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Abstract—A motion-based control interface promises flexible
robot operations in dangerous environments by combining user
intuitions with the robot’s motor capabilities. However, designing
a motion interface for non-humanoid robots, such as quadrupeds
or hexapods, is not straightforward because different dynamics
and control strategies govern their movements. We propose a
novel motion control system that allows a human user to operate
various motor tasks seamlessly on a quadrupedal robot. We first
retarget the captured human motion into the corresponding robot
motion with proper semantics using supervised learning and
post-processing techniques. Then we apply the motion imitation
learning with curriculum learning to develop a control policy that
can track the given retargeted reference. We further improve the
performance of both motion retargeting and motion imitation by
training a set of experts. As we demonstrate, a user can execute
various motor tasks using our system, including standing, sitting,
tilting, manipulating, walking, and turning, on simulated and
real quadrupeds. We also conduct a set of studies to analyze the
performance gain induced by each component.(Video1)

I. INTRODUCTION

A tireless and invulnerable robotic worker entering dan-
gerous environments has long been a dream for roboticists.
Many researchers have approached this goal by developing
autonomous robotic systems from various perspectives, such
as model-based control or learning algorithms. However, a
fully autonomous agent may not work in unforseen scenarios,
such as disasters, where information is lacking. This limitation
motivates the need for a more flexible control system that can
be applied to novel scenarios.

We propose a human motion control interface that allows
users to control robots using intuitive motions. This approach
has great potential to overcome completely novel scenarios by
combining humans’ intuition with robots’ motor capabilities.
Traditionally, this problem has been approached with a model-
based algorithm, such as the work of Ramos and Kim [57]
that projects human centroidal dynamics to the robot’s space.
Instead, our key idea is to exploit the recent advances in
motion imitation learning [49, 53, 41] that achieve realistic
motion control on simulated characters or robotic creatures.
We investigate quadrupedal robots as the target platform
inspired by the recent success [29, 53, 37, 36].

Our motion control system consists of two main com-
ponents: the motion retargeting module and the imitation
control policy. The motion retargeting module takes a live
human motion as input and translates it into the corresponding

1Supplementary Video: https://sites.google.com/view/humanconquad

Fig. 1. We develop a novel control system that allows a user to control a
quadrupedal robot on various tasks.

robot motion with proper semantics and dynamics. Then, the
imitation policy tracks the retargeted motion based on onboard
sensor information. We develop the motion retargeting module
in a supervised learning fashion while training the imitation
policy with deep reinforcement learning.

However, we must address a few unique challenges to
achieve the goal of developing a general motion control
framework. First, we must deal with the ambiguous human
motion that makes retargeting and control difficult. We miti-
gate this issue by adopting a hierarchical approach that learns
a set of experts for both motion retargeting networks and
control policies. We also develop a couple of post-processing
techniques to improve the contact and temporal consistencies
of the retargeted motion. Another key challenge is that our
robot must imitate the target motion without accessing the
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future reference trajectory, often resulting in a conservative
policy. We improve the training of the motion imitation policy
by adopting curriculum learning, which gradually increases the
difficulty over multiple tasks.

We demonstrate that our system allows a human user to exe-
cute various motor tasks with simulated and real quadrupedal
robots using a consumer-grade motion capture system, Mi-
crosoft Kinect [45]. For instance, a user can control an
A1 robot to approach the target and manipulate the object
with both standing and sitting postures. A user can also tilt
the robot’s body to reach out to a distant object or avoid
incoming obstacles. We evaluate our system by conducting an
ablation study of essential components, including consistency
corrections, curriculum learning, and domain randomization.
We list our technical contributions as follows:

• We design a novel human motion interface for a
quadrupedal robot that requires minimal information
about the task or the model.

• We develop an effective motion retargeting algorithm
with contact and temporal consistency corrections.

• We improve the performance of motion imitation with
curriculum learning and a hierarchical formulation.

• We demonstrate that a user can execute various motor
tasks seamlessly on simulated and real robots.

II. RELATED WORK

A. Legged Robot Control
Legged robot control. Striving for robust and dynamics
robotic systems has enormously advanced the state of the
hardware and software of the legged robots. By virtue of these
advancements, legged robots can exhibit diverse, dynamic,
and robust motion behaviors, allowing the robots to traverse
challenging terrains or exhibit highly agile movements. The
development of the hardware has enabled quadrupedal robots
to perform agile motor skills while maintaining high stabil-
ity [55, 27, 7]. On the other hand, the development of bipedal
robots has focused on the robustness of locomotion [6, 75, 33].
Traditionally, designing effective motion controllers involves
a lot of manual engineering and domain expertise. On the
contrary, mathematical approaches like trajectory optimiza-
tion [54, 20] and model predictive control (MPC) [26, 19,
13, 14], leverage the optimization techniques to generating
robot motions while alleviating the human-powered efforts in
controller design process. Such optimization methods have
enabled legged robots to complete the challenging control
tasks such as locomoting on a slippery floor [32, 8], traversing
the rough terrain [17], recovering from the slip [16] and even
keeping the balance on a large ball in a physics simula-
tion [78]. However, the complexity of the real-legged robot
dynamics usually forces these algorithms to either operate with
a simplified robot model or design a task-specific controller.
Our algorithm, on the contrary, allows the robot to learn a wide
range of tasks without any task-specific dynamics modeling.
Learning-based control. Reinforcement learning (RL) control
of physically simulated characters has led to a great perfor-
mance in sophisticated motor skills such as walking, jumping,

cart-wheel, and skating [49, 38, 48, 80]. However, while con-
trollers behave well in idealized simulated environments, they
often struggle when transferred to the real world, exhibiting in-
feasible motor-control behaviors due to the difference between
simulation and real-world, which is often referred to as the
reality gap. Some approaches propose to address the reality
gap with conventional optimization methods such as MPC,
allowing the policy to adjust on the real-robot [30, 68, 40, 76].
On the other hand, others have investigated methods that
leverage real-world data, such as learning on real robots
[22, 21, 62], identifying system parameters [29], or adapting
policy behaviors [53, 83, 36]. Instead, we leverage a Domain
Randomization (DR) technique [50, 82, 47, 70, 12, 58, 41],
which randomizes domain parameters like mass, friction or
PD gain during training in simulation to obtain more robust
control policies while training only in simulation.

B. Motion Imitation

Data-driven motion controllers have been proven effective
for generating a wide range of physically plausible motions
by leveraging motion capture data. Although kinematic ap-
proaches can provide interactive motion control [24, 5, 63,
25, 64, 65], they cannot be directly transferred to real-world
due to the lack of physical plausibility. On the other hand,
physics-based motion trackers [42, 43] allow us to obtain
natural motions in simulation, but its control design requires
additional manual efforts, such as feature selection and motion
processing. The recent RL-based formulation [49] provides an
automated pipeline for developing effective motion imitation
control policies from simple reward descriptions, which is
capable of learning various motions on simulated charac-
ters [23, 72, 73, 49, 11, 38, 46, 48, 80, 44, 39], or even on a real
quadrupedal robot [53] with manual motion retargeting. We
adopt the concept of imitation objective to gain both physically
correct motion and interactive control.

C. Motion-based Control

Human motion control allows for direct control of the
robot body based on the human body motion. Motion control
schemes can liberate the human operator from the means
of the commonly used control mechanisms (e.g. joysticks,
keyboards), and allows the operator to better convey his or her
intents to the robot controller. In this reason, human posture-
based control has been widely studied in the fields of computer
animation and robotics [59, 66, 4, 77, 1, 61, 84, 71, 56, 31,
35, 57, 34, 9, 10].
Human motion control for humanoid robots. Humanoid
robots that inherit many human body features are seemingly
a suitable platform for mimicking human body motions.
Application of such anthropomorphic creatures ranges from
human interaction [71] to housekeeping teleoperation [3] or
even hazardous disaster rescue [56]. With further expansions
to smaller-sized humanoid control via motion imitation [35],
which highlights the challenges of projecting the human pos-
ture to a new morphology. A number of methods [59, 66, 1]



Fig. 2. Overview diagram. Our system takes a human motion as inputs and
controls the robot via motion retargeting and motion imitation.

have been proposed to address the differences in the mor-
phology configuration space, such as link length, joint limits,
and degrees of freedom. Aside from morphology differences,
timing issues emerge when expanding the controller from
simple posture mapping to more dynamic motions, such
as maintaining a balance. Zheng and Yamane [84] propose
to integrate a time-warping objective to obtain a smoother
motion-to-motion mapping control. Balancing has been further
addressed by several approaches, such as Linear Inverted
Pendulum (LIP) model safety constraints [31] or the balance
feedback to the human [57]. In addition, safety has also been
another main challenge during teleoperation. For instance,
Choi et al. [10] proposed a shared-latent embedding retargeting
algorithm to avoid self-collisions. Arduengo et al. [2] proposed
a technique for adapting the dynamics of the end-effector
to switch between stiffness and compliance to obtain better
safety.
Motion retargeting to non-humanoid characters. Although
some non-human-like characters as animals or alphabet shape
characters have a different configuration from human beings,
it might be possible to convey the semantics of the human
posture to the character’s posture [4, 77, 61] with proper
motion retargeting. Researchers have proposed various pose-
to-pose motion retargeting algorithms with probabilistic pose-
to-pose mapping [77], using semantic deformation transfer as
mapping [4], or a feature selecting method [61]. However,
these methods focused mainly on posture mapping, which is
hard to be extended for robot control. On the other hand,
Kim et al. [34] proposed the embedding of cyclic motion on
the shared latent space, which a user to control an ostrich
character in a 2D physics simulation [34]. In this work, we
propose a new control framework that allows a user to operate
a quadrupedal robot with motions, which has a different mor-
phology from a human. We achieve real-time motion control
for a variety of tasks, including walking, tilting, manipulation,
and sitting, with a minimal amount of information about each
task.

III. OVERVIEW

We develop a system for controlling a quadrupedal robot
with a human operator’s motions. Our system receives human
motions from any motion capture system, which is Microsoft

Azure Kinect [45] in our case. Then the motion retargeting
module (Section IV) converts the captured human into the
corresponding robot reference motion that is physically valid
and conveys proper semantics. To achieve this goal, we adopt
a hierarchical approach of learning a set of experts mappers
while applying optimization-based post-processing techniques.
Then we learn a control policy that can imitate the given
retargeted robot motion using deep reinforcement learning
(Section V). For more robust and flexible control, we develop
robust expert policies using curriculum learning and combine
them as a state machine with additional transition controllers.
We illustrate the system overview in Figure 2.

IV. MOTION RETARGETING

The first component of our motion-based control system is
a motion retargeting module, which converts the user’s motion
into the corresponding robot motion. Many prior works have
demonstrated successful human-to-humanoid motion map-
ping [59, 66, 1, 84, 71, 35, 56, 31, 57, 3, 10]. However,
our problem is unique in the sense that we have to find a
mapping function between two very different morphologies
without leveraging hand-engineered motion features, such as
contact states or centroidal dynamics. Even worse, we have to
address additional issues, such as the sparsity of the data and
the required interactivity.

We tackle this problem by learning a set of expert networks
and applying post-processing. Traditional techniques [15, 4,
77] typically approach motion retargeting by solving optimiza-
tion, but they tend to exhibit a slow turnaround time that is
not suitable for interactive applications. And they also often
require task-specific formulation [61], which makes the system
hard to handle a wide variety of motions. On the other hand,
learning-based approaches [10] show impressive inference
capabilities at interactive rates, but they are known to be data-
hungry. In addition, they can also generate inconsistent or
unexpected motions that can cause severe damage to the robot.
We propose a motion retargeting algorithm that first infers the
motion in a supervised learning fashion from a sparse dataset
and corrects the inconsistency using optimization at the post-
processing stage. The set of experts will be managed by an
additional selector. Our framework allows us to build a fast
and robust motion mapper that can be applied to various tasks.

A. Motion Retargeting Network

In this section, we will explain how to learn a motion
retargeting network for a single task. We aim to develop
a motion mapper f takes a human pose q as inputs and
maps it into the corresponding robot pose p. However, a
simple pose-to-pose mapping can be ambiguous in periodic
motions because a single pose does not contain any temporal
information. For instance, we can interpret the same pose in
an in-place marching motion as two different phases: swing up
or swing down, which must be mapped to different quadruped
poses. Therefore, our model learns to map a triplet of the
human pose, velocity, and acceleration (q, q̇, q̈) to those of



Fig. 3. The illustration of the motion retargeting module. The motion
retargeting networks converts the given human motion q into the robot
motion p. The contact and temporal consistencies are maintained based on
the inferred contact flags and previous history.

robots (p, ṗ, p̈). We omit the derivatives in some figures and
equations for brevity.
Data preparation. We prepare the dataset D by collecting
matching pairs of human and robot motions. First, we generate
robot motions for sampled tasks. For example, tilting or
manipulation tasks are synthesized by generating random goals
and solving robot poses using inverse kinematics. Then we
interpolate these key poses with a random time interval ranging
from 1 to 3 seconds. For locomotion tasks, we generate a
set of walking motions with various gait parameters including
body heights, foot clearance heights, and swing angles using
a trajectory generator [30]. Note that these motions can be
reused for imitation policy training in Section V.

Once we have the robot motions, we collect the matching
human motion sequences. While showing robot motions, we
ask a human user to act the “corresponding motions” based on
the user’s own intuition and record the motions using a motion
capture system. We further manually process the motions to
clean up noisy segments and fix asynchronous actions based
on contact flags. Once we obtain the motions, we compute the
pose derivatives for both the user and the robot using finite
differences with ∆t = 0.1.
Learning process. We use multi-layer perceptron (MLP) for
training a mapper from the given dataset D (Figure 3). Our
MLP consists of three leaky ReLU layers and one final
hyperbolic tangent layer. Since a hyperbolic tangent function
outputs the value between [-1, 1], we shift and scale the
outputs using the robot joint limit vector to finalize the joint
angle of the robot. Our loss function is defined as follows:

Lmap = woriLori + wjntLjnt + wdxLdx + wddxLddx. (1)

We omit the function arguments p, ṗ, p̈, p̄, ¯̇p, and ¯̈p for
brevity, where the former three are the outputs from the
networks and the latter three are the target values. The
orientation loss Lori = d(proot, p̄root) compares the root
orientation proot in quaternion and its target value p̄root

via a quaternion distance function d. The joint angle loss
Ljnt = ∥pjnt − p̄jnt∥2 is designed to match the joint angles

pjnt and their target values p̄jnt. Two end-effector terms,
Ldx = ∥ẋ − ¯̇x∥2 and Lddx = ∥ẍ − ¯̈x∥2 compares the end
effector velocities ẋ and accelerations ẍ against their target
values, ¯̇x and ¯̈x, respectively. Please note that these values can
be derived from ṗ and p̈. We set the weights wori, wjnt, wdx,
and wddx as 0.3, 1, 0.001, and 0.001 for all the experiments,
respectively.

B. Post-processing for Consistency

The learned function often generates physically invalid
motions in practice. This inconsistency slows the learning of a
control policy and degrades the final motion’s quality. To this
end, we further clean up the motion at the post-processing
stage to maintain contact and temporal consistency.
Contact consistency correction. Contact consistency without
foot skating is crucial to obtain physical plausibility. The vio-
lation of contact consistency destabilizes the robot balancing,
hence leading to learning failure. To this end, we estimate four
dimensional contact flags ct and fix undesirable movements if
they supposed to be in contact phases.

One possible approach to estimate ct is to simply compare
the current robot’s foot heights against a certain threshold.
However, we found that this approach yields undesirable
discontinuous motions. Instead, we learn an auxiliary network
that can predict smooth contact probabilities directly from
human motions. We train this contact consistent network from
the same training data using the following loss function:

Lcp = ∥c̄t(q̄, ¯̇q)− ct(q, q̇)∥2, (2)

where the contact probability c̄t is continuously estimated
from the foot height and velocity: 1.0 if the height is 0cm
and the velocity is 0.0cm/s, while 0.0 if the height is above
2cm and the velocity is more than 60.0cm/s. We apply inverse
kinematics when the contact probability is greater than 0.5 to
correct the contact feet to the previous frame’s positions.
Temporal consistency correction. We also invent an addi-
tional procedure to ensure the temporal consistency of the
retargeted motions over multiple frames because abrupt move-
ments on the real robot often cause dangerous situations. In our
experiments, this was critical to deploy the proposed system
to the real world by making the entire system more stable. To
this end, we clip the joint angles with respect to the velocity
limits, which is set to 120◦/s.

C. A Set of Experts for Multi-task Support

In our experiments, it becomes more difficult to obtain
an accurate motion mapping when the human motions for
multiple tasks are close to each other. To address this issue, we
propose to use a hierarchical learning approach that manages
a set of expert networks.[79, 74, 52, 18] We first learn three
different motion retargeting networks for three robot states,
stand, walk, and sit (Figure 4). Each network work can handle
multiple tasks, such as manipulation-at-stand or tilting-at-
stand. We query k-Nearest neighbors (kNN) over the input
data to identify the expert associated with the closest data set;
if one expert’s training data is closer to the current one, we



Fig. 4. We learn a set of expert motion retargeting networks for better
accuracy in multi-task scenarios.

switch to the corresponding expert. We found that this results
in an accurate mapping function while greatly reducing the
time for manual engineering, such as hyperparameter tuning
and data curation.

V. MOTION IMITATION

Once we generate the kinematic robot motions, the next step
is to develop a control policy to imitate the given reference. We
employ the motion imitation learning framework of Peng et al.
[49] that allows natural and diverse motions in simulation,
which has also been applied to a quadrupedal robot [53].

Our problem is more ambitious than the others because
we have to track a wide range of motions on real robots. In
addition, our problem is facing additional unique challenges
that make learning more difficult. First, we must imitate noisier
references because they are from live human movements.
Because a human cannot reproduce the exact same motion, our
controller must be able to imitate similar motions with spatial
and temporal noises. Second, our controller does not have
access to the “future” reference motions. Indeed, this absence
of future information often puts a robot into conservative states
rather than actively tracking the references.

We aim to maximize the performance of motion imitation
by introducing the following techniques. First, we design a
hierarchical controller that learns three expert controllers for
robot states, stand, sit, and walk, while manually designing
transition controllers between states. Second, we obtain ef-
fective expert controllers with curriculum learning, which is
arranged over various difficulties and tasks. These inventions
allow us to develop a practical controller that handles a wide
range of motions on both simulated and real robots.

A. Background: Reinforcement Learning

We formulate our problem as Partially Observable Markov
Decision Processes (PoMDP) to utilize the reinforcement
learning [67]. An each time step, an agent observes an
observation ot ∼ O(st) emitted from the current state
st and takes an action at ∼ π(at|ot) from its policy
π. This results in the trajectory of the states and actions

τ = {(s0,a0), (s1,a1), · · · (sT ,aT )} where T is the episode
length. Our goal is to find the optimal policy that maximizes
the expected return:

J(π) = Eτ∼p(τ |π)[
T−1∑
t=0

γtr(st,at, st+1)], (3)

where p(τ |π) is a probability of the given trajectory τ .

B. Formulation of Motion Imitation

We formulate the problem of imitating the given reference
motion as PoMDP.
Reference Motions. We take the generated robot trajectories
that are used for training a mapping function in the previous
section and use them as example reference motions for motion
imitation learning. We injected a noise vector into reference
motions to improve the robustness of the learned policy.
Observation. The observation ot = [zt−3:t,at−3:t−1, p̄t−3:t]
consists of three components: robot sensor data, previous ac-
tions, and reference poses, with their corresponding histories.
Each robot sensor data zt is a 16 dimensional vector from
12 joint motor encoders and 4 IMU orientation and angular
velocity readings in pitch and roll axes. A history of previous
actions at−3:t−1 are also stored to make the problem more
Markovian in the real world. The previous reference poses
p̄t−3:t are also given to the robot. Please note that we do not
have future reference motions due to the nature of our problem,
which makes the tracking task more difficult.
Action. The action at defines as the PD target for the twelve
joint motors of a robot. We apply the Butterworth low-pass
filter with the cut-off frequency at 5Hz to actions to generate
smoother motions.
Reward function. The reward function encourages the agent
to imitate the given reference motion while adapting to the
physics simulation:

rt = wmainrpt · ret · r
rp
t · rrot · rspt + waccracct , (4)

which adopts the multiplicative form inspired by previous
works [38, 48]. The term rpt refers to a joint imitation reward:

rpt = exp (sp
∑
j

∥p̄j
t − pj

t∥2), (5)

where p̄ and p are the target and current joint angles. The end-
effector reward ret drives the robot to track the end-effector of
the reference:

ret = exp (se
∑
e

∥x̄e
t − xe

t∥2), (6)

where x̄e
t and xe

t are the target and current end effector
positions. Similarly, the root position reward rrpt and the
root orientation reward rrot measures the differences in root
position and orientation:

rrpt = exp(srp∥x̄root
t − xroot

t ∥2)
rrot = exp(srod(p̄

root
t ,proot

t )2)
(7)



by comparing the current root position xroot and orientation
and proot with respect to their target values, x̄root

t and p̄root
t .

Finally, we penalize the deviation from support polygon

rspt = exp (sspdsp(x
root,proot,p)2), (8)

where dsp is the minimal distance to the support polygon. We
only measure dsp when the robot is required to make at least
three contacts: otherwise, dsp is defined as zero. Finally, we
penalize excessive motions with the acceleration penalty term:

racct = exp (sacc
∑
j

∥p̈t∥2). (9)

For all experiments, we set weight terms wmain = 0.9, wacc =
0.1 to emphasize the main mimicking term. The scaling
coefficients are set to sp = 1.0, se = 20.0, srp = 20.0,
sro = 5.0 and ssp = 10.0 respectively.
Early termination. The early termination accelerates the
learning speed which is proven by many works [49, 51, 73,
81]. We trigger the early termination when the trunk of the
robot touches the ground and self penetrating contact happens.
Learning process. We optimize policies with Proximal Policy
Optimization [60]. The policies are represented as feedforward
networks that consists of two hidden layers with 256 ReLu
neurons. The PPO has a clipping range of 0.2, learning rate
of 0.00005, the discount factor is γ = 0.95, and the GAE
parameter is λ = 0.95. The minibatch size is 128 for policy
and value network. The max gradient norm is set to 0.5.

C. Curriculum Learning over Tasks and Difficulties

While the above formulation works well for a single motion
clip, our goal of learning a versatile policy for multiple
tasks remains a challenging problem. In our experience, naive
learning will result in a conservative policy that is stuck in a
steady position to avoid falls while not trying to follow the
target motion. To address this issue, we train an expert policy
for the given state with a curriculum that expands the range
of the motion and also expands the number of tasks.

For this purpose, we sort all the robot reference motions
based on two criteria: a task type as a primary and difficulty of
the task as a secondary. For instance, we train a control policy
by training on the tilting-at-stand task first and expanding
the task set by adding the manipulation-at-stand task. For
both tasks, we gradually increase the difficulty of the task
by measuring the range of reference motions. Similarly, we
train an walking expert by expanding the curriculum from
the walking forward task to the turning left/right task, with
increasing turning rates.

D. Hierarchical Control with States

Our motion includes multiple tasks, tilting, manipulation,
and locomotion, over three different robot states, stand, sit,
and walk, which yields different combinations such as tilting-
at-stand or manipulation-at-sit. Instead of learning one mono-
lithic policy, we learn three experts for three robot states and
develop special transition controller that are called when the
motion selector of the motion retargeting detects transitions.

Parameters Range Unit
Link Mass [0.75, 1.25] X default kg

Ground Friction Coefficients [0.5, 1.5] 1
Proportional Gain [0.7, 1.3] X default N/rad
Derivative Gain [0.7, 1.3] X default N·s/rad

Communication Delay [0, 0.016] sec
Ground Slope [0, 0.14] rad

TABLE I
DOMAIN RANDOMIZATION PARAMETERS

These transition controllers can be developed in multiple ways,
such as model-based control or reinforcement learning, but
we choose to reuse the existing motion imitation framework.
The transition takes 1 to 3 seconds depending on the tasks
and robot’s state. During transitions, the robot executes the
predefined policy while ignoring human motions.

E. Domain Randomization

The gap between the dynamics of the simulation and the
real world decreases the performance of policies trained in
simulation that are deployed on a real physics system. We
introduce Domain Randomization [50], that randomizes dy-
namics parameters during the training to obtain more robust
control policies. The randomized dynamic parameters and their
ranges are specified in Table I. We gradually increase the
range of dynamic parameters with a curriculum similar to the
method mentioned in subsection C. Detailed procedures are
well mentioned in previous works [49, 41].

VI. RESULTS

We design experiments to evaluate our framework from
three perspectives. First, we evaluate the proposed system on
a set of tasks in simulated and real environments. Second,
we conduct an ablation study to evaluate the effectiveness of
important components. Finally, we qualitatively compare our
system with the previous motion-based interfaces.

A. Experimental Setup

We test our system on an A1 quadrupedal robot [69], which
has three degrees of freedom for each leg and six under-
actuated degrees of freedom for the root. We prepared 76
to 522 matching data pairs for training the mapper varying
by the tasks. We train each expert policy using 1.2 billion
samples in the RaiSim [28] physics simulator. We conducted
all the experiments with a desktop computer with Intel 16
core 3.60GHz i9-9900K CPU and GeForce RTX 2070 SUPER
GPU. We capture a human motion using a Kinect [45].

While all simulation demos are controlled interactively, we
conduct real-world experiments in two modes: (1) the live
mode that controls a real robot in an end-to-end fashion and
(2) the replay mode that controls the robot to the prerecorded
human motion trajectories. This is because fluctuating control
delays could harm real robots. However, we do not feed the
future trajectory information even in the replay mode, which
is not available in the live mode. We annotate the experiment
modes in the manuscript and supplemental videos.



Fig. 5. Motions of the (a) tilting and manipulation and (b) walking tasks. From the top row, we illustrate human video footage, human skeleton, retargeted
robot motion, simulated motion, and real robot motion, at the corresponding time frames.

Fig. 6. Composite task demos in simulation (top), real-world (middle (replay mode) and bottom (live mode)).



Fig. 7. Point clouds that illustrate the workspace of the right front leg when
performing only manipulation(red) and manipulation with tilting(bottom)
during standing. The robot can reach approximately 2.7 larger areas by
simultaneously tilting its body.

B. Motion Performance

Individual tasks. Our system enables a user to control a
diverse set of motor skills for A1 using human motions.
In the stand state, a robot can move its end-effector while
simultaneously tilting its body. A robot can tilt its body −40◦

to 40◦ for all x, y, z axes, which is larger than the tilting range
of the manufacturer’s controller: −20◦ to 20◦ for pitch and roll
and −28◦ to 28◦ for yaw. Similarly, a robot can transit to the
sit state that allows the robot to use both arms and reach higher
targets. During sitting, the robot can tilt 30◦, 15◦, and 7◦ in
pitch, roll, and yaw axes, respectively. Finally, a robot can
walk at the speed of 0.0m/s to 0.97 m/s with the maximum
turning rate of 15◦ per second. The motion is less stable than
a regular walking controller to prepare abrupt change of the
speed at any moment. We illustrate the motions in Figure 5
and the supplemental video.

We also found that simultaneous manipulation and tilting
provide a broader workspace, which is approximately 2.7
times larger than manipulation without tilting. We compare
the workspaces as point clouds in Figure 7.
Composite tasks. Our system allows a user to switch between
tasks seamlessly. In the simulation, we conduct an experiment
with a sequence of the following tasks: (1) tilting the body
to express a greeting, (2) walking forward to reach a target
in 3m, (3) dodging a thrown orange ball by crouching, (4)
manipulating the target and (5) touching another target high
in the air (Figure 6 top). Similarly, we control a real robot to
execute the following tasks: (1) hitting a tennis ball located
at 0.42m height, (2) touching a bone hanging high at 0.8m
height, and (3) dodging a thrown tennis ball (Figure 6 middle).
The robot must sit to achieve the second task because it cannot

Fig. 8. Different styles of mapping for walking. The top shows a mapping
with in-place marching and the bottom shows a mapping with hand gestures.

reach the bone while standing. This long sequence is originally
executed in simulation in the live mode and replayed on the
hardware. These scenarios demonstrate the seamless transition
capability of our control system. Finally, we control a real
robot to push the box to the target position(X-mark on the
floor) in real-time. This task is challenging because the box
is located far from the initial position. To complete the task,
we control the robot by repeating the following control tasks:
(1) walk to the box and (2) push the box toward the target
(Figure 6 bottom).
Control responsiveness. In real-time control, responsiveness
is one of the most important criteria, which is even more
critical for a quadrupedal robot with a floating base. Our
control loop mainly consists of two stages: motion recon-
struction and control inference. Control inference includes
the main technical components, such as motion retargeting,
post-processing, and querying the control policy, while motion
reconstruction is inferring human 3D poses from the Kinect.
In our experience, the entire control inference takes less than
0.01 second, which is fast enough for our 30 Hz control loop.
We stabilize the control frequency by skipping Kinect reading
when the delay is significant and reusing the existing human
motions from the previous frame.
Different mapping styles. Our system is flexible enough to
support different styles of mapping for the same task. To
demonstrate this, we generate two motion retargeting functions
with (1) in-place marching motions and (2) circular hand
gestures. Both mapping styles generate successful marching
motions in the simulation (Figure 8).
Semantic mapping with manual features. We can also
manually tune a mapping by selecting features for retargeting.
For instance, we can build a mapping for the walking task
with explicit notions of the target velocities by extracting them
from both human and robot motions. Although this explicit
mapping offers slightly better motion quality, this requires
domain-specific knowledge of the task.

C. Analysis

Contact and temporal consistency. We evaluate the im-
portance of contact consistency and temporal consistency
corrections by conducting an ablation study. We generate



Fig. 9. Average success time ratio, which is the ratio of the termination time
to the maximum episode duration. We conduct an ablation study with contact
consistency, temporal consistency, and domain randomization to evaluate their
effectiveness.

Fig. 10. Snapshots of the robot control to show the effectiveness of
curriculum learning. The physically simulated agent tries to mimic the motion
of reference (Top). While the policy trained with curriculum successfully
mimic the reference (Middle), the policy without curriculum is stuck in local
optimum (Bottom).

5120 test episodes of tracking 10 seconds of noisy trajectories
perturbed from the ground truth robot motions. We compare
methods based on the success time ratio, which is the ratio
of the termination time to the maximum episode length. As
illustrated in Figure 9, both components are essential for
achieving the best performance. While contact consistency
correction is more important for standing and sitting motions,
temporal consistency seems crucial for walking motions.
Curriculum learning. In our experience, curriculum learning
is essential for obtaining the best motion imitation perfor-
mance. We do not evaluate the performance based on the suc-
cess time ratio because policies without curriculum learning
tend to survive until the last frame while showing conservative
behaviors. Instead, we compare the quality of motions in
Figure 10 and the supplemental video. They illustrate the
conservative behaviors of the policies without curriculum,

Criteria (A) (B) (C) (D) Ours
Mapping dimension 2D 3D 3D 3D 3D
Real-Time Y N N Y Y
Dynamics Y N Y N Y
Mapping Flexibility N N N Y Y
Sim2Real N N N N Y

TABLE II
COMPARISON WITH PREVIOUS HUMAN TO NON-HUMANOID CONTROL

METHODS (A)KIM ET AL. [34], (B)DONTCHEVA ET AL. [15], (C)YAMANE
ET AL. [77] (D)SEOL ET AL. [61]

which put all the feet on the ground and do not attempt to
reach the target.
Domain adaptation. Domain randomization (DR) has been
one of the most effective techniques for overcoming the sim-
to-real gap. We evaluate its effectiveness by measuring the
success time ratio over 5120 test cases with randomized
dynamics. Figure 9 shows that DR is essential for all the tasks.
In addition, we conduct the sim-to-real experiment, where the
policy without DR cannot complete the given motion: please
refer to the supplemental video.
Importance of future reference. We often observe that the
quality of the motion imitation is not as good as we expected.
We hypothesize that the poor tracking performance is because
our real-time motion tracking does not have information about
the future reference trajectory. We verify this hypothesis by
training an additional policy to track the fixed trajectory with
future information and comparing the motion quality with
the original agent. In our experience, the policy with future
information generates more stable motions: please refer to the
supplemental video for visual comparisons.

D. Comparison to Other Methods

We compare our method with the previous human to non-
humanoid character control approaches based on criteria that
are meaningful for control in Table II. Kim et al. [34] showed
the mapping that corresponds to the dynamical systems of two
different morphologies, but it is limited to 2D cyclic motions.
Dontcheva et al. [15] proposed the concept of detecting the
human gesture to search the matched motion pair of characters.
This method only provides kinematic animation without the
notion of dynamics. Yamane et al. [77] successfully mapped
human motions to non-humanoid characters with natural
movements. However, this approach didn’t aim to get real-
time puppetry. Seol et al. [61] showed a flexible retargeting
scheme that contains both agility and semantics but is limited
to kinematic animations.

Our framework has advantages over flexible mapping and
real-time control compared to the other methods. Our frame-
work supports various tasks without explicitly modeling task-
specific dynamics due to the flexibility of motion retargeting
and control schemes. We also achieve robust control by adopt-
ing the motion imitation learning with domain randomization.

VII. CONCLUSION AND FUTURE WORK

We presented a human motion control system that allows
a user to control quadrupedal robots using motion capture.



The system has two main components: a motion retargeting
module and a motion imitation policy. The motion retarget-
ing module translates the captured human motion into robot
motion with proper semantics through supervised learning and
post-processing techniques. Then we train a control policy that
can imitate the given retargeted motion using deep reinforce-
ment learning. We further improve the control performance
by leveraging a set of experts and curriculum learning. We
evaluate the proposed motion control system on simulated and
real-world quadrupedal robots by conducting various tasks,
including standing, tilting, sitting, manipulating, walking, or
their combinations.

Our work has a few limitations. First, we found that the
Kinect’s delay of 0.01s to 0.06s is significant for real-time
control, particularly for a real robot, preventing us from
conducting more real-world experiments in the live mode.
While we mitigated this issue by training imitation policies
with randomized control frequencies, it could not solve all the
raised issues. Moreover, instability of the Kinect estimation
system occasionally observes unexpected operator motions
which often leads to control failure. We believe a motion
capture system with more stability and higher rates, will be
more suitable for real-time motion control applications.

Another key observation is that the lack of future trajectory
severely degrades the quality of motion imitation. We train
policies to track versatile reference motions with frequent
changes in target velocities and turning rates, often resulting
in conservative policies with poor motion quality. One notable
research direction will be to predict user intentions from
history and leverage them to improve tracking performance.

We assume that the user and the robot are in the same space.
However, we must release this assumption to achieve the
goal of developing robotic workers in dangerous environments.
We plan to combine the proposed system with virtual reality
devices to provide more immersive experiences. This extension
will raise new research questions, such as which robot sensory
information is essential for users to operate the robot properly
and how to deal with increased delays.
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