
similar to C and B is similar to D (or A to D and B to C).
In case of the complex FHRR, the binding 
 operation
is implemented as an element-wise multiplication of the
complex values.

An important property of these operations is that the output is
a vector from the same vector space as the input vectors. This
allows to combine these simple operations to encode complex
structured information.

To also include information from structured numbers (e.g.
the x-coordinate of an object in an image), we use the
fractional binding mechanism proposed by Komer et al. [34]
to systematically encode scalar values in vectors. “Systemat-
ically” means that similar scalar values (small euclidean dis-
tance) are encoded to similar vectors (small angular distance).
Fractional binding encodes a real scalar value x in a complex
vector from Cd by

f racBind B(x) := B��x (1)

where B 2 Cd is a fixed random vector and � is a scaling
factor that controls how fast the vector similarity changes
with changes of the encoded scalar x (illustrated in Fig. 2).
For encoding scalars with different meaning (e.g. x and y
coordinates), different random base vectors Bx and By can
be used. Independent of the similarities between the scalars x
and y, f racBind Bx (x) and f racBind By (y) will have a low
similarity.

As proposed in [51], we will restrict each complex number
to magnitude 1. This simplifies some of the required computa-
tions and allows to store each vector element by a single scalar,
which is the phase angle of the complex number (instead of
storing phase and magnitude or real and imaginary parts of
a general complex number). In particular, the output vector
will only contain the angles and can thus be stored as a real-
valued vector (with the same memory footprint as, e.g., a 4,096
dimensional NetVLAD descriptor). When storing this angle-
representation the following (mathematical equivalent) simpli-
fications arise: Random vectors are created by iid. sampling
each dimension uniformly from [� �; � ]. Vector similarity is
evaluated as average cosine of the angle differences. Binding

 simplifies to element-wise addition and fractional binding to
element-wise multiplication. However, for bundling, the angles
have to be converted into complex numbers before addition.
For consecutive bundle operations, we can stay in the full
complex representation. After bundling, we convert back to
the angle representation for further processing or storing.

C. Vector semantic representation of images

We will use the above vector operations to generate a
d = 4 ; 096 dimensional image descriptor coined Vector Se-
mantic Representation (VSR) for each input image. A VSR
is a vector from Rd, however, please keep in mind that the
elements actually represent angles of complex numbers.

A note on notation: We will use small letters to refer to
scalar numbers and capital letters to refer to vectors. We
will use the summation symbol

P
i X i to refer to bundling

elements X i, even if X i is an angle-representation and thus
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Fig. 2. Encoding similar scalar values with fractional binding results in
high-dimensional vectors with high similarity. A scaling parameter � can be
used to influence the decay of the vector similarities. This resembles the
sinc() function, the visible oscillation is a result of the periodic behavior of
exponentiation in the complex domain, see [34] for more details.

the summation involves conversion to a full complex number
(i.e.,

P
i X i := X 1 � X 2 � X 3:::).

The VSR of an image is the combination of all of its
semantic entities i = 1 :::k:

V SR =
X

i

! i � Ei (2)

! i is a weighting factor computed from the size of the i-th
entity (it is the square root of the entity’s area in pixels).

1) Finding semantic entities: We use the term “semantic
entity” to refer to “things” and “stuff” [5]. Object detection
algorithms can (primarily) find image objects with well-
defined shape (“things”) (e.g. traffic lights, signs, or poles).
However, for tasks like place recognition we want to addi-
tionally use semantic information of amorphous background
regions like “vegetation” or “terrain”. Therefore, we use the
connected components of a standard semantic segmentation
approach as semantic entities. A possible future extension
of this simple approach could use recent developments from
panoptic segmentations [28] that combine both approaches.

We use Hierarchical Multi-Scale Attention [68] to as-
sign a semantic class label from all non-dynamic Cityscapes
classes to each pixel. For connected components, we use 8-
neighborhood and create an entity boundary wherever the
class label changes. The result is a list of entities ei : i =
f 1; 2; :::; kg

Each entity consists of its spatial semantic information SSIi
including the relation to other entities and information about
its appearance encoded in the vector Ai:

Ei = SSIi � Ai (3)

2) Spatial Semantic Information SSIi: The SSIi is a
single d-dimensional vector that comprises information about
the semantic class of the i-th entity, its location in the image,
and the classes of neighbored entities. It is computed by

SSIi = Ci 
 Ni 
 Si (4)

Fig. 3 illustrates how each of these three vectors is created.
Ci encodes the class ci of entity ei. We create a fixed random
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TABLE I
AVERAGE PRECISION OF THE PROPOSED VSR APPROACH, OTHER DESCRIPTORS, AND THE COMBINATIONS OF DESCRIPTORS ON ALL DATASETS. THE

FIRST TABLE COMPARES DESCRIPTORS AND SHOWS IMPROVEMENT BY COMBINATION WITH VSR. THE SECOND TABLE COMPARES DIFFERENT
ALTERNATIVE COMBINATIONS WITH THE BEST PERFORMING DESCRIPTOR NV. IN EACH TABLE, THE BEST RESULT PER DATASET IS HIGHLIGHTED

(EXCLUDING NV+DV+VSR). FOR COMBINED APPROACHES, THE COLORED ARROWS INDICATE LARGE (� 25% BETTER/WORSE) OR MODERATE (� 5%)
DEVIATION COMPARED TO THE DESCRIPTOR THAT IS NAMED FIRST (EXCEPT FOR NV+DV+VSR WHICH COMPARES AGAINST NV+DV).

Database Query VSR NV NV+VSR DV DV+VSR AN AN+VSR HN HN+VSR DELG DELG+VSR
ours [2] [2]+ours [72] [72]+ours [35] [35]+ours [8] [8]+ours [7] [7] + ours

OxfordRobotCar 2014-12-09-13-21-02 2015-05-19-14-06-38 0.84 0.78 0.89 ↗ 0.61 0.83 ↑ 0.24 0.68 ↑ 0.25 0.61 ↑ 0.86 0.93↗
2014-12-09-13-21-02 2015-08-28-09-50-22 0.59 0.60 0.70↗ 0.43 0.63 ↑ 0.11 0.36 ↑ 0.09 0.30 ↑ 0.17 0.44 ↑
2014-12-09-13-21-02 2014-11-25-09-18-32 0.78 0.87 0.89 → 0.87 0.90→ 0.42 0.70 ↑ 0.41 0.69 ↑ 0.69 0.83 ↗
2014-12-09-13-21-02 2014-12-16-18-44-24 0.17 0.55 0.67↗ 0.11 0.33 ↑ 0.07 0.25 ↑ 0.08 0.31 ↑ 0.10 0.44 ↑
2015-05-19-14-06-38 2015-02-03-08-45-10 0.88 0.92 0.95→ 0.25 0.53 ↑ 0.36 0.84 ↑ 0.42 0.83 ↑ 0.78 0.91 ↗
2015-08-28-09-50-22 2014-11-25-09-18-32 0.61 0.61 0.70↗ 0.38 0.54 ↑ 0.09 0.39 ↑ 0.11 0.44 ↑ 0.35 0.59 ↑

CMU 20110421 20100901 0.61 0.73 0.75 → 0.66 0.74 ↗ 0.44 0.61 ↑ 0.55 0.63 ↗ 0.81 0.78 →
20110421 20100915 0.71 0.77 0.78 → 0.75 0.77 → 0.59 0.71 ↗ 0.67 0.72 ↗ 0.79 0.78 →
20110421 20101221 0.56 0.56 0.61 ↗ 0.49 0.59 ↗ 0.34 0.56 ↑ 0.40 0.57 ↑ 0.61 0.63→
20110421 20110202 0.47 0.61 0.66↗ 0.49 0.55 ↗ 0.33 0.48 ↑ 0.37 0.48 ↑ 0.54 0.60 ↗

StLucia 100909 0845 180809 1545 0.35 0.02 0.19 ↑ 0.22 0.33 ↑ 0.36 0.38 → 0.43 0.42 → 0.03 0.29 ↑
100909 1000 190809 1410 0.46 0.07 0.36 ↑ 0.44 0.56↑ 0.47 0.50 ↗ 0.52 0.52 → 0.13 0.48 ↑
100909 1210 210809 1210 0.53 0.51 0.64 ↑ 0.78 0.76 → 0.54 0.56 → 0.59 0.59 → 0.59 0.63 ↗

Worst case 0.17 0.02 0.19 ↑ 0.11 0.33↑ 0.07 0.25 ↑ 0.08 0.30 ↑ 0.03 0.29 ↑
Best case 0.88 0.92 0.95→ 0.87 0.90 → 0.59 0.84 ↑ 0.67 0.83 ↗ 0.86 0.93 ↗
Average case (mAP) 0.58 0.58 0.68↗ 0.50 0.62 ↗ 0.34 0.54 ↑ 0.38 0.55 ↑ 0.50 0.64 ↑

Database Query NV NV + VSR NV + LoST NV + DV NV + DELG NV + AN NV + HN NV + DV + VSR
[2] [2] + ours [2] + [16] [2] + [72] [2] + [7] [2] + [35] [2] + [8] [2] + [72] + ours

OxfordRobotCar 2014-12-09-13-21-02 2015-05-19-14-06-38 0.78 0.89↗ 0.85 ↗ 0.78 → 0.86 ↗ 0.77 → 0.74 ↘ 0.86 ↗
2014-12-09-13-21-02 2015-08-28-09-50-22 0.60 0.70↗ 0.64 ↗ 0.62 → 0.45 ↘ 0.50 ↘ 0.47 ↘ 0.69 ↗
2014-12-09-13-21-02 2014-11-25-09-18-32 0.87 0.89 → 0.89 → 0.90→ 0.85 → 0.85 → 0.84 → 0.91 →
2014-12-09-13-21-02 2014-12-16-18-44-24 0.55 0.67↗ 0.55 → 0.48 ↘ 0.44 ↘ 0.59 ↗ 0.61 ↗ 0.61 ↑
2015-05-19-14-06-38 2015-02-03-08-45-10 0.92 0.95→ 0.92 → 0.72 ↘ 0.93 → 0.93 → 0.92 → 0.84 ↗
2015-08-28-09-50-22 2014-11-25-09-18-32 0.61 0.70↗ 0.64 ↗ 0.58 → 0.58 → 0.56 ↘ 0.58 ↘ 0.65 ↗

CMU 20110421 20100901 0.73 0.75 → 0.76 → 0.77 ↗ 0.79↗ 0.73 → 0.74 → 0.78 →
20110421 20100915 0.77 0.78 → 0.78 → 0.80→ 0.80→ 0.77 → 0.78 → 0.80 →
20110421 20101221 0.56 0.61 ↗ 0.60 ↗ 0.58 → 0.62↗ 0.60 ↗ 0.60 ↗ 0.63 ↗
20110421 20110202 0.61 0.66↗ 0.62 → 0.61 → 0.66↗ 0.62 → 0.63 → 0.64 →

StLucia 100909 0845 180809 1545 0.02 0.19 ↑ 0.03 ↑ 0.20↑ 0.04 ↑ 0.16 ↑ 0.19 ↑ 0.30 ↑
100909 1000 190809 1410 0.07 0.36 ↑ 0.10 ↑ 0.44↑ 0.14 ↑ 0.34 ↑ 0.35 ↑ 0.54 ↗
100909 1210 210809 1210 0.51 0.64 ↑ 0.59 ↗ 0.79↑ 0.62 ↗ 0.65 ↑ 0.65 ↑ 0.78 →

Worst case 0.02 0.19 ↑ 0.03 ↑ 0.20↑ 0.04 ↑ 0.16 ↑ 0.19 ↑ 0.30 ↑
Best case 0.92 0.95→ 0.92 → 0.90 → 0.93 → 0.93 → 0.92 → 0.91 →
Average case (mAP) 0.58 0.68↗ 0.61 ↗ 0.64 ↗ 0.60 → 0.62 ↗ 0.62 ↗ 0.69 ↗

Day [20]. For OxfordRobotCar, we sampled sequences at 1Hz
with the recently published accurate ground truth data [41].

We compare to the following descriptors: NetVLAD NV
[2]: We use the authors’ VGG-16 version5 with whitening
trained on the Pitts30k dataset (4,096-D). DenseVLAD DV
[72]: We use the authors’ version6 with 128-dimensional SIFT
descriptors and 128 words trained on 24/7 Tokyo dataset, as
well as PCA projection to 4,096-D. AlexNet AN [35]: We
use the conv3 output of Matlab’s ImageNet model and the
full 65k dimensional descriptor. HybridNet HN [8]: We use
the authors’ version7 and the full 43k dimensional descriptor.
DELG [7]: We use the implementation from TensorFlow
models with ResNet101 trained on a subset of the Google
Landmarks Dataset v2 (GLDv2-clean) which was amongst
best in [7]. LoST [16]: We use the authors’ LoST8 version (not
LoSTX, which includes additional keypoint matching and was
designed for matching opposing views, not for aligned views).

To generate semantic segmentations, we use the Cityscapes
model from the authors’ version9 of Hierarchical Multi-Scale
Attention [68]. To extract local features on entities, we use the

5https://github.com/Relja/netvlad
6http://www.ok.ctrl.titech.ac.jp/�torii/project/247/
7https://github.com/scutzetao/DLfeature PlaceRecog icra2017
8https://github.com/oravus/lostX
9https://github.com/NVIDIA/semantic-segmentation

TensorFlow Hub implementation10 of DELF [47] and extract a
maximum of 200 features per image. We use all entities with
a minimum size of 10 pixels and default scales � x = 4=w
and � y = 6=h for fractional binding in x and y direction for
images of size w � h. The number of dimensions in VSR is
4,096.

For evaluation, we compute pairwise similarity matrices
between database and query image sets and compare them to
ground-truth knowledge about place matchings using a series
of thresholds. We report average precision (AP) computed
as area under the resulting precision-recall curve, as well as
achieved recall using the best k matchings. To combine an
existing descriptor with VSR (e.g. NV+VSR, or two existing
descriptors), we simply perform an elementwise multiplication
of their pairwise image similarity matrices. We do not apply
pre- or postprocessing steps like dataset standardization [61]
or sequence evaluation (e.g. [42]). Of course, all evaluated
approaches can be combined with such additional techniques.

B. Place recognition performance

The upper part of table I shows the place recognition
performance of the proposed VSR approach and the other
descriptors. The average case performance of VSR is on par
with the best performing other descriptor (NetVLAD, NV).
The worst case performance indicates that for each descriptor,

10https://tfhub.dev/google/delf/1
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Fig. 6. Evaluation of the importance of SSI i and A i on the six
OxfordRobotCar comparison. (left column:) Stand-alone VSR. (right column:)
VSR in combination with NetVLAD. (top row:) VSR with and w/o SSI i

(using only A i). (bottom row:) VSR with and w/o A i (using only SSI i).

note the logarithmic scale).

D. Ablation study

VSR combines all entities of an image, each entity is the
bundle of a spatial semantic vector SSIi (see eq. 4) and an
appearance vector Ai (eq. 8). Fig. 6 evaluates the importance
of each of the two parts. Solid lines show results of the full
VSR as defined in eq. 2, the dashed lines of the same color
indicate performance variation when removing either SSIi or
Ai. In particular the challenging fourth Oxford comparison
(purple curves) shows a large degradation when only using
the spatial semantic information (bottom-left plot). In this
particular case, adding SSIi even degrades performance in the
high-precision regime (top-left plot). However, adding SSIi
can still increase the achieved recall at low precision values.
In general, the large margin between the curves of the full
VSR and the reduced versions demonstrate the importance of
both components.

E. Computational effort

The runtime of the deep learning models heavily depends
on the actual hardware and model choice. Using an Intel Core
i7-7700K CPU and a NVIDIA GTX 1080Ti GPU, we can run
our setup in less than a second per image. Our (completely)
unoptimized Matlab implementation requires about 350ms to
create a VSR descriptor of an image (90ms to find entities,
260ms for encoding). Although the encoding requires several
operations on high dimensional vectors, they can be easily
parallelized. Moreover, VSAs in general have very promising
properties to run on very power-efficient hardware [53] which
can be crucial for mobile application.

For place recognition, the runtime for image description
is typically much less important than the time for matching
against a large database. Since the VSR descriptor is a single
vector of the same size as, e.g. a NetVLAD descriptor,
matching is accordingly fast. In particular, we see no reason
why VSR should not be compatible with existing approximate
nearest neighbor matching techniques like product quantiza-
tion [25], however, we did not yet test this.

For combining descriptors, comparison runtime becomes
particularly important if the simple technique of element-
wise multiplication of pairwise similarity matrices is applied,
since this requires computation of multiple different descriptor
distances for each image comparison. However, the good
recall@k performance (Fig. 4) and the high recall integrity
(Fig. 5) suggest that VSR has also potential to considerably
reduce the number of matching candidates before computation
of NetVLAD (or other additional) descriptor distances (pro-
vided a reasonable semantic segmentation is available).

V. CONCLUSION

We proposed Vector Semantic Representation (VSR) as
descriptor for place recognition. It implements the high-level
concept of encoding an image by the spatial layout of its
semantic entities. We create semantic entities using semantic
segmentations and encode for each entity the spatial semantic
information and its appearance. The evaluation showed, that
both components contribute to the place recognition perfor-
mance, which is on par or better than the compared existing
approaches.

Of course, the VSR relies on the quality of the semantic
segmentation. If the segmentation is bad, the VSR perfor-
mance will also degrade. This also limits the application to
environments for which a semantic segmentation model is
available. We restricted our evaluation to urban street scenes
since we used a segmentation model for the Cityscapes classes.
Although the viewpoint changes in the evaluated datasets
are realistic for driving scenarios, their overall amount is
limited. The application to hand-held camera images would
very likely require a different encoding of entity locations
than the grid approach, e.g. using fractional binding as well.
Also, currently we rely on a direct neighborhood (a common
boundary) between entities to establish a spatial relation. The
VSA operations can very likely be used accordingly to encode
other (more distant) relations. However, such extensions are
left for future work.

In general, we consider Vector Symbolic Architectures
(VSA) as a promising tool to encode diverse information
(symbolic and numeric) in descriptors. The presented approach
is just one (rather simple) way of creating semantic entities and
then using the power of VSAs to create a descriptor for fast
matching. This general concept is expected to be applicable
to other tasks and to also benefit from future developments on
extracting semantic (and other) information from images.
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