else
12: γ=max(γ/2,γmin)
13: end if
14: end for
15: return γ
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