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Abstract—Image descriptor based place recognition is an im-
portant means for loop-closure detection in SLAM. The currently
best performing image descriptors for this task are trained on
large training datasets with the goal to be applicable in many
different environments. In particular, they are not optimized for
a specific environment, e.g. the city of Oxford. However, we argue
that for place recognition, there is always a specific environment
– not necessarily geographically defined, but specified by the
particular set of descriptors in the database. In this paper, we
propose SEER, a simple and efficient algorithm that can learn
to create better descriptors for a specific environment from such
a potentially very small set of database descriptors. The new
descriptors are better in the sense that they will be more suited for
image retrieval on these database descriptors. SEER stands for
Sparse Exemplar Ensemble Representations. Both sparsity and
ensemble representations are necessary components of the pro-
posed approach. This is evaluated on a large variety of standard
place recognition datasets where SEER considerably outperforms
existing methods. It does not require any label information and
is applicable in online place recognition scenarios. Open source
code is available.1

I. INTRODUCTION

In the general visual place recognition setup, we are given
a set of database images and one or multiple query images
and the task is to find one or all images from the database
that show the same place as the query images. The best
performing methods today typically use deep learning based
descriptors that were trained on large image datasets, e.g.
NetVLAD [2], HybridNET [6] or HDC-DELF [28, 31]. Typi-
cally, these descriptors are optimized to work for a wide range
of environments. Nevertheless, their performance is usually
better if the application environment is more similar to the
training data. A well known example is the observation that
NetVLAD [2] descriptors trained on the urban Pitts30k dataset
with images from the city of Pittsburgh do not perform well
on the Nordland [37] dataset with its natural environment and
large open areas. Presumably, NetVLAD trained on natural
images more similar to the environment from the Nordland
dataset would perform considerably better. Thinking further in
this direction, we could also argue that it would be even better
to train the NetVLAD descriptor (or any other descriptor)
directly on the Nordland dataset to then apply it to the
Nordland dataset. Of course, there are several impediments:
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Fig. 1. The proposed SEER approach uses a set of database image descriptors
from a particular environment (e.g. the city of Oxford) for an unsupervised
creation of ensembles of sparse exemplars. These can be used to convert
general place recognition descriptors (like NetVLAD or HDC-DELF) into
environment-specific descriptors that are better suited for image retrieval in
this environment.

• The typical descriptors [2, 6, 31] are trained in a su-
pervised fashion. Thus, we would require at least some
ground-truth knowledge about image pairs that show the
same or different places.

• Deep learning based descriptors usually require large
datasets for training.

• Training might be very time and energy consuming which
hampers applicability, e.g. to loop-closure detection in an
online SLAM approach.

While the latter two could partially be addressed by clever
usage of pre-training and fine-tuning, the lack of ground-truth
knowledge prevents the application of supervised learning. In
particular, we are thinking of the practically very important
application of loop-closure detection in visual SLAM: By
the general definition of the SLAM [14] problem, we do
not have (ground-truth) knowledge about associations between
the database images or between database and query images
(otherwise we would not need loop-closure detection). If we
are in an online SLAM [36] problem, there are also restrictions
regarding runtime and typically also energy consumption.
This motivates the main research question of this work:
Is it possible to adapt, improve or fine-tune general place
recognition descriptors for a particular environment (e.g. the
city of Oxford) in a completely unsupervised fashion and with
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low sample (and runtime) complexity?
Especially due to the absence of any kind of labels or

ground-truth information about associations in the database,
there are only few existing approaches in the literature as
will be discussed in Sec. II. The main contribution of this
work is SEER, a novel algorithmic approach that addresses the
above research question. It can learn to create environment-
specific descriptors based on existing general place recognition
descriptors from a potentially very small database without
any label information about matchings in the database. These
specialized descriptors are then better suited for matching
against this particular database.

SEER stands for Sparse Exemplar Ensemble Representa-
tions. It is a greedy unsupervised learning algorithm, which
is simple but not trivial. The underlying idea is to use
an ensemble of sparsified versions of the known database
descriptors as a basis representation for the new descriptors.
Sec. III will present the algorithmic steps and discuss that
the concepts of sparsity and ensemble representations are
essential for its performance. This will then be experimentally
validated in Sec. V. The experiments will also show a con-
siderable improvement over existing methods and demonstrate
the application of SEER in batch and online place recognition
scenarios. Although SEER is designed for image descriptors
and the task of place recognition, its properties are also
appealing for other robotic tasks. This will be shortly outlined
in the discussion of Sec. VI.

II. RELATED WORK

Visual place recognition in changing environments is a
subject of active research. An overview of existing methods
was given by Lowry et al. [21] in 2016. The recent paper
[25] supplements this overview with a survey on deep learning
methods for visual place recognition. A detailed discussion of
open questions and particular challenges can be found in [33].

Pipelines for visual place recognition often build upon
pairwise comparison of holistic image descriptors like Den-
seVLAD [38], HybridNet [6], NetVLAD [2], or HDC-DELF
[28]. To integrate these image retrieval methods into the
robotics context of place recognition, there is a wide range
of methods, e.g. [26, 35, 29], that exploit the structure of
the robotics task or additional available information about the
database and query set for performance improvements. For
example, SeqSLAM [26] exploits sequences in the database
and query set and ICM [35] additionally leverages descriptor
similarities within these sets.

The proposed SEER builds upon the well established con-
cept of ensembles [8] as is used in approaches like bagging
[4], boosting [32, 10], or extremely randomized trees [11].
In SEER, ensembles are used as an internal representation
of a particular environment created from a set of incoming
image descriptors. This is strongly related to SLAM [14].
We want to emphasis two important points: First, the goal of
SLAM is usually to infer a metric or semi-metric/topological
map. SEER has no spatial representation of any kind. Even

a topological map usually consists of connections between
temporally neighbored places (e.g. from visual odometry) and
connections from loop-closure detections. SEER only provides
the latter. The second important point is that SEER is intended
to be used as a part within a SLAM system, i.e. to perform
loop-closure detection, or more specifically, create descriptors
that are better suited for loop-closure detection in a particular
environment.

There are other methods that exploit a set of known database
descriptors to improve place recognition performance. For
example, TF-IDF [7] statistics can be used to weight the
descriptiveness of words from a vocabulary. A simple but
effective technique is the feature-wise standardization of the
database and query descriptors [34]. While in [34] the feature-
wise means and standard deviations of the database and query
descriptors were used, even a standardization of the query
descriptors with the statistics of the database descriptors are
sufficient for performance improvements.

Sparse coding [19] is a class of algorithms that is related
to the idea of using descriptor vectors to learn a specialized
representation: Given a matrix X ∈ RN×dX of N descriptors
with dimensionality dX , its basic task is to learn a dictionary
D ∈ RL×dX with L basis vectors together with sparse
coefficients s ∈ RN×L to minimize a reconstruction error
‖X − s ·D‖2. This dictionary D is comparable to the internal
representation M of SEER. As presented in [19], there is a
wide range of methods to optimize this error by inferring
D and s. For instance, K-SVD [1] uses a singular value
decomposition (SVD) to update the dictionary D before it
adapts the coefficients s with an orthogonal matching pursuit
(OMP). Wright et al. [39] use sparse representations from an
overcomplete dictionary whose base elements are the training
samples themselves. As argued in [24], sparse autoencoders
[30] can be considered as an alternative approach that learns
sparse coding using a neural network. In another direction,
instead of increasing the sparsity of representations, Change
Removal by Lowry and Milford [20] is an approach to use
dimensionality reduction techniques to create better descrip-
tors. They use a principal component analysis to remove
the p most descriptive principal components from the input
descriptors X , which are supposed to be mainly influenced
by the environmental conditions.

The method MCN [29] is a neurologically inspired sequence
processing method that is based on the ideas of the hierarchical
temporal memory (HTM) theory by Hawkins [16]. MCN is
composed of a spatial pooler [15] and a temporal memory
[17]. While the temporal memory in MCN is responsible for
the exploitation of sequence information, the spatial pooler
only learns to encode input descriptors into sparse binary
vectors based on previously seen vectors without any further
assumptions. Therefore, the spatial pooler of MCN is related
to SEER and will be compared in the experimental evaluation
of Sec. V.

Similar to the spatial pooler [15], the hashing function
CCA-ITQ [13] learns to map an input descriptor to a binary
output descriptor. Jain et al. [18] showed that CCA-ITQ not



only learns a hashing of descriptors but concurrently improves
their performance. However, it requires additional labels about
which of the given descriptors show same places. To handle
both viewpoint and appearance changes, descriptor pairs of the
same place within the database but also between the database
and query set should be provided. SEER does not require such
label information.

III. ALGORITHMIC APPROACH: SEER
SPARSE EXEMPLAR ENSEMBLE REPRESENTATION

This is the high level perspective: The input to SEER is a set
of general purpose database descriptors XDB of a particular
environment (e.g. NetVLAD descriptors of images from the
city of Oxford). The algorithm performs a simple greedy
learning of an internal representation M that can then be
applied to a descriptor x in order to create a better descriptor
y. Where “better” means, y is better suited for image retrieval
on the database.

A. Rationale behind SEER and its relation to Sparse Coding

The core idea of SEER is to use the known database
descriptors as a new basis for a representation of all descriptors
in this environment. Since the database descriptors are not
linearly independent, they do not form an orthonormal vector
basis but an overcomplete frame [9] (i.e. the subspace spanned
by the database descriptors is (very likely) not changed if we
remove one descriptor). To address this, SEER uses a sparse
combination of vectors similar to Sparse Coding (SC) [19].
As was outlined in the related work section II, SC uses sparse
linear combinations of basis vectors from a dictionary in order
to minimize a reconstruction error. Instead of using a universal
dictionary that is suitable for arbitrary input data, Sparse
Coding can use training data to learn a tailored dictionary
for a specific task (e.g. for face recognition [39]). The internal
representation M of SEER is comparable to such a tailored
dictionary. However, different to SC, SEER does not use linear
combinations of basis vectors from the dictionary and does
not use the proxy task of optimizing a reconstruction error.
Instead, since the target task of place recognition builds on
the similarity between descriptor vectors, SEER directly uses
the similarity to the most similar vectors from the dictionary
as sparse output representation.

Beside the sparsity in the output y there is a second level of
sparsity in the basis vectors themselves. This allows a straight-
forward implementation of the concept of ensembles [8]:
Instead of storing the single database descriptor, we propose
to store a small set of randomly sparsified exemplars of
this descriptor in the internal representation M . We use this
ensemble to increase the robustness towards variations in
descriptors of the same place. The experimental evaluation will
demonstrate the contribution of both sparsity and ensembles
to the overall performance.

B. Input x, output y and the internal representation M

Input to SEER are standard general purpose place recogni-
tion descriptors x ∈ XDB , each is a dX dimensional vector.

Sec. V will show experiments with NetVLAD [2], Hybrid-
Net [6] and HDC-DELF [28] (only one descriptor type is used
at a time). Using descriptors with distributed representations
[16] is preferable (where each piece of information is spread
across many or all dimensions), e.g. HDC-DELF. A non-
distributed descriptor can be easily converted to a distributed
representation with a Gaussian random projection [28]. Input
descriptors have to be L2 normalized.

The main internal representation is a matrix M where each
column is an exemplar, i.e. a sparse vector from RdX with
dM many non-zero entries. The length of the output y will be
equal to the number of columns in M . The number of non-
zero elements in y is controlled by two parameters: k (which
is the minimum number of exemplars per input descriptor) and
λ (a factor to increase the density in the output).

Algorithm 1:
Sparse Exemplar Ensemble Representation (SEER)

Input: • a L2-normalized input descriptor x ∈ RdX , beneficial if
this is a distributed representation
• a (potentially empty) list M of known sparse exemplars
∈ RdX , each with dM non-zero entries, dM � dX
• a flag updateM flag to toggle the extension of M with
new exemplars

Parameters: • dM : the number of non-zero entries in the sparse
exemplars in M (default: dM = 200)
• k: the minimum number of similar exemplars for
each input descriptor (default: k = 50)
• λ: the reactivation factor, λ · k is the maximum number
of non-zero entries in the output y (default: λ = 2)

Output: • y a sparse output descriptor based on similarities to M
• the potentially updated M

1 function [y, M] = createSEER(x, M , updateM flag)

// Compare x to each element from M using
dot product

2 S = xT ·M

// Extend M with new sparse exemplars if
requested, this will also extend S

3 if updateM flag then

// Count similarities above an expected
similarity

4 expectedSimilarity = dM/dX
5 c = count(S ≥ expectedSimilarity)

// Create new exemplars if c < k
6 for i=c; i < k; i = i+ 1 do

// sample a new sparse exemplar and
append to M

7 M = append(M, sample(x, dM ))

// update S with the similarity to
the new exemplar

8 S = append(S, xT ·Mend)

// Only keep the λ · k highest similarities
and set all others to zero

9 y = sparsify(S, λ · k)

10 return y, M



C. Algorithmic steps

The computational steps of SEER are listed in Alg. 1. This
simple and efficient algorithm creates both M as well as the
output descriptor y and works as follows:

For a general application scenario, let us assume we are
given a set of general place recognition database descriptors
XDB . We can start with an empty M and iteratively call
the function createSEER with the descriptors x ∈ XDB to
incrementally build M while simultaneously computing the
output descriptor y for the current x (alternatives will be
discussed in Sec. III-D).

Computing y: SEER first computes the vector S of similar-
ities between the input x and each of the existing exemplars in
M in line 2. We use the dot product as similarity measure. In
combination with the sparsity of the exemplars, this allows
for a fast implementation. This choice is further discussed
in Sec. III-E. To also sparsify this similarity vector S (as a
second level of sparse vectors), we only keep the λ ·k highest
similarities and set all other values to zero in line 9. λ and k are
two parameters of the algorithm that are strongly connected
to the way how M is created; they will also be discussed
in Sec. III-E. If SEER is set up to not update the internal
representation M (lines 6-8), these two steps already compute
the output descriptor that can be used for place recognition as
described in Sec. III-D.

Extending M (and y): The underlying idea is that for each
input descriptor x, there should be at least k similar exemplars
in M . We ensure this with a greedy approach and simply
create the missing number as new exemplars in M (the loop in
lines 6-8). To count the number of existing similar exemplars,
their similarities are compared to an expected similarity (line
5). This value depends on the used similarity measure from
line 2. Since we use the dot product, we can compute the
expected similarity as dM/dX (the sparsity of the exemplars).
For example, during the first call of this function (with an
empty M ) k new exemplars will be created.

To create a new exemplar, the sample function in line 7
randomly selects dM dimensions from the input descriptor x.
The probability for dimension i to be sampled is proportional
to the absolute value |xi|. Thus, dimensions with a high
positive or negative activation are more likely represented in
the exemplars for this input descriptor. We simply linearly map
the range between the lowest and highest absolute values to
the interval [0, 1].

If new exemplars are added to M for input x, then this is
also reflected in the similarities S in line 8 by appending the
similarity to this new exemplar. After all new exemplars have
been created and incorporated in S, the sparse set of highest
similarities in S becomes the output descriptor y (line 9).

D. How to apply SEER: Batch and online scenarios

We distinguish two place recognition scenarios for SEER:
• Batch: The database is given as a whole and we can cre-

ate the representation M on the complete dataset. Query
image descriptors might come in a batch or individually.

• Online: We start from an empty database and iteratively
add incoming image descriptors to the database and the
goal is to compare the current image descriptor to all
previously seen descriptors.

In the online case, we start from an empty M and itera-
tively call the createSEER function on incoming descriptors
to immediately obtain the output descriptor y that can then
be compared to all previous descriptors (e.g. using standard
cosine similarity).

To address the increasing size of M over time and ac-
cordingly the larger length of later created y vectors, missing
entries are filled with zeros for the comparison with longer
vectors. This has only limited influence on the results since
the sparse y vectors have the same number of non-zero entries
(λ · k), independent of their length.

However, we still want to address the different amount of
information in each dimension of y: A particular dimension
of y is associated with a particular exemplar in M that was
created at some point in time. Very importantly, in the online
scenario, only input descriptors after that point in time are
compared to this exemplar. So only the first exemplars are
compared against all input descriptors, later created exemplars
only to fewer. This number decreases roughly linearly over
the creation time and thus over according dimensions in y. To
reflect this, we apply the following linear weighting to y:

ỹi = yi ·
|y| − i+ 1

|y|
for i = {1, ..., |y|} (1)

Where yi is the i-th dimension of y and |y| is the number
of elements in y after appending the required zero values to
achieve the target length. ỹ is then used for place recognition.

In the batch case, there is no need to simultaneously
compute M and y for the database descriptors. Here we
propose to run the database twice through the createSEER
function: The first iteration over all database descriptors is
used to create M (the output y can be ignored). The second
run over all database descriptors is without updating M but
uses the previously computed M to get the y descriptor for the
database. For the query descriptors, only a single run in the
same configuration as the second database run is required. In
this configuration, the weighting from eq. 1 is not necessary
since all database and query descriptors have been compared
against all exemplars.

Of course, it is possible to enable updates of M again, if
we expect exploration of new environments that we want to
reflect in M for later recognition.

E. Parameters and computational complexity

SEER has three parameters, dM , k, and λ. Their basic
meaning and default values are listed in the header in Alg. 1.
Their values are not sensitive to the particular dataset or input
descriptor. We use the same default values in all experiments
(of course, except for the parameter evaluation). The factor
λ = 2 is introduced to reactivate more exemplars (λ ·k many)
than are created for a descriptor (k many). This is useful to



reduce the number of created exemplars, since the size of M
is the main influence on the runtime and storage complexity.

An important design decision is the usage of the dot product
for similarity computation. We prefer this over the usual cosine
similarity because the dot product omits the normalization
of the vector lengths. This normalization would dominate
the computational effort for SEER since each exemplar uses
a different set of dimensions of the input x, thus cosine
similarity would require to individually normalize each of
these sparsified versions of x. However, we L2 normalize the
complete input descriptor x once before usage in SEER.

Due to the usage of sparse representations, the overall num-
ber of operations and memory requirement in SEER is of the
same order of magnitude as a straight-forward comparison of
the original database and query descriptors. This is elaborated
in the Appendix. Very importantly, approximate matching
techniques that speed up the comparison of original descriptors
can potentially also speed-up the similarity computation in
SEER – unless they conflict with the sparsity of the exemplars.

IV. EXPERIMENTAL SETUP

A. Datasets and evaluation metric

We evaluate the image retrieval performance of SEER on
standard place recognition datasets from mobile robotics. For
evaluation, we compute similarity matrices between database
and query images and compare them to ground-truth knowl-
edge about place matchings using a series of thresholds [27].
We report the average precision (AP) computed as area under
the resulting precision-recall curve. AP is a typical measure
in image retrieval. It evaluates the balance between precision
and recall and allows to evaluate multiple loop closures for
each query (e.g. to add more constraints to the pose graph
optimization in SLAM).

We use 23 sequence combinations from six datasets with
different characteristics regarding environment, appearance
changes, single or multiple visits of places, possible stops,
or viewpoint changes: Nordland1000 [37], StLucia (Vari-
ous Times of the Day) [12], CMU Visual Localization [3],
GardensPointWalking2, OxfordRobotCar3 [22], and SFU-
Mountain [5]. For OxfordRobotCar, we sampled sequences
at 1Hz; where available we used the accurate ground-truth
data [23]. For Nordland1000, we sampled 1,000 images of
unique places from each season (without tunnels).

B. Compared approaches and implementations

Our method is compared to five approaches from the litera-
ture – STD [34], K-SVD [1], sparse autoencoders [30], change
removal [20], and MCN [29] – and to a custom implementation
for sparse coding [19]. To account for potentially non-optimal
parameter tuning for the baseline algorithms, they partially
use an oracle that selects the best parameter setting for each

2goo.gl/tqmWyq
3Used Oxford datasets: 2014-11-25-09-18-32, 2014-12-09-13-21-02, 2014-

12-16-18-44-24, 2015-02-03-08-45-10, 2015-05-19-14-06-38, 2015-08-28-09-
50-22

dataset from a limited number of possibilites. Of course, this
is not applied to our proposed approach.

For each dataset, all methods were trained on the corre-
sponding database descriptors XDB . STD [34] is implemented
as simple dimension-wise mean-centering with the mean over
all database descriptors. The same database mean is applied
to both the database and the query descriptors. For kSVD [1],
we use the group’s implementation4 to learn a dictionary D
with a varying number of atoms and coefficients s with 100
non-zeros elements. The sparse autocoder SAE [30] is based
on the Matlab implementation5 and is composed of two layers
with a satlin-activation function after the encoder. The sparse
autoencoder was trained to transform an input descriptor into
a 1000-dimensional sparse representation. Change removal
CR [20] uses a principal component analysis (PCA) to remove
the first p principle components with the highest eigenvalues.
In our implementation, a singular value decomposition (SVD)
with p = 1 or p = 2 was used. For MCN [29], we built upon
the author’s implementation6 and use the set of active mini-
columns from the spatial pooler as the output descriptors (with
a separate training run on the database). Our sparse coding
SC [19] implementation minimizes the squared reconstruction
error ‖XDB − s · D‖22 with an expectation maximization
like iterative approach: Using a least-squares optimization,
each iteration first computes an optimal dictionary D before
the coefficients s are updated. After each update of s, it is
sparsified to the 50 (CMU, Oxford) or 100 (otherwise) highest
values. The number of atoms in D was set to 0.3 · |XDB |.

C. Setup of SEER

We combine SEER with the following descriptors:
NetVLAD NV [2]: We use the authors’ VGG-16 version7 with
whitening trained on the Pitts30k dataset (4,096-D). HybridNet
HN [6]: We use the authors’ version8 (43k-D descriptors).
HDC-DELF HDC [28]: We use the authors’ version9 in com-
bination with the TensorFlow Hub10 implementation of DELF
[31] (4,096-D). For SEER, each descriptor is first converted to
a 4,096-D distributed representation using a Gaussian random
projection and then L2 normalized. In the batch scenario,
SEER uses STD on the input descriptors as described above.
STD is not applied in the online scenario. In all experiments,
the default parameters from Alg. 1 are used.

V. RESULTS

A. Image retrieval performance for place recognition

Table I shows results of SEER in combination with
NetVLAD, HybridNet and HDC-DELF input descriptors and
in comparison to other techniques. If a batch of database
descriptors is available and can be used for standardization,

4http://www.cs.technion.ac.il/∼ronrubin/software.html
5https://de.mathworks.com/help/deeplearning/ref/trainautoencoder.html
6https://www.tu-chemnitz.de/etit/proaut/seqloc
7github.com/Relja/netvlad
8github.com/scutzetao/DLfeature PlaceRecog icra2017
9https://www.tu-chemnitz.de/etit/proaut/hdc desc
10tfhub.dev/google/delf/1

goo.gl/tqmWyq
http://www.cs.technion.ac.il/~ronrubin/software.html
https://de.mathworks.com/help/deeplearning/ref/trainautoencoder.html
https://www.tu-chemnitz.de/etit/proaut/seqloc
github.com/Relja/netvlad
github.com/scutzetao/DLfeature_PlaceRecog_icra2017
https://www.tu-chemnitz.de/etit/proaut/hdc_desc
tfhub.dev/google/delf/1


TABLE I
AVERAGE PRECISION FOR THREE DIFFERENT DESCRIPTORS COMBINED WITH DIFFERENT METHODS FOR ENVIRONMENT SPECIALIZATION. COLORED

ARROWS INDICATE LARGE (≥25% BETTER/ WORSE) OR MEDIUM (≥5%) DEVIATION COMPARED TO THE DESCRIPTORS WITH STANDARDIZATION
(+STD). BOLD NUMBERS INDICATE THE BEST PERFORMANCE PER ROW.

NetVLAD [2] HybridNet [6] HDC-DELF [28]
Raw +STD +SEER Raw +STD +SEER Raw +STD +kSVD +CR +SC +SAE +MCN +SEER +SEER simultaneous

Database Query [34] [ours] [34] [ours] [34] [1] [20] [19] [30] [29] [ours] [ours]
GardensPoint day right day left 0.97 0.99 1.00→ 0.59 0.56 0.75 ↑ 0.79 0.82 0.89↗ 0.81→ 0.87↗ 0.80→ 0.91↗ 0.89↗ 0.86↗
Walking day right night right 0.51 0.59 0.65↗ 0.50 0.62 0.76 ↑ 0.71 0.79 0.87↗ 0.80→ 0.86↗ 0.84↗ 0.86↗ 0.90↗ 0.88↗

day left night right 0.40 0.48 0.50→ 0.18 0.22 0.33 ↑ 0.40 0.47 0.56↗ 0.46→ 0.45↘ 0.45↘ 0.51↗ 0.56↗ 0.55↗
OxfordRobotCar 2014-12-09 2015-05-19 0.78 0.89 0.98↗ 0.25 0.62 0.93 ↑ 0.88 0.91 0.76↘ 0.92→ 0.93→ 0.92→ 0.98↗ 0.99↗ 0.97↗

2014-12-09 2015-08-28 0.60 0.66 0.94 ↑ 0.09 0.33 0.60 ↑ 0.44 0.71 0.42 ↓ 0.72→ 0.81↗ 0.68→ 0.85↗ 0.91 ↑ 0.86↗
2014-12-09 2014-11-25 0.87 0.91 0.97↗ 0.41 0.69 0.86 ↑ 0.71 0.82 0.78→ 0.82→ 0.93↗ 0.87↗ 0.95↗ 0.98↗ 0.96↗
2014-12-09 2014-12-16 0.55 0.11 0.14↗ 0.08 0.40 0.54 ↑ 0.52 0.80 0.18 ↓ 0.81→ 0.53 ↓ 0.62↘ 0.78→ 0.89↗ 0.85↗
2015-05-19 2015-02-03 0.92 0.93 0.98↗ 0.42 0.72 0.95 ↑ 0.67 0.78 0.53 ↓ 0.79→ 0.96↗ 0.83↗ 0.93↗ 0.97↗ 0.94↗
2015-08-28 2014-11-25 0.61 0.59 0.70↗ 0.11 0.35 0.52 ↑ 0.64 0.71 0.65↘ 0.73→ 0.81↗ 0.77↗ 0.77↗ 0.85↗ 0.84↗

SFUMountain dry dusk 0.33 0.48 0.63 ↑ 0.58 0.62 0.71↗ 0.68 0.81 0.86↗ 0.81→ 0.74↘ 0.85↗ 0.85↗ 0.88↗ 0.88↗
dry jan 0.19 0.22 0.31 ↑ 0.28 0.51 0.57 ↑ 0.51 0.57 0.68↗ 0.63↗ 0.52↘ 0.61↗ 0.63↗ 0.70↗ 0.69↗
dry wet 0.22 0.40 0.54 ↑ 0.53 0.57 0.65↗ 0.63 0.75 0.84↗ 0.76→ 0.71↘ 0.77→ 0.82↗ 0.87↗ 0.86↗

CMU 20110421 20100901 0.73 0.71 0.81↗ 0.55 0.60 0.77 ↑ 0.70 0.75 0.67↘ 0.77→ 0.76→ 0.79→ 0.82↗ 0.83↗ 0.79→
20110421 20100915 0.77 0.77 0.80→ 0.67 0.70 0.77↗ 0.69 0.73 0.60↘ 0.74→ 0.70→ 0.73→ 0.78↗ 0.78↗ 0.74→
20110421 20101221 0.56 0.54 0.49↘ 0.40 0.47 0.61 ↑ 0.64 0.64 0.39 ↓ 0.63→ 0.68↗ 0.66→ 0.64→ 0.70↗ 0.70↗
20110421 20110202 0.61 0.62 0.72↗ 0.37 0.46 0.65 ↑ 0.67 0.72 0.52 ↓ 0.74→ 0.75→ 0.72→ 0.77↗ 0.81↗ 0.80↗

Nordland1000 spring winter 0.01 0.02 0.08 ↑ 0.78 0.77 0.76→ 0.68 0.77 0.79→ 0.80→ 0.73→ 0.82↗ 0.73→ 0.89↗ 0.89↗
spring summer 0.06 0.20 0.40 ↑ 0.75 0.80 0.84↗ 0.59 0.74 0.77→ 0.77→ 0.75→ 0.76→ 0.72→ 0.83↗ 0.84↗
summer winter 0.01 0.05 0.08 ↑ 0.55 0.70 0.76 ↑ 0.36 0.45 0.55↗ 0.57 ↑ 0.49↗ 0.48↗ 0.46→ 0.59 ↑ 0.59 ↑
summer fall 0.22 0.53 0.74 ↑ 0.90 0.94 0.94→ 0.80 0.90 0.93→ 0.92→ 0.90→ 0.92→ 0.84↘ 0.94→ 0.94→

StLucia 100909 0845 180809 1545 0.02 0.08 0.10 ↑ 0.43 0.49 0.59 ↑ 0.30 0.46 0.50↗ 0.47→ 0.50↗ 0.48↗ 0.54↗ 0.56↗ 0.52↗
100909 1000 190809 1410 0.07 0.19 0.26 ↑ 0.52 0.61 0.71 ↑ 0.43 0.64 0.66→ 0.64→ 0.65→ 0.65→ 0.72↗ 0.74↗ 0.72↗
100909 1210 210809 1210 0.51 0.61 0.62→ 0.59 0.66 0.75 ↑ 0.52 0.70 0.75↗ 0.71→ 0.75↗ 0.72→ 0.77↗ 0.77↗ 0.75↗

Worst case 0.01 0.02 0.08 ↑ 0.08 0.22 0.33 ↑ 0.30 0.45 0.18 ↓ 0.46→ 0.45→ 0.45→ 0.46→ 0.56↗ 0.52↗
Best case 0.97 0.99 1.00→ 0.90 0.94 0.95↗ 0.88 0.91 0.93→ 0.92→ 0.96↗ 0.92→ 0.98↗ 0.99↗ 0.97↗
Average case (mAP) 0.46 0.50 0.58↗ 0.46 0.58 0.71 ↑ 0.61 0.71 0.66↘ 0.73→ 0.73→ 0.73→ 0.77↗ 0.82↗ 0.80↗

then for all three input descriptors, there is a considerable
improvement of using STD over the raw descriptors. The
combination of input descriptors with STD will be considered
as the baseline due to its simplicity, performance, and wide
usage (i.e., the colored arrows in Table I compare against
STD).

Most importantly for this work, the combination with SEER
can considerably improve the average performance over the
STD baseline for all input descriptors in this batch scenario as
indicated by the colored arrows. Only for the combination with
NetVLAD, there is one case with a noticeable degradation. In
this comparison, NetVLAD is the worst performing input de-
scriptor. The benefit from the combination with SEER further
improves with better descriptors. The overall best combination
is SEER applied on HDC-DELF descriptors. Therefore, further
evaluations will only include this combination.

To evaluate the performance in an online scenario, the last
column in Table I shows the evaluation of a single run of
createSEER on all database images. This run simultaneously
creates the SEER-descriptors for the database and the exem-
plars in M . We then use the same M to compute SEER-
descriptors for the query set. This is slightly different from
the description of ”online“ in Sec. III-D since we use separate
database and query sets. However, this allows to directly
compare the results to the batch case. Experiments exactly
following the online setup in Sec. III-D will be presented
in Sec. V-E. In this online-like experiment from Table I, the
overall performance decreases slightly but is still considerably
better than the baseline.

B. Comparison to other approaches

Table I also shows the comparison to other approaches from
the literature. For all sequence comparisons SEER provides the
best performance. The colored arrow beside each approach
illustrates the comparison to the STD baseline. For each of
the compared algorithms, we tested whether they performed
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Fig. 2. Ablation study over all datasets in the batch case with HDC-DELF.
Orange circles and text are mAP values for comparison with Tab. I.

better either with or without additional standardization be-
fore running the approach. We then use the better setup for
all sequence comparisons in Table I. Except for kSVD, all
approaches can further improve the performance over the
STD baseline. The best approach from the literature is the
spatial pooler from MCN with mAP = 0.77 compared to
SEER with mAP = 0.82. The runtime of the available MCN
implementation is considerably higher than of SEER (about
factor 10). An interesting property of MCN is that the output
are sparse binary vectors with a very low memory footprint.
An accordingly modified version of SEER is part of the
following ablation study.

C. Ablation study

Fig. 2 shows boxplots and mAP values over all 23 se-
quence comparisons from Table I for different variants of
SEER in combination with HDC-DELF input descriptors. For
comparison, it also shows the statistics for the original HDC-
DELF descriptors (RAW) and with standardization (STD). The
performance of the full SEER is shown on the very right
(mAP = 0.82).



A first modification is to not reuse exemplars but create an
individual set of exemplars for each incoming descriptor. This
is called ”w/o reuse“ in Fig. 2 and implemented by setting the
number of existing similar exemplars c = 0 in line 5 of Alg. 1.
This considerably decreases the performance (mAP = 0.72)
and is only slightly better than the baseline (mAP = 0.71).

If we remove the ensemble (”w/o ensemble“, implemented
by setting k = 1), the performance falls below the baseline and
even below the raw descriptors. In variants without ensemble,
it is not necessary to use sparsity within the exemplars (which
is used in SEER to create different versions of the input
descriptor). Using dense exemplars (”w/o ens. & dense M“,
implemented by setting k = 1 and dM = dX ) can only
slightly improve over the previous variant and achieves about
the performance of raw descriptors. Thus, the ensemble, i.e.
using multiple variants of each input descriptor, is considered
a necessary part of SEER.

The second necessary part is the sparsity of the output
descriptors. If we use the dense vector of all similarities to
exemplars (”w/o sparsity in y“), the performance significantly
drops below the raw descriptors (mAP = 0.27).

A potentially interesting variant is to output not the similar-
ity to the exemplar but the sparse binary vector that indicates
the λ·k most similar exemplars (”binary“). This smaller output
descriptor still achieves a performance considerably above the
baseline (mAP = 0.78).

So far in this comparison, all SEER variants use independent
runs to create the exemplars M and then the database descrip-
tors y. If both is done simultaneously (”simultaneous“, same
as in the last column in Table I), the performance moderately
decreases from mAP = 0.82 to mAP = 0.80.

D. Environment-specific nature

To demonstrate that the performance improvement is due
to the adaptation to the specific environment, we ran a series
of experiments where we created the exemplars M from a
different environment than the database and query sets. So
far, we used the database set of each sequence comparison
to generate individual exemplars M for each environment.
If we instead, for example, use the exemplars M created
from the first sequence of the Oxford dataset for all sequence
comparisons, the performance decreases to mAP = 0.43 (in
particular, this is also worse than the raw descriptor). We
repeated the same experiment using the first sequence of each
dataset to generate the exemplars M for all comparisons:

• M always from GardensPoint day right: mAP=0.29
• M always from Oxford 2014-12-09: mAP=0.43
• M always from SFUMountain dry : mAP=0.21
• M always from CMU 20110421: mAP=0.27
• M always from Nordland1000 spring: mAP=0.36
• M always from StLucia 100909 0845: mAP=0.28
• M from the specific environment (database): mAP=0.82

The performance considerably decreases in all cases if the
exemplars in M are not generated for the specific environment.
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Fig. 3. Evaluation of the online scenario. All sequences of the Oxford
and Nordland datasets are concatenated to form two sequences with multiple
loops. ’Weighting’ refers to eq. 1.
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The black dashed line illustrates the theoretical growth if no exemplars would
be reused. The colored dashed lines show fitted lines that illustrate the average
growth in each season.

E. Online application and computational effort

Although the ”simultaneous“ variant from the ablation study
in Sec. V-C compared a database set to a disjoint query set,
the application of SEER is already very similar to the online
scenario as it was described in Sec III-D. To evaluate the
exact online scenario of an iteratively increasing database that
is compared to itself, we created two datasets with multiple
loops by concatenating all sequences from the Oxford and
Nordland datasets. Images are iteratively given to the place
recognition algorithm and compared to all previous images.
Standardization is not possible, since this requires the batch
of database descriptors.

Fig. 3 compares the performance of the raw descriptors
with a single run of SEER that simultaneously created the
exemplars and the output descriptors. We also additionally
evaluate the influence of removing the weighting from SEER
that was described in eq. 1. The SEER approach can con-
siderably improve the place recognition performance on both
datasets and the weighting of the descriptor dimensions makes
a significant contribution to the performance.

Fig. 4 illustrates how the total number of exemplars in-
creases over time. On average, only half of the potential k
exemplars were created (as illustrated by the dashed black
line). The runtime is roughly proportional to the number of
stored exemplars. In this experiment, the runtime of SEER for
the final images was about 23 milliseconds per image using
a moderately optimized Matlab implementation on a standard
desktop CPU (AMD Ryzen 7 3700X).
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One can clearly see that the reuse of exemplars already
started within the winter sequence, but then decreased with
beginning of the spring season with new appearances of places.
Presumably due to the higher visual similarity to previous sea-
sons and the larger set of already existing exemplars, a higher
rate of previous exemplars was reused again during summer
and fall. Due to the iterative nature of the SEER algorithm,
the ordering of incoming descriptors influences the creation
and reuse of exemplars. To evaluate this influence, Fig. 5
shows performance statistics over all 24 possible orderings
of the four Nordland sequences. The RAW descriptor is not
influenced by the ordering. Similar to the previous results,
the online SEER approach can considerably improve the
performance over RAW descriptors and dimension weighting
(cf. eq. 1) is valuable. However, the boxplots clearly show the
large influence of the different orderings which can result in
considerably varying place recognition results. Noticeably, if
we have the opportunity to make a second run of SEER to
recompute the database descriptors like in the batch scenario,
this does significantly reduce the variance of the results.
Then there is also only little benefit of additional dimension
weighting which again increases the variance.

F. Parameter evaluation

Finally, Fig. 6 evaluates different values of the parameters
k (minimum number of exemplars per input descriptor), λ
(the factor on k to control the number of non-zero elements
in the output descriptors), and dM (the number of non-zero
elements in each exemplar). All but the varied parameters
are set to the default values stated in Alg. 1. Increasing the
minimum number of exemplars per input descriptor improves

the performance. However, this comes at the cost of increased
number of exemplars and the according increase in runtime
and memory consumption. The factor λ > 1 increases the
number of exemplars that are represented in the output without
increasing the overall number of exemplars. This helps to
maintain a similarly good performance with fewer exemplars
but comes at the cost of increased density of the output
descriptor.

The right part of this figure evaluates the influence of the
sparsity in the exemplars. There is a clear sweet-spot around
the selected value of dM = 200. This resulting 5% density of
representations (200 from 4,096 dimensions) is in line with
findings about sparsity in biological systems [16].

VI. DISCUSSION AND CONCLUSION

SEER is a simple algorithm to learn to create environment-
specific descriptors from a small set of database descriptors.
It builds on the concepts of sparsity and ensembles. The
experimental evaluation showed that both components are nec-
essary for the overall performance and that SEER considerably
improves the performance compared to existing approaches.
Of course, creating a specialized descriptor for a particular
environment reduces its applicability to other environments.
We do not expect a SEER descriptor to work well in any
other environment than that of the used database.

The output are sparse descriptors that allow a fast com-
parison. However, we do not consider SEER to be a tech-
nique to speed-up place recognition or to reduce the memory
footprint of descriptors. The computational effort and storage
requirements are moved from the comparison of the output
descriptors to the comparison with the exemplars and their
storage. The runtime and memory increase with the size of
the processed database. Very importantly, the total number of
operations and the memory footprint is of the same order of
magnitude to what is required for a direct comparison of the
original descriptors against the database. A situation where
SEER could considerably reduce the memory footprint is when
the number of stored query descriptors is (much) larger than
the number of database descriptors.

Currently, the main benefit of SEER is the considerably
improved image retrieval performance for place recognition
at low additional complexity. With a broader perspective,
SEER can potentially also be used for learning to create
representations for other domains and other tasks. The com-
bination of unsupervised specialization learning from small
sample sizes could, for example, potentially be interesting for
anomaly detection or out-of-distribution detection. The online
capability could be interesting for continual learning tasks.
Both directions are highly relevant for robotic applications
in open world scenarios. However, our current experiments
are limited to image descriptors and place recognition. Based
on the good performance on this task, the foundation on
established working principles (sparsity and ensembles), and
the simplicity of the approach, we hope this is a valuable basis
for further research and broader application.



APPENDIX: RUNTIME AND MEMORY COMPLEXITY

This section compares the number of operations (NOO) and
memory requirement of SEER and the baseline of straight-
forward comparison of an original query descriptor vector to
the database based on pairwise cosine similarity. The NOO
for the baseline of comparing a dX -dimensional query vector
against a database XDB ∈ RdX×|XDB | can be estimated by

NOObaseline ≥ 2 · dX · |XDB | (2)

This estimate is based on cosine similarity computed by dot
product of normalized database and query vectors. The right
side ignores the effort for normalization and, for simplicity,
assumes one addition and one multiplication per dimension
comparison between any pair of vectors.

For SEER, the main computational effort is the similarity
comparison in line 2 of Alg. 1 which requires |M | many
vector comparisons. When using the dot product as similarity
measure, it is important to keep in mind that the effort for
each comparison is not influenced by the size of the input
descriptor (e.g. 4,096-D in the experiments) but only by the
number of non-zero entries in exemplars (dM = 200 in the
experiments). For an exemplar m ∈ M the computation of
dot-product similarity Si =

∑
mj 6=0 xj ·mj then requires

dM multiplications and dM − 1 additions. As above for
NOObaseline, we will treat this as 2 · dM many operations.
The overall NOO for comparison to M is then

NOOSEER = 2 · dM · |M | ≤ 2 · dM · |XDB | · k (3)

The inequality is based on the observation that the upper
bound for the number of exemplars |M | is to create k new
exemplars for each descriptor from the database XDB , that is
|M | ≤ |XDB | · k.

Therefore, the increase in computational effort is:

NOOSEER
NOObaseline

≤ dM · k
dX

=
200 · 50
4, 096

= 2.4 (4)

The numbers are taken from our experimental setup. In
practice, many exemplars will be reused. For the example
experiment in Fig. 4, the actual number of exemplars is only
52 % of this upper bound. Therefore the overall NOO reduces
to 0.52 ·(200 ·50)/4, 096 = 1.27 times the NOO of comparing
the initial descriptors.

However, for SEER we still have to compare the final
descriptors for place recognition. Since they are sparse with
at most λ · k non-zero elements, the additional NOO is com-
paratively small: 2 ·λ ·k · |XDB |, which is λ

dM
·NOOSEER =

2
200 ·NOOSEER = 0.01 ·NOOSEER. So the majority of the
computational effort is shifted into the creation of the SEER
descriptor and the final comparison adds only 1% extra effort.

It is important to keep in mind that approaches that speed
up the comparison for the baseline (e.g. approximate nearest
neighbor techniques), can potentially also speed up the com-
putation within SEER – unless they conflict with the sparsity
of the exemplars. On the downside, due to the sparsity of the

representations, cache effects of standard computing hardware
are presumably used less efficiently.

Similar estimates can be made for the memory consumption.
For the initial database descriptors it is MEMXDB

= dX ·
|XDB |. The memory consumption of indices and values of
M in SEER is: MEMM ≤ 2 · dM · k · |XDB |. This results in
twice the ratio MEMM

MEMXDB
≤ 2·dM ·k

XDB
= 4.8 as for the runtime

in eq. 4, with the same reduction in practice (e.g. to about
2 · 1.27 = 3.54 in the experiment from Fig. 4).
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