
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Generalized Comprehensive Motion Theory for
High-Order Differential Dynamics

Vincent Samy, Ko Ayusawa and Eiichi Yoshida

Abstract—We address the problem of calculating complex
Jacobian matrices that can arise from optimization problems. An
example is the inverse optimal control in human motion analysis
which has a cost function that depends on the second order
time-derivative of torque τ̈ . Thus, its gradient decomposed to,
among other, the Jacobian δτ̈/δq. We propose a new concept
called N -order Comprehensive Motion Transformation Matrix
(N -CMTM) to provide an exact analytical solution of several
Jacobians. The computational complexity of the basic Jacobian
and its N -order time-derivatives computed from the N -CMTM
is experimentally shown to be linear to the number of joints Nj .
The N -CMTM is based on well-known spatial algebra which
makes it available for any type of robots. Moreover, it can be
used along classical algorithms. The computational complexity of
the construction of the N -CMTM itself is experimentally shown
to be N2.

I. INTRODUCTION

Robotics researchers have been benefiting from basic com-
putation such as Forward Kinematics (FK), Forward Dynamics
(FD), Inverse Dynamics (ID) and Inverse Kinematics (IK)
for various applications. Not only they are well-defined but
they also have been improved in terms of performances. The
work of Luh et al. [16] was one of the first to present a
resolution scheme to compute inverse dynamics. They then
showed its efficiency in real-time [17]. Featherstone [10]
presented a revised version based on spatial algebra which can
handle the translation and rotation of rigid-body coordinate
simultaneously, and is less sensitive to joint type. Walker
and Orin [32] presented the first Composite Rigid Body
Algorithm (CRBA), and later Featherstone [10] proposed a
recursive propagation method called Articulated-Body Algo-
rithm (ABA) which is also based on spatial algebra. Park
et al. [24] proposed a generalized method for ID algorithm
using Lie group and Lie algebra and Sohl and Bobrow [30]
presented a first order differentiation of it. In parallel, methods
that exploit the sparse-matrix formulation of the FD has been
developed as in [23]. Nowadays, FD is the central part of
dynamic simulators [29] [22] while FK and ID are widely
used for almost any robotic branch [18] such as motion
planning [6] [33], control [26], mechanical design [14], etc.
They are also fundamental tools for human/humanoid motion
analysis as shown in [27] [7] [25] [20].

Nevertheless, classical algorithms only consider accelera-
tion, torque and force. Going beyond, Guarino Lo Bianco [13]
presented an ID algorithm that computes first derivative of gen-
eralized forces using the joint jerks with Denavit-Hartenberg
parameters. Buondonno and De Luca [4] later extended it to
the second derivative along the joint snap (fourth derivative of

position). Flash and Hogan [11] presented a trajectory analysis
of human planar motion that minimizes the jerk. Use of higher-
order differential information has also been studied for flying
robotics. For instance, Mellinger and Kumar [19] used the
snap for a quad rotor indoor trajectory generation, and Eager
et al. [8] demonstrated the interest of high-order derivatives
for roller coaster. Furthermore, Carpentier and Mansard [5]
provided an analytical derivative solution for spatial algebra
of the ID and FD up to the first-order derivative. Finally, it is
also important to note that recent pseudo-symbolic techniques
such as Automatic Differentiation (AD) has the potential to
compute time-derivatives [3].

In an optimization scheme where a minimization of the
acceleration/jerk or torque is desired, their gradient, and even-
tually the Hessian, is needed. This need leads to the compu-
tation of high-order Jacobians (i.e. Jacobians of high order
time derivative of physical quantity). The study on human
motion analysis based on inverse optimal control by Lin et al.
[15] is an example of the need for such a solution. Although
numerical computation is commonly employed for those ob-
jectives, analytical solution would provide better precision and
performance. Human motion imitation [31] is another example
of such optimization problem. Recently, Fu et al. [12] have
provided a high-order Jacobian analytical solution based on
Lie algebra but is limited to fixed manipulators and to the
basic Jacobian.

In this paper we present a new mathematical representation
that provides an analytical solution of any high-order Jacobian
matrix without having to manually perform derivation. The
new representation is a generalization of the prior work [2][1],
that demonstrated the capability of the Comprehensive Motion
Transformation Matrix (CMTM) by performing a complex
dynamic motion optimization. We call this new concept of
N -CMTM where N stands for the derivative order.

Section II presents the motivation behind N -CMTM and
proposes its first glance. After providing a set of notation and
convention used in this paper in Section III, we introduce N -
CMTM in Section IV. Section V investigates kinematics and
dynamics under the N -CMTM to derive comprehensive equa-
tions and Jacobians in Section VI. The theory is numerically
validated against well-known baseline methods in Section VII.

II. MOTIVATION

Let us consider the following optimization scheme

min
x

c(Y (x))

subject to g(Y (x)) ≤ 0
(1)

 ���

Fig. 1: Transformation matrices from frame B to a frame A.
The N -CMTM not only embeds the position and the rotation
but also the spatial velocity, spatial acceleration and all the
derivatives above.

where the cost function c and the constraint function g depend
of physical quantities Y (such as velocities ν, forces f , or more
complex quantities like τ̈ the second order time-derivative
of torque). Often x =

(
qT, q̇T, q̈T

)T
resp. the generalized

coordinates, velocity and acceleration vectors also depend on
other quantities like torques. This type of optimization is
common in many robotics field like motion planning [28],
control [9], etc. Optimization with high-order derivative of
physical quantities can be found in human motion analysis and
Inverse Optimal Control (IOC) [15]. To solve this problem we
need the gradient of the functions c and g, namely

∂h(Y)

∂x
=
∂h(Y)

∂Y

∂Y

∂x
with h = {c, g}. (2)

The first part ∂h(Y)/∂Y depends of the definition of the
function h which is chosen to facilitate its gradient calculation.
The second part ∂Y/∂χ has various meanings. For example,
when Y = ν then ∂ν/∂q is the basic Jacobian matrix, but it
also has other meanings. A non-exhaustive list can be:

∂
...
ν(q, q̇, q̈,

...
q,
....
q)

∂q̇

∣∣∣∣∣ ∂ḟ(q, q̇, q̈,
...
q)

∂q̈

∣∣∣∣∣ ∂τ̈(q, q̇, q̈,
...
q,
....
q)

∂q
(3)

These examples are much harder to solve without resorting to
numerical differentiation. Unfortunately, numerical differenti-
ation is computationally heavy, and the higher the derivative
becomes the harder it is to get a good approximation. This is
where N -CMTM can be introduced as a powerful tool through
an exact analytical solution.

Before going deep into the theory, it is convenient to give
a simple insight of the N -CMTM. It can be viewed as an
extended homogeneous/spatial transformation matrix in the
sense that it provides not only rotation/position coordinates
transformation but also the velocity transformation and all of
its derivatives as in Fig. 1. So it is an all-in-one transformation
matrix thus can unify FK, ID and FD.

III. NOTATION & BACKGROUND

Let A, B and C be three arbitrary coordinate frames. The
translation from A to B in C coordinates is written as CrAB .
The rotation matrix that transforms 3D vector coordinates from
B to A is written as ARB . A spatial vector from A to B in
C coordinates is written as CνAB . Compared to Featherstone’s

spatial vector, ours has a wider meaning and we have CνAB =
CνB−CνA, so it also represents the relative velocity between
A and B in C coordinates. Furthermore, if A is the parent
frame of B then BνAB is the joint velocity in the successor
frame (noted vJ in Featherstone). Generally, we simplify the
writing and call a spatial joint vector νAB = BνAB , while a
spatial link vector is denoted νB = Bν0

B where 0 represents
the world frame. The homogeneous matrix H and the spatial
transformation X from frame B to A are given by

AHB =

(
ARB

ArAB
01×3 1

)
AXB =

(
ARB 03×3[

ArAB×3

]
ARB

ARB

) (4)

and we define T to represent either (T ∈ {H, X}). If the
transformation is from an arbitrary frame A to the world frame
0, then it is noted TA. It should be noted that, in Featherstone’s
notation, the lower-left element of AXB can be written as:[
ArAB×3

]
ARB = −ARB

[
BrBA×3

]
. The spatial transformation

X admits a dual representation, noted X̄

AX̄B = AX -T
B =

(
ARB

[
ArAB×3

]
ARB

03×3
ARB

)
. (5)

We write the operator [·×4] (resp. [·×6]) that generates the
differential operator of the homogeneous (resp. spatial) trans-
formation matrix. More explicitly with ν =

[
ωTvT

]T ∈ R6

[ν×4] =

(
[ω×3] v
01×3 0

)
[ν×6] =

(
[ω×3] 03×3

[v×3] [ω×3]

)
(6)

where ω ∈ R3 represents the angular velocity and v ∈ R3

the linear velocity. The operator [·×6] also admits a dual
representation

[ν×̄6] = − [ν×6]
T

=

(
[ω×3] [v×3]
03×3 [ω×3]

)
(7)

The operator [ω×3] with ω ∈ R3 generates the differential
operator of the rotation matrix which is called skew-symmetric
matrix. We note ·∨ the reverse operator of [·×] so that:

[ν×]
∨

= ν.

Let us now consider the time-derivative of a spatial trans-
formation in the relative frame. Let A, B, e and f be four
arbitrary frames. Both frame A and B admits respectively a
spatial link motion νA and νB , We note ν̇ the time-derivative
of the spatial motion vector in local coordinates and ν̊ the
component-wise time-derivative. As in [10] (Eq. (2.45)), the
time-derivative of the spatial transformation matrix is
d

dt

(
AXB

)
Bνef = Aν̊ef − AXB

B ν̊ef

=
(
AXB [νB×6]− [νA×6]AXB

)
Bνef

= AXB

[
νAB×6

]
Bνef (8)

Although we will not prove it here, this formula is also valid
for the homogeneous form, and the generic equation is

AṪB = ATB
[
νAB×k

]
, k ∈ {4, 6} (9)

 ���

and finally here are some properties of the cross operator{
Ȧ = A [γ×k]

[Aγ×k]
n

= A [γ×k]
n
A-1 , k ∈ {3, 4, 6} (10)

with A ∈ {R,H,X} and γ ∈ {ω, ν, ν}. To avoid confusion,
Featherstone’s equivalent operator is (Aγ)×= [Aγ×].

IV. N -CMTM

Ayusawa and Yoshida [2] presented CMTM that transforms
motions up to the acceleration. As the CMTM comes from
Lie theory, they mainly worked with the tangent space of
SE(3). Here, we extend the CMTM notion to any order of
derivatives and give its generalized meaning. Furthermore,
for simplification, we will only consider time-derivative of
physical quantities and drop infinitesimal displacement. This
choice is discussed in Section VI-B4).

Let us define a spatial velocity ν and the concatenation ζ
of its N time-derivatives:

ζ ,
[
νT ν̇T · · · ν(N)T

]T
. (11)

Let us consider the equation z = ay and compute its N -th
derivative

z(N) =

N∑
k=0

(
N

k

)
a(N−k)y(k) (12)

where
(·
·
)

provides binomial coefficients, and let us define

ĝ(p) =
g(p)

p!
. (13)

By substitution, â(0) = T , ŷ(0) =
[
ζ {0}×k

]
= [ν×k] and

ẑ(0) = Ṫ into Eq. (12), this equation becomes analogeous
to Eq. (9). We can then construct the matrix which is shown
in Fig. 2. In short, with M = N + 1

Ċ = C
[
ζ̂×kM

]
. (14)

And when k = 6, we can define the dual representation with

˙̄C = C̄
[
ζ̂×̄6M

]
(15)

where
[
ζ̂{p}×̄6M

]
= −

[
ζ̂{p}×6M

]T
and C̄{p} = −(C{p})

T

for p = 0..N . The index ·{p} represents the p-th sub-vector /
sub-matrix of the preceded variable. All matrices in Eq. (14)
and (15) are lower block-triangular matrices and operation on
it can be optimized as shown in Appendix A. C ∈ RkM×kM is
called N -CMTM and depends on T so we have k ∈ {4, 6} and
[ζ×kM] is its differential operator which also shares the same
properties of Eq. (10). In what comes next, unless specified, we
adopt the operator [·×] , [·×k] where k ∈ {3, 4, 6, 4M, 6M}.
For example, we have [·×6] when X is used.

Eq. (14) provides the skeleton of the N -CMTM construction
method. Combining it with Eq. (12), ∀p ∈ {0..N − 1} the N -
CMTM sub-matrices are

C{p+1} = ẑ(p) =
1

p+ 1

p∑
k=0

C{p−k}

[
ζ̂{k}×

]
(16)

with C{0} = T (which is the 0-CMTM).
Although the N -CMTM embeds the motion information

through the operator [·×], it is not directly accessible. To re-
trieve the motion from a N -CMTM, we need to ”deconstruct”
it, which is strictly the reverse of the construction operation.
∀p ∈ {0..N − 1} we have

ζ{p} =

[
p!C -1
{0}

(
(p+ 1)C{p+1} −

p−1∑
k=0

1

k!
C{p−k}ζ̂{k}

)]∨
(17)

V. KINEMATICS & DYNAMICS WITH THE N -CMTM

We will now consider an open kinematic chain composed
of NJ links and joints. First, we define the following:

nJi : Number of parameters to describe joint i
nDi : Number of DoF of joint i
p(i) : Parent body of joint i.
C(i) : Set of direct children (leave-side) of body i.
P(i) : Set of all parents (root-side) of body i.

.

Let qi ∈ RnJi be the generalized coordinates of joint i. Then
there exists a function q2T so that

p(i)Ti = q2T(qi). (18)

The velocity ν
p(i)
i across joint i is related to its generalized

joint velocity vector ψi by

ν
p(i)
i = Siψi. (19)

where the matrix S is called the motion subspace matrix and

S ,



[
eT3 0T3

]T
(rotational)[

0T3 eT3
]T

(linear)[
eT3 heT3

]T
(helical)

[13×3 03×3]
T

(spherical)
16×6 (free)

(20)

where e is the axis of the joint and h the pitch of the screw.
It follows that the generalized force τi of joint i is

τi = ST
i f

p(i)
i (21)

where fp(i)i is the force passing through joint i. From Eq. (9),
we have

p(i)Ṫi = p(i)Ti

[
ν
p(i)
i ×

]
= p(i)Ti [Siψi×] (22)

which provides us with the last necessary equation to create
the mapping matrix G

ζ
p(i)
i = GiΨi (23)

with

Ψi ,

[
ψT
i ψ̇

T
i · · · ψ

(N)
i

T
]T

(24)

and
Gi = diag(Si). (25)

 ���


ẑ(0) 0 . . . 0
ẑ(1) ẑ(0) . . . 0

...
.

...
ẑ(n) ẑ(n−1) . . . ẑ(0)


︸ ︷︷ ︸

Ċ

=


â(0) 0 . . . 0
â(1) â(0) . . . 0

...
.

...
â(n) â(n−1) . . . â(0)


︸ ︷︷ ︸

C


ŷ(0) 0 . . . 0
ŷ(1) ŷ(0) . . . 0

...
.

...
ŷ(n) ŷ(n−1) . . . ŷ(0)


︸ ︷︷ ︸

[ζ̂×kM]

Fig. 2: Comprehensive Motion Transformation Matrix and its derivative. All matrices define a very specific layout corresponding
to the one described in Appendix A. Considering both the layout and the sparsity can greatly improve the computation time
of the N -CMTM.

Fig. 3: Mappings from joint space to link space variables.
The N -CMTM of joint an arbitrary joint i is calculated from
the joint motion Ψ̂i. The N -CMTM of link i is calculated
by multiplication of the N -CMTM of its parent link and the
N -CMTM of joint i. The motion ζ̂i is then computed by
deconstructing the resulting matrix.

Note that we consider that all joints are fixed here. In cases
where Si depends on qi (e.g. rack and pinion joint), Gi
becomes a lower block-triangular matrix made of Si time-
derivatives.

A. Forward Kinematics

The joint space of N -CMTM p(i)Ci and its link space Ci
can now be built as illustrated in Fig. 3. And finally, as the N -
CMTM is a transformation matrix, it also obeys to the chain
rule

Cj = Ci
iCj . (26)

Thus the FK becomes straightforward

Ci = Cp(i)
p(i)Ci, ∀i ∈ {1..NJ} (27)

where C0 is composed of an eventual global transformation
of the system as well as global motion (e.g. gravity).

Hereafter, an N -CMTM built from X with N ≥ 2 is used.

B. Inverse Dynamics

As the N -CMTM is an extended transformation matrix,
we can use N -CMTM instead of spacial transformation
matrices in the classical Recursive Newton-Euler Algorithm
(RNEA) [16].

Let hi
(k) be the k-th order time derivative of momentum of

link i, and hi = [hi
(0)T · · · hi

(N)T]T are the set of the time
derivatives, which has the following relationship:

hi = Ĩiζi

where Ĩi = diag [Ii, · · · , Ii], a block diagonal matrix com-
posed of the inertia matrix of link i which is time invariant.

Let fi
(k) be the k-th order time derivative of link force,

and fi = [fi
(0)T · · · fi

(N−1)T]T are the set of the derivatives.
The link force in the acceleration level is computed such that
fi

(0) = hi
(1) + [νi×̄] h

(0)
i . This relationship can be extended to

the general form between fi and hi as follows:

fi = hi{1:N} +
[
ζi{0:Q}×̄

]
hi{0:Q} (28)

where Q = N − 1 and M{a:b} is the sub-vector / sub-matrix
of M corresponding from a-th order derivative to b-th order
one. Since forces are at the momentum time-derivative level,
hat notation is shifted. To overcome this, we pose DN =
diag [1, 2, · · · , N] so we have

f̂i = DN ĥi{1:N} +
[
ζ̂i{0:Q}×̄

]
ĥi{0:Q}, ∀N > 0 (29)

Under the N -CMTM, the computation of the forces across a
joint i is

f̂
p(i)
i = f̂i +

∑
j∈C(i)

iC̄j{0:Q} f̂
i
j . (30)

The joint torque is finally computed using Eq. (21). Note that,
during this process, it is also convenient to also compute the
momentum passing through joint i which is provided by

ĥ
p(i)
i = ĥi +

∑
j∈C(i)

iC̄j{0:N} ĥ
i
j . (31)

From these equations, a Comprehensive Recursive Newton-
Euler Algorithm (CoRNEA) can be defined (see Alg. (1))

T = CoRNEA(model,ℵ) (32)

where T = [τ̂T, · · · , τ̂ (Q)T]T is the concatenation of torque
of all joints and ℵ = [Ψ̂T

1 , · · · , Ψ̂T
NJ

]T is the concatenation of
motion of all joints.

C. Forward Dynamics

Let us now adapt N -CMTM to the Articulated-Body Al-
gorithm (ABA) [10]. There are several variations of the
forward dynamics algorithm depending on what input we are
considering. Here, we consider the generalized joint angles and
velocity are known and the output is the joint acceleration and
its derivatives. This case is more tricky since we need to know
the i − 1 joint motion derivative before computing the next

 ���

Algorithm 1: Inverse Dynamics (CoRNEA)
Input: robot model, ℵ
FK(robot model, ℵ) // See Eq. (27)
for i← 1 to NJ do // From root to leaves

[0Xi, ζ̂i]← DECONSTRUCT(Ci) // See Eq. (17)

ĥi ← Ĩi · ζ̂i
f̂i ← DN ĥi{1:N} +

[
ζ̂i{0:Q}×

]
ĥi{0:Q}

for i← NJ to 1 do // From leaves to root

f̂
p(i)
i ← f̂

p(i)
i + f̂i

Ti ← GT
i f̂

p(i)
i) // See Eq. (13)

if p(i) 6= 0 then
f̂
p(p(i))
i ← f̂

p(p(i))
i + p(i)C̄i{0:Q} · f̂

p(i)
i

Output: T

one. To compute the i-th derivative of joint motion, we need
to know its i−1-th derivative first. Therefore, we need to apply
the standard ABA recursively. Let us define the notation [: k]
which takes all elements until order k included. Mathemati-
cally, for a system composed of Nj joints, ℵ[: n] is equivalent
to ∀j ∈ {1..NJ},∀k ∈ {n + 1..N},ℵj [k] = ψ

(k)
j = 0, or,

more explicitly
ℵ[: n] =

[
Φ̂T

1 [: n], · · · , Φ̂T
Nj

[: n]
]T

Φ̂j [: n] =

[
φ̂

(0)
j

T
, · · · , φ̂(n)

j

T
, 0, · · · , 0

]T
j ∈ {1..Nj}

(33)

so all elements of order superior or equal to n are zeros. Using
the standard ABA, we get

ψ̇ = ABA(model, τ) (34)

then performing a CoRNEA we have

T = CoRNEA(model,ℵ[: 1]) (35)

and since the jerk ℵ[2] is 0, T [2] is the bias force. We then
compute the next joint angle derivative

ψ̈ = ABA(model, τ̇ − T [2]). (36)

and by recursion we get all motion vectors. Alg. (2) provides
the summary of the computation based on ABA and CoRENA.

Algorithm 2: Recursive Forward Dynamics

Input: model, ψ1, · · · , ψNL
, τ , · · · , τ (N)

ℵ ← 0
ℵ[0]← ψ1, · · · , ψNL

ℵ[1]← ABA(model, τ)
for i← 2 to N do
T ← CoRNEA(model,ℵ)

ℵ[i]← ABA(model, τ
(i)

i! − T [i])

Output: ℵ

Standard algorithms are not the only features essential to
robotics, so we go further in the CMTM analysis and consider
its involvement in comprehensive equations and Jacobians.

VI. TOWARD ADVANCED ALGORITHMIC TOOLS

In this section we present advanced kinematics and dy-
namics tools that the N -CMTM provides. The comprehensive
equations represent the whole kinematics and dynamics by
means of an unique matrix while Jacobians links the whole
model parameters to one link/joint variable.

A. Comprehensive equations

To introduce the comprehensive equations we first consider
the forward kinematics equation of link i

ζ̂i = ζ̂
p(i)
i + iCp(i) ζ̂

p(i). (37)

Let’s define the link space comprehensive motion VL =[
ζ̂1

T
, · · · , ζ̂NJ

T
]T

and the joint space comprehensive mo-

tion VJ =

[
ζ̂0
1

T
, · · · , ζ̂p(NJ)

NJ

T
]T

then

VJ = LVL (38)

where

L{i,j} =

 16M×6M , if i = j
−iCj , if j = p(i)
06M×6M , otherwise

. (39)

In the case of open kinematic chains, matrix L is always
invertible and its inverse L−1 is given by

L-1
{i,j} =

 16M×6M , if i = j
iCj , if j ∈ P(i)
06M×6M , otherwise

(40)

where C is the N -CMTM. We set G = diag [G1, · · · , GNJ
]

so that VJ = Gℵ, then we get the link space comprehensive
motion VL / momentum HL, and the joint space comprehen-
sive momentum HJ , respectively

VL =
(
L-1G

)
ℵ (41)

HL =
(
ML-1G

)
ℵ (42)

HJ = L-TML-1Gℵ = (IG)ℵ (43)

where M = diag
[
Ĩ1, · · · , ĨNJ

]
and I is the N -order joint

inertia matrix. The basic Jacobian of VL, HL and HJ can be
derived as the coefficient matrix of ℵ in Eq. (41), Eq. (42) and
Eq. (43), respectively. They are the basic formulations used for
deriving the Jacobians in the following subsection.

B. Jacobians

Presented in Section II, we consider optimization with
complex functions which need a calculation of the gradient
∂
...
ν/∂q̇, ∂ḟ/∂q̈ or ∂τ̈/∂q. Equivalently, we want the Jacobian
J1, J2 and J3 that respectively mapsνi = J1ψ̇all, f̈i = J2ψ̈all
and ...

τi = J3ψall for an arbitrary link/joint i. All J1, J2 and
J3 are non trivial to calculate but the comprehensive equation
along the N -CMTM makes it feasible.

 ���

Fig. 4: The 3 main frames of an arbitrary link. In black, the
world frame, in green, the body frame and in orange, the
inertia-fixed frame.

1) Comprehensive basic Jacobian: As in [2] (Eq. (32)), the
j-th column-band of comprehensive Jacobian of link i is

J̌i,j = U -1
i
iCjU

p(j)
j Gj , j ∈ P(i) ∪ i (44)

where U is a lower block-triangular matrix. If we consider the
comprehensive Jacobian relative to time-derivative quantities:

Ji,j = iCjGj , j ∈ P(i) ∪ i (45)

which also corresponds to the i-th row-band of the matrix L-1G
in Eq. (41). We discuss in Section VI-B4) the whereabouts of
the vanishing matrix U . Let us consider the basic Jacobian J
that maps ν = Jψ. By deriving N -times we get Eq. (12) with
ẑ(0) = ν, â(0) = J and ŷ(0) = ψ. By comparison, we get for
an arbitrary link i the p-th body Jacobian derivative with

iĴ
(p)
i,j = Ji,j{p} = iCj{p}Sj , j ∈ P(i) ∪ i. (46)

Thus, the Jacobian J1 that mapsνi = J1ψ̇ is J1 = 4!Ji,all{3}.
In classic mechanics, the provided Jacobian is in the inertia-
fixed frame bx (see Fig. 4) of body b which is different from
the body Jacobian. The inertia-fixed frame bx is a rotation-
fixed frame from world frame at the body origin. With the
fixed rotation being the identity, we have

0Tb = 0Tbx
bxTb (47)

with{
0Rbx = 13×3
0r0
bx = 0r0

b
and

{
bxRb = 0Rb
bxrb

x

b = 03×1
(48)

The global Jacobian and the spatial (at world frame) Jacobian
can be computed the same way as the body Jacobian{

bx Ĵ
(p)
b,j = bxCj{p}Sj

0Ĵ
(p)
b,j = 0Cj{p}Sj

, j ∈ P(b) ∪ b. (49)

2) Comprehensive Link force Jacobian: To compute this
Jacobian, we first need the Jacobian K that maps ĥi = Kiℵ.
It is directly computed from Eq. (45)

ĥi = Ĩiζi = ĨiJiℵ (50)

so Ki = ĨiJi. Comparing with the link momentum given
by Eq. (42), it is also the i-th row-band of matrix ML-1G.

The link i force JacobianNi that maps f̂i = Niℵ is obtained
using Eq. (29) and (50)

fi = DN ĥi{1:N} +
[
ζ̂i{0:Q}×̄

]
ĥi{0:Q}

=
(
D∆
N +

[
ζ̂i{0:Q}×̄

])
Kiℵ

= DiKiℵ (51)

where D∆
N is the same as DN with value on the upper

diagonal. Thus, the Jacobian J2 that maps f̈i = J2ψ̈ is
J2 = 2!Ni{2,2}. Note that, due to the hat notation shift, N
looses the properties defined in Section A.

3) Comprehensive Torque Jacobian: To compute this Jaco-
bian, we first need the joint momentum Jacobian that maps
ĥ
p(i)
i = Biℵ followed by the joint force Jacobian that maps
f
p(i)
i = Qiℵ. The former is directly computed from Eq. (43)

using a method similar to the CRBA.

Bi =
(
L-TIL-1G

)
{i,all} . (52)

The comprehensive joint force Jacobian can be directly
computed from the comprehensive joint momentum Jacobian:

Qi = DiBi. (53)

To prove it, let us first calculate the time-derivative of Eq. (31)

˙̂
h
p(i)
i =

˙̂
hi +

∑
j∈C(i)

iC̄j

([
ζ̂ij×̄
]
ĥij +

˙̂
hij

)
. (54)

Note that, to save space, we have dropped the ·{a:b} notation
and set ḣ = h{1:N}. Let us now consider all bodies l so that
C(l) = ∅, the last leave-side bodies. We have

f̂
p(l)
l = f̂l = Dl ĥl = Dl ĥp(l)l . (55)

Let us now assume this relation is true for an arbitrary joint
j. Let i = p(j), from Eq. (29), Eq. (30) and (37)

f̂
p(i)
i = f̂i +

∑
j∈C(i)

iC̄j f̂
i
j

=
˙̂
hi +

[
ζ̂i×̄
]
ĥi +

∑
j∈C(i)

iC̄j

(
˙̂
hij +

[
ζ̂j×̄
]
ĥij

)
=

˙̂
hi +

[
ζ̂i×̄
]
ĥi +

∑
j∈C(i)

iC̄j

(
˙̂
hij +

[
jCi ζ̂i + ζ̂ij×̄

]
ĥij

)
= Di ĥp(i)i (56)

Finally, the torque Jacobian R that maps τ̂ = Rℵ is

R = GTQ. (57)

Thus, the Jacobian J3 that maps ...τi = J3ψ is J3 = 3!Ri{3,0}.
See Fig. 5 for a resume of the comprehensive mappings.

 ���

Fig. 5: Comprehensive N -CMTM mappings between joint
space and link space. Each Jacobian matrix maps the concate-
nation of all joints motion vector ℵ to one of the most common
physical quantities (Link motion joint/link momentum and
jint/link force).

4) Discussion: We have mostly developed instantaneous
Jacobians, like J (Eq. (45)), over Jacobians of variation, like
J̌ (Eq. (44)). This is because the former is almost always
enough. Let us consider a function g(ν) depending on a link
velocity ν, its partial derivative with regard to the system
parameters is

∂g(ν)

∂χ
=
∂g(ν)

∂ν

∂ν

∂χ
=
∂g(ν)

∂ν
J̌ . (58)

In Section VI-B1), we said that J̌ varies from J by matrices
U which vanished when considering instantaneous Jacobian.
This can be understood by clarifying the difference between
a parameter variation like δθ and the instantaneous time-
derivative like ψ. The relation between the two is

δθ = ψδt (59)

The matrix U corresponds to this relationship. It enforces the
constraints between parameter time-derivatives and parameter
variations. Formally, δθ lies in the tangent space of q and the
two are independent variables. The matrix U ”corrects” this
lack of dependency.

Now, when considering an optimization scheme, the next
step k + 1 is computed from an integration step ∆T which
takes care of these constraints. For example

qk+1 = finteg(qk, νk, · · · , ν(N)
k ,∆T). (60)

This means that J can be used in place of J̌ . In other (rare)
cases, e.g. qk+1 = qk + α with a some step α, there is an
independence between all motions, thus, Jacobians of variation
(like J̌) must be used. Note that, all instantaneous Jacobians
here have their counterpart Jacobians of variation.

VII. TESTS & SCALABILITY

We have developed a C++ library1 to test the theory2. We
have implemented the forward kinematics, both forward and
inverse dynamics as well as all Jacobians. For the tests we
used two different models:

1https://github.com/vsamy/coma
2https://github.com/vsamy/cdm

• A manipulator robot;
• A simplified human-like model.

The human-like model is composed of 37-dof and 46 joint
parameters. The root joint is a free-floating joint, the shoulders,
wrists, hips and ankles are spherical joints, and the remaining
joints are revolute joints. The manipulator is only composed
on Nj revolute joints of different axis where Nj is chosen
arbitrary. All test has been made with a compilation in Debug
mode so the compiler does not influence the result.

To check the results we use several methods. The first
one is the RBDyn3 library. It is a rigid multi-body dynamic
library used in various robot controllers. Since the library is
limited to the computation up to the acceleration level, we
use a numerical differentiation for higher order. The p-th finite
difference dvp(t) is computed by

dvp(t) =
ν(p)(t+ ∆T)− ν(p)(t)

∆T
. (61)

We also consider a double differentiation which is given by

ddvp(t) =
dvp−1(t+ ∆T)− dvp−1(t)

∆t
. (62)

The last considered method is the Automatic Differentiation
(AD) method using CppAD4. AD is a tool that can compute
partial derivatives of a provided set of variables. Let us define
the function fk so that ν̇j = fk(Q) where ν̇j is the spatial
acceleration of a body j and Q = [qTall ψ

T
all ψ̇

T
all]

T. Its first
time-derivative is given by

ν̈j =
dfk
dt

=
∂fk
∂Q

∂Q

∂t
=
∂fk
∂Q

Q̇ (63)

and the second derivative is similar to

...
νj = Q̇T ∂

2fk
∂Q2

Q̇+
∂fk
∂Q

Q̈. (64)

We can use the AD to get the partial derivative parts and thus
compute the time derivatives. Since it is difficult to compute
the AD for high-order partial derivatives (i.e. ∂N fk/∂QN) due
to its computational complexity, only the first and second order
time-derivatives are evaluated in the case when using AD.

Finally, to evaluate high-order derivative, we also need to
know the high-order joint motion. Thus, we have generated a
time-dependent angular velocity

ψi = a ∗ sin(ωt+ b) (65)

where a, ω and b are random 6-by-1 vectors and ∗ is a
coefficient-wise multiplication. Then, we compute the motion
derivative and the joint angles depending on its type. Finally,
the system time step is ∆T = 1e−8s.

3https://github.com/jrl-umi3218/RBDyn
4https://github.com/coin-or/CppAD

 ���

https://github.com/vsamy/coma
https://github.com/vsamy/cdm
https://github.com/jrl-umi3218/RBDyn
https://github.com/coin-or/CppAD

A. Test of FK, ID and FD

We first consider the human-like model and test the FK
(see Eq. (27)). All numerical differentiations are computed
from N -CMTM results, i.e. dvp and ddvp are computed from
N -CMTM p-order results. Table (I) provides the maximum
norm error of each link motion between the CMTM and each
method. Remembering that, for double-precision, the epsilon
machine is 1.11e-16, the N -CMTM results regarding RBDyn
and AD are validated. Second-order Numerical differentiation
hits fairly bad results compared to the first-order. This means
that this kind of methods should not be used for high-order
computation. Considering that ∆T = 1e−8s, the higher-
order is recursively validated from the first-order numerical
differentiation. Table (II) provides the maximum result error

TABLE I: Max FK error between N -CMTM and each method.

order RBDyn dvp(t) ddvp(t) AD
velocity 5.18703e-16 / / 2.28878e-16

accel... 1.75542e-15 1.08502e-7 / 3.88578e-16

jerk / 2.83273e-7 15.6074 1.50195e-15

snap / 5.10762e-7 54.8067 2.27058e-15

crackle / 8.10141e-7 150.261 /

between N -CMTM and RBdyn/numerical differentiation for
the ID (see Alg. (1)). An error of 1e-15 with RBDyn and 1e-6

with numerical differentiation validates the algorithms. Since
the ID is validated, we tested the FD from ID results and got
a maximum error of 6.88683e-14.

TABLE II: Max ID error between CMTM and other methods.

order RBDyn dvp(t)

0 (momentum) 5.62864e-16 /
0 (torque) 4.33414e-15 /
1 / 1.04706e-6

2 / 1.2258e-6

3 / 2.0509e-6

B. High-Order Jacobian

Let us now get a closer look at the Jacobian evaluation. The
easiest way to check for Jacobian validity is to multiply them
by the joint motion and check for the results. Since Table (I)
shows that N -CMTM is correct, we compare the Jacobian
results directly with itself. Table (III) provides the maximum
jacobian errors. The worst error is at 1.4876e-12 and happens at
the 5th order when computing the joint momentum derivative
which also validate the Jacobian algorithms. The reason for
larger error with order is the increase of non-zero multiplica-
tion.

TABLE III: Max Jacobian error 1e-16

order Jℵ Kℵ Nℵ Bℵ Qℵ/Rℵ
1 1.49629 1.49629 1.49629 23.5579 23.5579
2 15.6296 22.2720 20.1281 143.064 99.2641
3 87.0878 87.6064 76.7999 148.885 120.504
4 193.816 209.061 163.068 842.994 944.174
5 766.013 547.351 887.600 2277.34 3241.04

(a) (b)

Fig. 6: N -CMTM scalability computation time (in debug
mode). Fig. 6a represents the computation time of the FK
with regard to the N -CMTM order. For RBDyn, only the
FK up to the acceleration is computed. Fig. 6b represents the
computation time of the FK with regard to the model’s number
of joints. A 5-CMTM is compared to a two times derivative
of FK using AD.

C. N -CMTM scalability

One of the concerns we may have about the N -CMTM is
how it scales with the order of the derivatives and with the
model complexity. To have some idea about the former case we
considered a 100-DoF manipulator and benched N -CMTM on
a simple FK (Eq. (27)) algorithm up to the 12-th order which
we consider high enough. The results are presented in Fig. 6a,
we also compare the N -CMTM computation time with RBDyn
computation time, but of course, only up to the acceleration
level for RBDyn.

The figure shows that the N -CMTM computation time
grows almost linearly with regard to its order. We also remark
that the N -CMTM is two to three times slower than RBDyn.
The reason is twofold, as remarked by Park et al. in [24],
this formulation is slower than optimized forward kinematic
equations due to its very meaning. However, as RBDyn is a
rather well optimized library and ours a first draft, the coding
part is also to be taken into account. Note that N -CMTM
parallel computation could close the computation time gap.

A more important scaling parameter is the model com-
plexity. To tackle this part, we bench, also on a FK algo-
rithm, Fig. 6b, the 5-CMTM with manipulators from 5-DoF
up to 200-DoF. We also add the computation time of the
second time-derivative with AD as seen in Eq. (64). Being
100 times faster at 200-DoF, the N -CMTM presents promising
results. As CppAD may have lot of overhead in debug mode,
a comparison on release mode has been investigated. On
average, the N -CMTM is 30 times faster. Finally, As the
system grows, the N -CMTM computation time grows linearly
with it.

VIII. CONCLUSION & FUTURE WORK

We have presented N -CMTM that is an extension of classi-
cal transformation matrix. The N -CMTM not only enables the
transformation of the position and orientation but also of the
velocity and its derivatives. We then have adapted the RNEA
and ABA algorithms to compute high-order differential quan-
tities such as the derivatives of torque, force, and acceleration.

 ���

We have also provided comprehensive equations and various
Jacobians matrices which can be used in optimization scheme.
Finally, we have developed a C++ library to test the theory
and to consider the scalability of the N -CMTM with regard
to the order and to the number of DoF of the model. To sump
up, the N -CMTM:

1) works with any order of derivatives;
2) provides easy computation of high-order Jacobians;
3) is adaptable to FK, FD and ID algorithms;
4) is easy to implement as illustrated in Fig. 3.
The future step is to develop the library in accordance

to a musculoskeletal model in order to work on motion
analysis which needs an implementation of close-loop wire-
driven multi-body systems [21]. The main focus will be the
Inverse Optimal Control [15] where high-order Jacobians are
needed for optimal computation scheme. Regarding the library,
although we have made some optimizations, it can still be
further improved. Finally, we also want to refine the theory
behind the N -CMTM and further develop the potential of it.

ACKNOWLEDGMENT

This work has been supported by JSPS KAKENHI Grant
No. 17H00768 and No. 18H03315.

APPENDIX

A. Lower block-triangular matrix

Throughout the paper, many matrices get a very specific
layout. They are lower block-triangular matrices defined with a
sub-set of matrices. Let M be one of them. It has the following
form 

M{0} 0 · · · 0

M{1}
. . .

. . .
...

...
. . .

. . . 0
M{N} · · · M{1} M{0}

 (66)

where M{k}, k ∈ {0..N} is a matrix.
This sparsity can be greatly exploited to improve the com-

putation time of the multiplication operation. Let’s have N so
that P = MN . N can be either a vector or of the same layout
as M . The sub-matrices P{k}, k ∈ {0..N} are computed
recursively by

P{k} =

k∑
p=0

M{k−p}N{p}, k = 0..N. (67)

Also, operations like + and − with N should be performed
directly on the sub-matrices as well as operation × and / with
a scalar.

The inverse B of M exists if and only if the sub-matrix
M{0} is invertible and B has the same layout of M . It can be
recursively computed by

B{i} = −M -1
{0}

i−1∑
k=0

M{i−k}B{k}, k = 0..N (68)

where B{0} = M -1
{0}.

REFERENCES

[1] K. Ayusawa, W. Suleiman, and E. Yoshida. Predic-
tive Inverse Kinematics: optimizing Future Trajectory
through Implicit Time Integration and Future Jacobian
Estimation. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 566–
573, 2019. doi: 10.1109/IROS40897.2019.8968110.

[2] Ko Ayusawa and Eiichi Yoshida. Comprehensive the-
ory of differential kinematics and dynamics towards
extensive motion optimization framework. The Inter-
national Journal of Robotics Research, 37(13-14):1554–
1572, 2018. doi: 10.1177/0278364918772893.

[3] Atılım Günes Baydin, Barak A Pearlmutter, Alexey An-
dreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. The Journal
of Machine Learning Research, 18(1):5595–5637, 2017.

[4] G. Buondonno and A. De Luca. A recursive Newton-
Euler algorithm for robots with elastic joints and its
application to control. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 5526–5532, 2015. doi: 10.1109/IROS.
2015.7354160.

[5] J. Carpentier and N. Mansard. Analytical Derivatives
of Rigid Body Dynamics Algorithms. In Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania,
June 2018. doi: 10.15607/RSS.2018.XIV.038.

[6] Benjamin Chrétien, Adrien Escande, and Abderrahmane
Kheddar. Gpu robot motion planning using semi-infinite
nonlinear programming. IEEE Transactions on Parallel
and Distributed Systems, 27(10):2926–2939, 2016. doi:
10.1109/TPDS.2016.2521373.

[7] Michael Damsgaard, John Rasmussen, Søren Tørholm
Christensen, Egidijus Surma, and Mark de Zee.
Analysis of musculoskeletal systems in the anybody
modeling system. Simulation Modelling Practice
and Theory, 14(8):1100–1111, 2006. ISSN 1569-
190X. doi: https://doi.org/10.1016/j.simpat.2006.09.
001. URL https://www.sciencedirect.com/science/article/
pii/S1569190X06000554. SIMS 2004.

[8] David Eager, Ann-Marie Pendrill, and Nina Reistad.
Beyond velocity and acceleration: Jerk, snap and higher
derivatives. European Journal of Physics, 37:065008, 11
2016. doi: 10.1088/0143-0807/37/6/065008.

[9] Adrien Escande, Nicolas Mansard, and Pierre-Brice
Wieber. Hierarchical quadratic programming: Fast online
humanoid-robot motion generation. The International
Journal of Robotics Research, 33(7):1006–1028, 2014.
doi: 10.1177/0278364914521306.

[10] Roy Featherstone. Rigid Body Dynamics Algorithms.
Springer, 01 2014. ISBN 978-0-387-74314-1. doi:
10.1007/978-1-4899-7560-7.

[11] T Flash and N Hogan. The coordination of arm move-
ments: an experimentally confirmed mathematical model.
The Journal of Neuroscience, 5(7):1688–1703, jul 1985.
doi: 10.1523/jneurosci.05-07-01688.1985.

 ���

https://doi.org/10.1109/IROS40897.2019.8968110
https://doi.org/10.1109/IROS40897.2019.8968110
https://doi.org/10.1109/IROS40897.2019.8968110
https://doi.org/10.1109/IROS40897.2019.8968110
https://doi.org/10.1177/0278364918772893
https://doi.org/10.1177/0278364918772893
https://doi.org/10.1177/0278364918772893
https://doi.org/10.1109/IROS.2015.7354160
https://doi.org/10.1109/IROS.2015.7354160
https://doi.org/10.1109/IROS.2015.7354160
https://doi.org/10.15607/RSS.2018.XIV.038
https://doi.org/10.15607/RSS.2018.XIV.038
https://www.sciencedirect.com/science/article/pii/S1569190X06000554
https://www.sciencedirect.com/science/article/pii/S1569190X06000554
https://doi.org/10.1088/0143-0807/37/6/065008
https://doi.org/10.1088/0143-0807/37/6/065008
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1523%2Fjneurosci.05-07-01688.1985
https://doi.org/10.1523%2Fjneurosci.05-07-01688.1985

[12] Z. Fu, E. Spyrakos-Papastavridis, Y. h. Lin, and J. S. Dai.
Analytical Expressions of Serial Manipulator Jacobians
and their High-Order Derivatives based on Lie Theory*.
In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 7095–7100, 2020. doi: 10.
1109/ICRA40945.2020.9197131.

[13] C. Guarino Lo Bianco. Evaluation of Generalized Force
Derivatives by Means of a Recursive Newton–Euler
Approach. IEEE Transactions on Robotics, 25(4):954–
959, 2009. doi: 10.1109/TRO.2009.2024787.

[14] Yangmin Li and Q. Xu. Kinematics and inverse dynamics
analysis for a general 3-prs spatial parallel mechanism.
Robotica, 23:219 – 229, 2005.

[15] Jonathan Lin, Vincent Bonnet, Adina Panchea, Nacim
Ramdani, Gentiane Venture, and Dana Kulic. Human
motion segmentation using cost weights recovered from
inverse optimal control. pages 1107–1113, 11 2016. doi:
10.1109/HUMANOIDS.2016.7803409.

[16] J. Luh, M. Walker, and R. Paul. Resolved-acceleration
control of mechanical manipulators. IEEE Transactions
on Automatic Control, 25(3):468–474, 1980. doi: 10.
1109/TAC.1980.1102367.

[17] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-
Line Computational Scheme for Mechanical Manipula-
tors. Journal of Dynamic Systems, Measurement, and
Control, 102(2):69–76, 06 1980. ISSN 0022-0434. doi:
10.1115/1.3149599.

[18] Kevin M Lynch and Frank C Park. Modern Robotics.
Cambridge University Press, 2017.

[19] D. Mellinger and V. Kumar. Minimum snap trajec-
tory generation and control for quadrotors. In 2011
IEEE International Conference on Robotics and Automa-
tion, pages 2520–2525, 2011. doi: 10.1109/ICRA.2011.
5980409.

[20] A. Murai, K. Kurosaki, K. Yamane, and Y. Naka-
mura. Musculoskeletal-see-through mirror: Computa-
tional modeling and algorithm for whole-body muscle
activity visualization in real time. Progress in Biophysics
and Molecular Biology, 103(2):310–317, 2010. ISSN
0079-6107. doi: https://doi.org/10.1016/j.pbiomolbio.
2010.09.006. URL https://www.sciencedirect.com/
science/article/pii/S007961071000074X. Special Issue
on Biomechanical Modelling of Soft Tissue Motion.

[21] Yoshihiko Nakamura, Katsu Yamane, Yusuke Fujita, and
Ichiro Suzuki. Somatosensory computation for man-
machine interface from motion-capture data and muscu-
loskeletal human model. IEEE Transactions on Robotics,
21(1):58–66, 2005. doi: 10.1109/TRO.2004.833798.

[22] Shin’ichiro Nakaoka, Shizuko Hattori, Fumio Kanehiro,
Shuuji Kajita, and Hirohisa Hirukawa. Constraint-based
dynamics simulator for humanoid robots with shock
absorbing mechanisms. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
3641–3647, 2007. doi: 10.1109/IROS.2007.4399415.

[23] N. Orlandea, M. A. Chace, and D. A. Calahan. A
Sparsity-Oriented Approach to the Dynamic Analysis

and Design of Mechanical Systems—Part 1. Journal of
Engineering for Industry, 99(3):773–779, 08 1977. ISSN
0022-0817. doi: 10.1115/1.3439312.

[24] F.C. Park, J.E. Bobrow, and S.R. Ploen. A Lie group
formulation of robot dynamics. The International journal
of robotics research, 14(6):609–618, 1995. doi: 10.1177/
027836499501400606.

[25] N.S. Pollard, J.K. Hodgins, M.J. Riley, and C.G. Atkeson.
Adapting human motion for the control of a humanoid
robot. In Proceedings 2002 IEEE International Confer-
ence on Robotics and Automation (Cat. No.02CH37292),
volume 2, pages 1390–1397 vol.2, 2002. doi: 10.1109/
ROBOT.2002.1014737.

[26] Ludovic Righetti, Jonas Buchli, Michael Mistry, Mrinal
Kalakrishnan, and Stefan Schaal. Optimal distribution
of contact forces with inverse-dynamics control. The
International Journal of Robotics Research, 32(3):280–
298, 2013. doi: 10.1177/0278364912469821. URL
https://doi.org/10.1177/0278364912469821.

[27] V. Samy, K. Ayusawa, and E. Yoshida. Real-time
musculoskeletal visualization of muscle tension and joint
reaction forces. In 2019 IEEE/SICE International Sym-
posium on System Integration (SII), pages 396–400, Jan
2019. doi: 10.1109/SII.2019.8700414.

[28] John Schulman, Yan Duan, Jonathan Ho, Alex Lee,
Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin Patil,
Ken Goldberg, and Pieter Abbeel. Motion plan-
ning with sequential convex optimization and con-
vex collision checking. The International Journal of
Robotics Research, 33(9):1251–1270, 2014. doi: 10.
1177/0278364914528132.

[29] Suril V. Shah, Paramanand V. Nandihal, and Subir K.
Saha. Recursive dynamics simulator (redysim):
A multibody dynamics solver. Theoretical and
Applied Mechanics Letters, 2(6):063011, 2012. ISSN
2095-0349. doi: https://doi.org/10.1063/2.1206311.
URL https://www.sciencedirect.com/science/article/pii/
S2095034915301999.

[30] Garett A Sohl and James E Bobrow. A recursive multi-
body dynamics and sensitivity algorithm for branched
kinematic chains. J. Dyn. Sys., Meas., Control, 123(3):
391–399, 2001.

[31] W. Suleiman, E. Yoshida, F. Kanehiro, J. Laumond,
and A. Monin. On human motion imitation by hu-
manoid robot. In 2008 IEEE International Conference on
Robotics and Automation, pages 2697–2704, 2008. doi:
10.1109/ROBOT.2008.4543619.

[32] M. W. Walker and D. E. Orin. Efficient Dynamic Com-
puter Simulation of Robotic Mechanisms. Journal of Dy-
namic Systems, Measurement, and Control, 104(3):205–
211, 09 1982. ISSN 0022-0434. doi: 10.1115/1.3139699.

[33] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond.
Humanoid motion planning for dynamic tasks. In
5th IEEE-RAS International Conference on Humanoid
Robots, 2005., pages 1–6, 2005. doi: 10.1109/ICHR.
2005.1573536.

 ���

https://doi.org/10.1109/ICRA40945.2020.9197131
https://doi.org/10.1109/ICRA40945.2020.9197131
https://doi.org/10.1109/TRO.2009.2024787
https://doi.org/10.1109/TRO.2009.2024787
https://doi.org/10.1109/TRO.2009.2024787
https://doi.org/10.1109/HUMANOIDS.2016.7803409
https://doi.org/10.1109/HUMANOIDS.2016.7803409
https://doi.org/10.1109/HUMANOIDS.2016.7803409
https://doi.org/10.1109/TAC.1980.1102367
https://doi.org/10.1109/TAC.1980.1102367
https://doi.org/10.1115/1.3149599
https://doi.org/10.1115/1.3149599
https://doi.org/10.1115/1.3149599
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2011.5980409
https://www.sciencedirect.com/science/article/pii/S007961071000074X
https://www.sciencedirect.com/science/article/pii/S007961071000074X
https://doi.org/10.1109/TRO.2004.833798
https://doi.org/10.1109/TRO.2004.833798
https://doi.org/10.1109/TRO.2004.833798
https://doi.org/10.1115/1.3439312
https://doi.org/10.1115/1.3439312
https://doi.org/10.1115/1.3439312
https://doi.org/10.1177/027836499501400606
https://doi.org/10.1177/027836499501400606
https://doi.org/10.1177/0278364912469821
https://doi.org/10.1109/SII.2019.8700414
https://doi.org/10.1109/SII.2019.8700414
https://doi.org/10.1109/SII.2019.8700414
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://www.sciencedirect.com/science/article/pii/S2095034915301999
https://www.sciencedirect.com/science/article/pii/S2095034915301999
https://doi.org/10.1115/1.1376121
https://doi.org/10.1115/1.1376121
https://doi.org/10.1115/1.1376121
https://doi.org/10.1109/ROBOT.2008.4543619
https://doi.org/10.1109/ROBOT.2008.4543619
https://doi.org/10.1115/1.3139699
https://doi.org/10.1115/1.3139699

	Introduction
	Motivation
	Notation & background
	N-CMTM
	Kinematics & Dynamics with the N-CMTM
	Forward Kinematics
	Inverse Dynamics
	Forward Dynamics

	Toward advanced algorithmic tools
	Comprehensive equations
	Jacobians
	Comprehensive basic Jacobian
	Comprehensive Link force Jacobian
	Comprehensive Torque Jacobian
	Discussion

	Tests & scalability
	Test of FK, ID and FD
	High-Order Jacobian
	N-CMTM scalability

	Conclusion & future work
	Appendix
	Lower block-triangular matrix

