
Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

1

SymForce: Symbolic Computation and
Code Generation for Robotics

Hayk Martiros, Aaron Miller, Nathan Bucki, Bradley Solliday, Ryan Kennedy,
Jack Zhu, Tung Dang, Dominic Pattison, Harrison Zheng, Teo Tomic, Peter Henry,

Gareth Cross, Josiah VanderMey, Alvin Sun, Samuel Wang, Kristen Holtz
Skydio, Inc.

Abstract—We present SymForce, a library for fast symbolic
computation, code generation, and nonlinear optimization for
robotics applications like computer vision, motion planning, and
controls. SymForce combines the development speed and flexi-
bility of symbolic math with the performance of autogenerated,
highly optimized code in C++ or any target runtime language.
SymForce provides geometry and camera types, Lie group
operations, and branchless singularity handling for creating
and analyzing complex symbolic expressions in Python, built
on top of SymPy. Generated functions can be integrated as
factors into our tangent-space nonlinear optimizer, which is
highly optimized for real-time production use. We introduce
novel methods to automatically compute tangent-space Jacobians,
eliminating the need for bug-prone handwritten derivatives. This
workflow enables faster runtime code, faster development time,
and fewer lines of handwritten code versus the state-of-the-art.
Our experiments demonstrate that our approach can yield order
of magnitude speedups on computational tasks core to robotics.
Code is available at https://github.com/symforce-org/symforce.

I. I NTRODUCTION

SymForce is a symbolic computation and code generation
library that combines the development speed and �exibility
of symbolic mathematics in Python with the performance of
autogenerated, highly optimized code in C++ or any target
runtime language. SymForce makes it possible to code a prob-
lem once in Python, experiment with it symbolically, generate
optimized code, and then run highly ef�cient optimization
problems based on the original problem de�nition.

Our approach was motivated by developing algorithms for
autonomous robots at scale at Skydio, where performance and
code maintainability are crucial for use cases like computer
vision, state estimation, motion planning, and controls.

SymForce builds on top of the symbolic manipulation
capabilities of the SymPy library [1]. Symbolic math allows
for rapid understanding, interactive analysis, and symbolic
manipulations like substitution, solving, and differentiation.
SymForce adds symbolic geometry and camera types with Lie
group operations, which are used to autogenerate fast run-
time classes with identical interfaces. By using one symbolic
implementation of any function to generate runtime code for
multiple languages, we improve the iteration cycle, minimize
the chance of bugs, and achieve performance that matches or
exceeds state-of-the-art approaches with no specialization.

Fig. 1: SymForce outperforms sparse and dense matrix multiplication
with the Eigen library [2] on our task in VIII-A, by sharing common
subexpressions and leveraging sparsity with no runtime overhead.

A signi�cant advantage to our approach is not having
to implement, test, or debug any Jacobians. In the robotics
domain, correct and ef�cient computation of derivatives is
critical. The prevalent approach is to hand-write Jacobians
in C++ or CUDA for a core set of operations and rely on
automatic differentiation to chain them together [3]. SymForce
introduces novel methods to automatically compute tangent-
space Jacobians of functions that operate on Lie groups,
avoiding bug-prone handwritten derivatives. As a result, our
approach avoids dynamic memory allocation and chain ruling
at runtime. SymForce often dramatically outperforms standard
approaches by �attening code across expression graphs, shar-
ing subexpressions, and taking advantage of sparsity. We also
introduce a novel method for preventing singularities without
introducing branches, which has a key bene�t to performance.

In summary, our key contributions are:

• A free and open-source library with:
– Symbolic implementations of geometry and camera

types with Lie group operations, and fast runtime
classes with identical interfaces,

– Code generation for turning arbitrary symbolic func-
tions into structured and fast runtime functions,

– A fast tangent-space optimizer in C++ and Python,
– Highly performant, modular, and extensible code,

• Novel contributions for automatically computing tangent-
space Jacobians, avoiding all handwritten derivatives,

• A novel method for avoiding singularities in complex
expressions without introducing branching,

• An exposition of the speed bene�ts afforded by �attening
computation across functions and matrix multiplications,
especially for outperforming automatic differentiation.

https://github.com/symforce-org/symforce


Fig. 2: SymForce architecture diagram - Symbolic expressions are written in Python, where they are easy to understand and debug with
symbolic manipulation tools. Fast runtime code is autogenerated from these expressions, which can then be used as standalone functions or
factors in our nonlinear optimizer. Together these three components provide a smooth work�ow from prototypes to production code.

The paper is organized as follows: We review related work
in Sec. II. In Sec. III we present the major components of
SymForce as shown in Figure 2: symbolic computation with
geometry and camera types, code generation, and optimization.
Sec. IV highlights why SymForce is often faster than alterna-
tives. Sec. V discusses symbolic differentiation on Lie groups,
and Sec. VI describes our approach to branchless singularity
handling. Limitations are discussed in Sec. VII, experiments
in Sec. VIII, and we conclude in Sec. IX.

II. RELATED WORK

Symbolic Math – Libraries that manipulate symbolic ex-
pressions, such as Maple [4], Mathematica [5], and MAT-
LAB's symbolic toolbox [6], have existed for decades. Sym-
bolic math libraries that generate fast code are used in sev-
eral niches of robotics [7] [8] [9], but are not general or
widespread. SymPy [1] is noteworthy for being open-source,
lightweight, and written in Python, which allows users to
modify it and leverage a large ecosystem of libraries. However,
it can scale poorly to complex expressions. SymEngine [10]
is a C++ backend that supports the SymPy API while being
up to two orders of magnitude faster [11]. These libraries also
provide routines for code generation and common subexpres-
sion elimination (CSE). SymForce builds on the capabilities
of SymPy and SymEngine by adding essential geometry
and vision types, Lie group operations, tools for handling
singularities, structured code generation, and integration with
optimization tools. These additions make SymForce a signi�-
cantly more complete tool for complex robotics tasks.

Nonlinear optimization -– Optimization libraries like GT-
SAM [12], Ceres [13], and g2o [14] provide useful tools
for ef�ciently formulating and minimizing cost functions,
especially for nonlinear least-squares problems found in the
�eld of robotics and computer vision. SymForce follows the

factor graph formulation used in GTSAM, but residual func-
tions are autogenerated from symbolic expressions. Relative to
alternatives, our optimizer has faster performance and lower
memory overhead for many tasks. In addition, our approach
eliminates the need for handwritten derivatives and avoids
the runtime overhead of applying the chain rule to Jacobians
during automatic differentiaton.

Geometric Lie Groups – Rotations, poses, and camera
models are central to robotics code, and getting ef�cient and
correct tangent-space Jacobians is a common task for many
optimization use cases. GTSAM de�nes geometry types and
their Lie calculus in C++ and wraps them in Python. Sophus
[15] uses SymPy implementations to generate some derivative
expressions. Manif [16] is a C++ library with handwritten Lie
group operations. The wavegeometry library [17] provides
expression template-based automatic differentiation of Lie
groups in C++. LieTorch [18] implements Lie groups in
PyTorch. SymForce is inspired by GTSAM and Sophus. The
de�nitions of our geometry types are symbolic, with improved
naming and consistency over Sophus and no hardcoded deriva-
tives. SymForce autogenerates runtime classes that resemble
the GTSAM variants in C++, but have faster performance and
do not require maintaining handwritten code.

Automatic Differentiation – Libraries like PyTorch [19],
TensorFlow [20], and JAX [21] can build up computation
graphs by tracing python code and applying automatic differ-
entiation (AD) to compute gradients. These libraries often have
high overhead for the small input dimensions that SymForce
is built to tackle (tens to hundreds of variables). They also per-
form poorly for second-order optimization techniques common
in robotics, because they are primarily targeted at computing
gradients and not Hessians, and have poor performance for
sparse matrices. In contrast, SymForce can compute Jacobians



Fig. 3: Symbolic expressions - Representation of a simple two-vector symbolic expression (A) as de�ned in Python code, (B) automatically
displayed as LATEX, (C) the underlying representation as a sequence of expression trees, (D) generated C++ and Eigen code. Complex
expressions can contain hundreds of thousands of operations.

and Hessians of complex expressions with no operational
overhead, making it suitable for use on resource-constrained
embedded platforms. In addition, SymForce avoids the need
for matrix multiplication at runtime that is needed for AD.
Julia provides several AD libraries [22], but does not reach
the performance of C++ and lacks the broader ecosystem of
Python. Numba [23] can accelerate arbitrary Python functions,
but does not compute derivatives.

III. A RCHITECTURE

This section describes the major components and work�ows
of the SymForce library, as summarized in Figure 2. Outside
of this paper, the online documentation provides many tutorials
and examples to gain a practical understanding of the library.

A. Symbolic Computation

SymForce provides tools for building and analyzing com-
plex symbolic expressions in Python, by extending the SymPy
API. There is a complete separation between code structure
and performance, allowing the user to encapsulate their code
without sacri�cing performance.

Symbolic computation centers around manipulation of
mathematical expressions as algebraic instead of numerical
quantities. Functions, symbols, and literals are stored as classes
in code that can be traversed and transformed with symbolic
substitution, simpli�cation, differentiation, and solving. These
tools allow users to interactively study and re�ne their func-
tions. Fig. 3 shows multiple forms of a simple expression.

SymForce supports two symbolic backends – SymPy and
SymEngine. SymEngine is a C++ implementation compatible
with the SymPy API, but is dramatically faster for manipulat-
ing large expressions. It is the default choice.

1) Geometry and Camera Types: SymForce implements
several core types used in robotics, such as matrices, rotations,
poses, camera models, noise models, and barrier functions.
These types have symbolic implementations de�ned as Python
classes. Fast runtime classes with identical interfaces are
autogenerated for target languages.

The generated classes do not depend on the rest of Sym-
Force and can be deployed as standalone tools with minimal
dependencies. For example, the generated C++ classes depend

only on Eigen and the Python types only on NumPy. In C++
they are templated on the scalar type, and require zero dynamic
memory allocation, making them suitable for embedded envi-
ronments. The autogenerated runtime classes are functional,
with readable interfaces and excellent test coverage.

2) Lie Group Operations: To allow generic code to operate
on all geometry types we use a concepts (or traits) mechanism
[24] inspired by GTSAM. Using concepts instead of inheri-
tance allows generic programming with external types such as
language-de�ned scalar and sequence types, or NumPy and
Eigen matrices. It also makes it easy to extend or add new
types, both within SymForce and in user code.
There are three primary concepts de�ned in SymForce:

1) StorageOps allow all types to be converted to and from
a sequence of scalars which comprise the internal rep-
resentation of the type. For example, the SO(3) type is
represented by a quaternion, whose storage contains 4
scalars. It also supports common tasks like substitution,
numerical evaluation, and simpli�cation.

2) GroupOps register types as mathematical groups. A
group type must have an associative composition oper-
ation, an identity element, and an inverse.

3) LieGroupOps register types as Lie groups, meaning that
in addition to being groups, they are differentiable man-
ifolds with operations to go from group elements to
perturbations in a local Euclidean space (tangent space).

In Python, this mechanism is implemented with dynamic
dispatch, for exampleops.GroupOps.inverse(element). In
C++, this is done via template specialization, for examplesym

::GroupOps<sym::Pose3f>::Inverse().
The correctness of group and Lie group operations, and their

Jacobians, have been rigorously tested both symbolically and
numerically. See Sec. V and VI for details on our approach.

B. Code Generation

Generation of fast runtime code from symbolic expressions
is the core of SymForce. OurCodegen class is the primary tool
for all code generation tasks. It uses SymPy's code printers and
adds support for struct types, Eigen / NumPy matrices, and our
geometry and camera types. The resulting function contains
�attened native code, but with a structured and human-readable



template <typename Scalar>
Eigen::Matrix<Scalar, 3, 1> PointResidual(

const sym::Pose3<Scalar>& world_T_local,
const Eigen::Matrix<Scalar, 3, 1>& world_point,
const Eigen::Matrix<Scalar, 3, 1>& local_point

) {
// Total ops: 53

const Eigen::Matrix<Scalar, 7, 1>& _world_T_local
= world_T_local.Data();

// Common subexpressions (11)
const Scalar _tmp0 = -2 * std::pow(_world_T_local

[1], Scalar(2));
// _tmp1 through _tmp9 omitted for brevity
const Scalar _tmp10 = _tmp4 * _world_T_local[3];

Eigen::Matrix<Scalar, 3, 1> _res;
_res(0, 0) = -_world_T_local[4] - local_point(0,

0) * (_tmp0 + _tmp1) -
local_point(1, 0) * (-_tmp3 + _tmp5)

- local_point(2, 0) * (_tmp6 + _tmp7) +
world_point(0, 0);

_res(1, 0) = -_world_T_local[5] - local_point(0,
0) * (_tmp3 + _tmp5) -

local_point(1, 0) * (_tmp1 + _tmp8) -
local_point(2, 0) * (-_tmp10 + _tmp9) +

world_point(1, 0);
_res(2, 0) = -_world_T_local[6] - local_point(0,

0) * (-_tmp6 + _tmp7) -
local_point(1, 0) * (_tmp10 + _tmp9)

- local_point(2, 0) * (_tmp0 + _tmp8 + 1) +
world_point(2, 0);

return _res;
}

Fig. 4: Generated C++ code forpoint_residual

interface that integrates nicely with our geometry types and
optimization framework.

C++ is the most important code generation backend for
SymForce. Generated C++ functions are templated on the
scalar type with support forfloat, double, andstd::complex.
However, we make it simple to add code generation backends
targeting new languages, leveraging our template system based
on thejinja Python library [25].

A critical step in code generation is common subexpres-
sion elimination (CSE), which is the process of traversing a
symbolic expression to �nd duplicate intermediate terms and
pulling them out into temporary variables that are computed
only once. CSE results in enormous ef�ciency gains, as
described in Sec. IV-A and IV-B.

Take the following symbolic function that computes the
residual of the position of a point expressed in a local frame
to a point expressed in the world frame:

def point_residual(
world_T_local: geo.Pose3,
world_point: geo.Vector3,
local_point: geo.Vector3

) -> geo.Vector3:
return world_point - world_T_local * local_point

Passing this symbolic function into ourCodegen.function
method will generate a native function. An example for our
C++ backend is shown in Fig. 4.

C. Optimization Framework

SymForce provides an optimization library in C++ and
Python which works naturally with our code generation tools
and Lie group types. It performs tangent space optimization
using a factor graph formulation inspired by GTSAM [12] and
a low-overhead implementation of the Levenberg-Marquardt
algorithm [26, 27, 28]. It is highly optimized for real-time
execution, as shown in Sec. VIII.

As an example, thepoint_residual function can be in-
terpreted as a residual between two points, parameterized
by the poseworld_T_local. To minimize this residual, a
function is generated that computes the the JacobianJ of
the residualb, as well as the Gauss-Newton approximation
for the HessianJTJ and right-hand sideJT b, which form
the Gauss-Newton updateδx = −(JTJ)JT b. This function is
generated automatically frompoint_residual usingCodegen.
with_linearization. For brevity, we only show the signature:

template <typename T>
void PointFactor(

const sym::Pose3<T>& world_T_local,
const Eigen::Matrix<T, 3, 1>& world_point,
const Eigen::Matrix<T, 3, 1>& local_point,
Eigen::Matrix<T, 3, 1>* res,
Eigen::Matrix<T, 3, 6>* jacobian,
Eigen::Matrix<T, 6, 6>* hessian,
Eigen::Matrix<T, 6, 1>* rhs);

Note that we could simply outputJ and b and compute
JTJ andJT b by doing matrix multiplications at runtime, but
computing these products symbolically is typically computa-
tionally advantageous, as explained in Sec. IV-B.

This function is used to constructFactor objects, which
represent residual blocks within the optimization that touch
a set of optimized variables. All problem inputs and initial
guesses are stored in aValues class, and theOptimizer class is
invoked to minimize the residual of all factors. The optimizer
uses theLieGroupOps concept on the C++Values to perform
tangent space retraction.

All of this machinery is also available in Python via a
wrapped version of the optimization framework. This allows
for quick prototyping without compiling any code, with the
ability to generate C++ from the same symbolic implementa-
tion and have con�dence that runtime results will be identical.

In the example illustrated above, one instance of the gen-
erated factor is instantiated per measurement in C++. This is
very �exible and allows using our library of existing factors
or handwritten functions without writing any symbolic code.
However, SymForce also supports generating an entire prob-
lem consisting of many residual terms as one large function.
This approach can yield large ef�ciency gains because of
expressions automatically shared between multiple factors, as
we show in Sec. VIII-C. We provide anOptimizationProblem

class to organize large symbolic problems and generate
functions at multiple levels of granularity to feed to the
Optimizer.

Finally, we provide aGncOptimizer subclass ofOptimizer
that implements Graduated Non-Convexity (GNC) [29]. GNC
is a method for transitioning from a convex cost function to



a robust cost function as the optimization converges, to create
a wider basin of convergence while still incorporating outlier
rejection. We provide an implementation of the adaptive robust
loss function from [30] using the singularity handling approach
described in Sec. VI. Our GNC optimizer works with any
tunable loss function.

IV. SPEEDADVANTAGES

We highlight three ways that symbolic computation speeds
up code by reducing the work performed at runtime – function
�attening, sparsity exploitation, and algebraic simpli�cation.

A. Function Flattening

SymForce gains enormous performance advantages by gen-
erating runtime functions that consist of a single branchless
chain of instructions that share all common subexpressions.

Software engineers strive to organize code into easily
composable functions. Often, computing a desired quantity
requires invoking many sub-functions. While having structured
code improves usability, both the author and the compiler
have limited ability to optimize for speed across function
boundaries, leading to tension between usability and speed.

Below is a trivial example of a function that uses two
helpers, each of which compute common terms inside:

def helper_1(a, b):
return a**2 + abs(a / b) / b**2

def helper_2(a, b):
return abs(a / b) + (a**2 - b**2)

def func(a, b):
return helper_1(a, b) - helper_2(a, b)

Naively, computingfunc(a, b) requires 13 operations and
the overhead of two function calls, but a capable compiler
could inline these tiny functions and compute the result in
just 6 operations, making use of helper variables:

x0 = b2

x1 =
∣∣∣a
b

∣∣∣ (1)

x0 − x1 +
x1

x0

In realistic scenarios, most larger functions are too costly
for the compiler to inline [31], so the execution approaches the
naive case. If the redundant calculations and function calls are
not acceptable, the alternative is to hand-optimize at the cost
of usability by manually �attening the functions or sharing
state between the helpers.

Symbolic code addresses this problem with explicit separa-
tion between the symbolic and the runtime contexts. The sym-
bolic code is written with small, composable functions, but any
evaluated quantities are generated as �at expressions amenable
to optimization. In SymForce, computing the runtime variant
of func(a, b) requires 6 operations with no additional work,
and the bene�ts scale to very large expressions.

This process offlattening also helps with cache perfor-
mance, as we demonstrate in detail in Sec. VIII.

B. Sparsity Exploitation

SymForce can yield order of magnitude speedups in the
multiplication of matrices that include zero entries. Any
amount of sparsity will lead to a large number of terms that
do not need to be computed, as they would otherwise be
multiplied by zero at runtime.

Take as an example two (6, 6) matricesX andY :

X =


a 0 b 2b 0 0
0 ab 0 a

b a2 0
0 0 ab2 0 a

b2 0
a
b3 0 0 ab3 0 a

b4

0 b2 0 0 ab4 0
0 0 0 0 0 ab4

 (2)

Y =


0 −ab b 0 0 0
ab 0 −a 0 0 0
−b a 0 0 0 0
0 a2 0 a 0 0
0 0 b2 0 b 0
a2 0 0 0 0 ab

 (3)

Dense multiplication consumes(N + (N − 1))N2 scalar
operations, or 396 forN = 6. Combined with 21 operations
to compute the values within the matrices, it takes a total of
417 symbolic operations to computeXY .

By multiplying matrices symbolically and generating code
for the result, we both exploit the structure of the matrices and
share expressions between them.XY can be computed in just
34 symbolic operations, a 12x reduction:

x0 = b2, x1 = ab, x2 = a2, x3 = bx2,

x4 = x0x2, x5 = a3, x6 =
1

b
, x7 = b3, (4)

x8 = ax7, x9 =
1

x0
, x10 = b6, x11 = b5,


−x0 x1 + x3 x1 2x1 0 0
x4 x5x6 −x3 + x4 x2x6 x3 0
−x8 x4 a 0 ax6 0
x5

b4 −x2x9 + x5x7 ax9 x2x7 0 x2

x7

x8 0 −ax0 + ax10 0 ax11 0
x11x5 0 0 0 0 x10x2

. (5)

Beyond the symbolic operation count, memory effects must
be considered. Instructions are needed to load inputs into
registers, with signi�cant penalties for cache misses. Our
method greatly improves cache performance, because the CPU
only needs to manage 12 intermediate inputs rather than the
72 entries of the dense matrices. In other words, most entries
of X andY are never represented.

In robotics and computer vision, matrix multiplication is
prevalent in transformations, projections, uncertainty propa-
gation, and especially for Jacobians during automatic differ-
entiation. Performance gains compound from longer chains
of matrix multiplications and more complex shared terms
between them. SymForce can �atten code across thousands



of function calls and matrix multiplications into a single
branchless function that shares all common subexpressions.

See Sec. VIII-A for a detailed performance analysis of this
key concept across varying matrix sizes and sparsity patterns.

C. Algebraic Simplification
Symbolic expressions can be algebraically simpli�ed into

forms that are faster to compute. Categories of simpli�cations
include expansion, factorization, term collection, cancellation,
fraction decomposition, trigonometric and logarithmic identi-
ties, series expansions, and limits.

SymPy provides a wide array of simpli�cations. Basic sim-
pli�cations are done automatically on expression construction,
but most require speci�c invocation, for example withsm.
simplify.1 While powerful, this technique can require domain
expertise and careful effort to achieve notable improvements.

V. SYMBOLIC DIFFERENTIATION

In this section we discuss the advantages of symbolic differ-
entiation and present novel techniques for computing tangent-
space Jacobians. We demonstrate that users do not have to
implement or test any bug-prone handwritten derivatives. In
addition, our approach is often faster by avoiding dynamic
memory allocation and dense chain ruling at runtime.

We build on tools in SymPy and SymEngine to automat-
ically compute derivatives of vector-space symbolic expres-
sions and extend them to handle our geometry types and
Values class. A key capability provided by SymForce is
computing tangent-space derivatives of arbitrary user-de�ned
functions operating on Lie group types, which is necessary for
on-manifold optimization and uncertainty propagation.

Sec. VIII-B shows how these advantages lead to order of
magnitude speedups over automatic differentiation.

A. Symbolic vs Automatic Differentiation
Symbolic differentiation has compelling advantages over

automatic differentiation, both by requiring less handwritten
code, and by sharing more subexpressions and eliminating the
need for matrix multiplication at runtime.

Automatic differentiation (AD) is the prevalent approach for
computing derivatives of large computation graphs [3]. Given
a computation graph, AD produces another computation graph
to compute a particular derivative, with the size of the resulting
graph no bigger than a constant multiple of the original.

It is often claimed that symbolic differentiation is intractable
or produces exponentially large computation graphs, and is
therefore unusable for nontrivial computations. Consider the
chain of function callsf(g(h(x, y))). The gradient off with
respect to

[
x y

]
is expanded as

∇f =

[
∂f(g(h(x,y)))
∂g(h(x,y))

∂g(h(x,y))
∂h(x,y)

∂h(x,y)
∂x

∂f(g(h(x,y)))
∂g(h(x,y))

∂g(h(x,y))
∂h(x,y)

∂h(x,y)
∂y

]
. (6)

Naively, it appears thatg is redundantly evaluated. However,
this ignores the use of CSE, which results in one evaluation
of each unique function and its derivatives, like in AD.

1https://docs.sympy.org/latest/tutorial/simpli�cation.html

Furthermore, as described in Sec. IV, representing the
derivative as a �attened symbolic expression allows for pow-
erful simpli�cations across function and matrix multiplication
boundaries, for instance in the common case where the Jaco-
bians used by AD contain shared terms or zeros. As a result,
our symbolic differentiation and code generation approach
outperforms runtime AD for many robotics problems.

B. Tangent-Space Differentiation on Lie Groups
We present two novel methods to automatically and ef�-

ciently compute tangent-space derivatives of Lie group el-
ements such as SO(3) and SE(3), leveraging vector-space
symbolic differentiation. While we describe the techniques for
functions that map Lie groups toRn, the approach generalizes
to functions that output Lie groups.

Lie groups are common parameterizations in robotics and
computer vision. When computing a ”derivative” of a function
whose input is a member of a Lie group, typically the desired
quantity is the derivative with respect to a perturbation in the
tangent space around the input. Explicitly, consider a function
f(R), f : SO(3) → Rn. Given a retraction operatorR ⊕ v
that applies the perturbationv ∈ R3 to R, the desired quantity
is d

dv [f(R⊕ v))]
∣∣
v=0

.
In most packages, painstaking care is taken to hand-write

these tangent-space derivatives. SymForce computes them all
automatically. We provide two approaches for this – symbolic
application of the chain rule and �rst-order retraction:

1) Symbolic Chain Rule Method: First, it is important to
note that while a user of the code operates on Lie group
objects, those objects are internally represented as a set of
scalar symbols (their “storage”, as described in III-A1). For
instance, we represent SO(3) using unit quaternions. So while
the user can implementf using only group operations without
knowing about the internals, the expression we build forf(R)
is a function of 4 scalars, the quaternion components ofR. We
de�ne functionsS : SO(3) → R4 and S−1 : R4 → SO(3)
to map from the manifold object to the storage representation
as a vector and back. If we then lets = S(R ⊕ v), we can
rewrite the derivative as

d
dv [f(R⊕ v)]

= d
dv

[
f(S−1(S(R⊕ v)))

]
(7)

= d
ds

[
f(S−1(s))

]
d
dv [S(R⊕ v)))] .

The term d
dv [S(R⊕ v)))]

∣∣
v=0

on the right is simply the
derivative of the storage ofR with respect to the perturbation,
and does not depend onf . This is a typically simple function
of the group elements. The left term does depend onf ; but as
we noted before, we already have the symbolic representation
of f(S−1(s)), and we can simply take the symbolic derivative
of that expression to get this term. Notably, neither of these
derivatives needs to be handwritten, they can be computed
automatically from the form off and from the other functions
specifying the group representation, respectively. Then the �-
nal tangent-space derivative can be computed by symbolically
multiplying these two matrices, and generating a �attened
expression for runtime.



2) First-Order Retraction Method: Alternatively, we can
directly differentiatef(R ⊕ v), which is a function between
vector spaces, using a �rst-order approximation ofR ⊕ v at
v = 0. This signi�cantly outperforms the previous method in
nearly all our trials and is the default approach for computing
tangent-space Jacobians in SymForce.

To do this, we �rst build expressions for the storage entries
of R ⊕ v, which comprise of scalar functions ofv. We then
substitute each of these expressions for the storage ofR in our
expression forf(R), producing an expression forf(R ⊕ v)
which we can then symbolically differentiate.

Because we only care about the behavior atv = 0, we
can use a �rst-order approximation ofR ⊕ v to simplify the
expression without loss of correctness. Explicitly, we use:

R⊕ v ≈ S−1

(
S(R) +

d

dv
[S(R⊕ v)]

∣∣∣∣
v=0

v

)
, (8)

which is typically much simpler thanR⊕ v.

VI. B RANCHING AND SINGULARITY HANDLING

This section describes techniques to avoid branches in
algorithmic functions, particularly in the context of handling
singularity points. Avoiding branches greatly simpli�es rou-
tines for manipulating complex expressions, and also has a
critical impact on runtime performance.

Symbolic expressions are computation graphs that are sepa-
rate from the code that builds them. Every symbolic operation
has a function, a deterministic number of inputs, and a single
output. SymForce does not support arbitrary branching logic
within a single expression – adding conditional statements to
Python code will change the structure of the expression being
built, but not add conditionals to the generated code.

Instead, many branches can be formulated with primitives
like the sign function, absolute value, �oor, min, and max.
For example, a comparison like(z <= 3) ? a : b can be
represented symbolically asa + max(sign(z − 3), 0)(b − a).
These operations are performed with bit operations at the as-
sembly level, and do not introduce true branches. As a bene�t,
this type of branchless programming improves performance
because the CPU can pipeline instructions without fear of
branch prediction failures [32].

A. Handling Singularities with Epsilon

We present a novel method for handling removable singu-
larities within symbolic expressions that introduces minimal
performance impact by avoiding the need for branching. Func-
tions encountered in robotics are often smooth, but properly
addressing singularity points is critical to avoid NaN values.

Consider the function

f(x) =
sin(x)

x
. (9)

This function is smooth on its whole domain but has a
singularity atx = 0, where it takes the form0/0. We can
de�ne f(0) = limx→0

sin(x)
x = 1 and get a smooth function,

but the question remains of how to compute this function in
a numerically safe way. A typical approach may be:

def f(x):
if abs(x) < epsilon:

# Approximation for small x
return 1 - x**2 / 6

else:
return sin(x) / x

This has two problems - it does not result in a single
symbolic expression for the result, and might introduce a
costly branch. Our method is to shift the input to the function
away from the singular point with an in�nitesimal variableϵ. If
we assume for a moment that we only care about non-negative
x, this corresponds to de�ning a new function

fsafe(x) = f(x+ ϵ) = sin(x+ϵ)
x+ϵ , (10)

whereϵ is a small positive constant.
For the general case wherex ∈ R, we �rst de�ne a function

sign_no_zero, or snz, as

snz(x) =

{
1 if x >= 0

−1 if x < 0
, (11)

but we can also de�ne it as a branchless expression as

snz(x) = 2min (0, sign(x)) + 1. (12)

Substituting snz into Eq. 10 makesfsafe valid for x ∈ R:

fsafe(x) = f(x+ snz(x)ϵ) =
sin(x+ snz(x)ϵ)

x+ snz(x)ϵ
. (13)

For a function f(x) with a removable singularity, iff
is Lipschitz with constantM , it is simple to show that
||fsafe(x) − f(x)|| <= Mϵ. This is typically a perfectly
acceptable level of error with a suf�ciently small choice of
ϵ. The SymForce default epsilon is2.2e-15 for doubles and
1.2e-6 for �oats, chosen as 10x the machine epsilon.2

It is worth noting that several common functions do not
satisfy the above requirement and have values or derivatives
that are not Lipschitz.sqrt and acos are de�ned on[0,∞)
and [−1, 1], respectively, and have in�nite derivatives on the
boundary.atan2 andabs have non-removable singularities at 0
in their value and gradient, respectively. In these cases snz can
still perturb the inputs away from the boundary or singularity
to prevent unsafe values at runtime, but the general error bound
from above does not apply.

In this example the singularity is atx = 0, but this approach
trivially generalizes to singularities anywhere.

B. Testing for Correctness

SymForce can check the correctness of a given symbolic
functionfsafe(x, ϵ) that supposedly usesϵ to avoid a removable
singularity point atx = x0.

First, the symbolic value offsafe(x0, 0) is computed. This
should evaluate to an indeterminate form like 0/0, which
SymPy will represent asNaN. If the value instead is±∞, the

2The machine epsilon for a �oating point type is de�ned as the smallest
number which, when added to 1.0, produces a different number [33].



user is trying to correct for a non-removable singularity.ϵ
cannot correct for this, and an error is returned.

Next, we takelimx→x0 fsafe(x, 0), which is the correct value
of the function at the singularity. We then additionally compute
limϵ→0 fsafe(x0, ϵ). This should be a �nite value, and it should
be equal to the �rst limit, indicating that the function converges
to the correct value for smallϵ.

For many functions, it is crucial that the �rst derivative is
also correct at the singularity. This can be tested automatically
with the same strategy.

The typical alternative to our approach, used in e.g. GTSAM
and Sophus, is to add branching near the singularity. It is
common to locally approximate the point with a Taylor series
for this purpose. A similar approach can be approximated in
symbolic code using piecewise functions, but these come at a
cost of added complexity and slower performance.

VII. L IMITATIONS

This section describes potential drawbacks to our approach.
The separation between symbolic and runtime contexts

requires thinking at a higher level of abstraction than di-
rectly writing runtime code. There are many bene�ts to this
approach, but it takes practice. One common error is that
conditional statements in Python will not result in branches
in runtime code. Users must conceptualize instruction-level
branching and employ our concept of epsilon to avoid singu-
larities, as discussed in Sec. VI.

Another common drawback is that our method of �attening
expressions becomes impractical with highly nested expres-
sions, such as long chains of integrations or loops. Since the
generated code unrolls these chains, it can lead to long compile
times, poor cache performance, or other bottlenecks. Further
work is required to handle loops or sub-functions as a construct
of symbolic expressions. Similar bottlenecks can happen when
attempting to generate a linearization function with a very
large number of variables. In some cases, it is a better trade-
off to generate multiple functions and call them dynamically at
runtime, with some sacri�ces made in shared subexpressions.
SymForce provides tools for exploring these tradeoffs.

Some symbolic routines, like simpli�cation and factoriza-
tion, become slow with large expressions. We recommend
understanding the computational cost of these routines and
using them in careful and targeted ways.

SymForce is most suitable for generating functions with up
to hundreds of input variables, and hundreds of thousands of
instructions. However, functions can be invoked dynamically
in much larger optimization problems. SymForce does not
directly support data parallelism like operating over pixels of
an image, and does not attempt to compete with libraries that
do so. However, it can ef�ciently generate the inner kernel for
a single pixel in such a use case.

Finally, SymForce is a young library and there are many
things it does not do. For example, our optimizer does not
support hard constraints or specialized solvers. However, soft
constraints implemented using barrier functions work well and

SymForce generated functions can be readily used with other
optimization libraries.

VIII. E XPERIMENTS

In this section we present benchmark results on multiple
problems implemented with SymForce and alternatives. We
compare with Eigen for sparse and dense matrix multiplica-
tion, GTSAM, Sophus, and JAX for tangent space differentia-
tion, and GTSAM, Ceres, and JAX for nonlinear least-squares.

We measure CPU time, instruction counts, and L1 cache
loads on an Intel i7 CPU and NVIDIA Tegra X2 ARM CPU.
All tests are compiled with -O3 -march=native -ffast-

math, double precision, executing on core 2. Note that while
CPU time and L1 cache loads can vary several percent across
runs, instruction counts vary by< 1% in all experiments. In
addition, we we measure execution time in JAX on an RTX
2080 Ti GPU. We provide code for all experiments.

A. Matrix Multiplication Experiment

We �rst present an experiment demonstrating the perfor-
mance impact of �attening functions and exploiting sparsity
in matrix multiplication, as introduced in Sec. IV-A and IV-B.

We select a series of matrix structures of varying sizes
and sparsity from the SuiteSparse Matrix Collection [34].
We generate random expressions into the nonzero entries of
the matrices from a small set of scalar symbols, using the
strategy described by Lample [35]. Our benchmark task is
computingXTY , whereX and Y have the same sparsity
pattern but with differently generated random expressions.
In this example, the expressions are functions of 5 scalar
symbols, with approximately 5 operations per expression.

We compare against sparse matrices, dynamic-size dense
matrices, and �xed-size dense matrices using the Eigen library
in C++. Table I displays CPU time for computingXTY
across all matrices and methods. In each case, there are two
function calls to computeX andY independently, then they
are multiplied together. Against these we compare a SymForce
�attened function that outputs the productXTY directly.

We note that the �attened function outperforms the dense
�xed approach in all categories. We leverage the bene�ts
of sparse multiplication, but without the memory and index
management overhead it introduces.

The results also show that for small matrices, dynamic
memory allocation is a poor tradeoff and dominates the com-
putational time. Dense multiplication foregoes any bene�ts of
sparsity, but better leverages SIMD instructions.

Table II shows detailed results for the matrix n3c4b2,
which is 20 x 15 and has 20% sparsity. Our method outper-
forms the second best by 8.7x on Intel and 11.6x on Tegra.
One dramatic difference is in the number of L1 data cache
loads required. For this small size, most of the variables are
simply kept on CPU registers. The CPU only needs to manage
intermediate inputs rather than all the entries of the dense
matrices. In other words, most entries ofX andY are never
explicitly held in registers.


	Introduction
	Related Work
	Architecture
	Symbolic Computation
	Geometry and Camera Types
	Lie Group Operations

	Code Generation
	Optimization Framework

	Speed Advantages
	Function Flattening
	Sparsity Exploitation
	Algebraic Simplification

	Symbolic Differentiation
	Symbolic vs Automatic Differentiation
	Tangent-Space Differentiation on Lie Groups
	Symbolic Chain Rule Method


	Branching and Singularity Handling
	Handling Singularities with Epsilon
	Testing for Correctness

	Limitations
	Experiments
	Matrix Multiplication Experiment
	Inverse Compose Experiment
	Robot 3D Localization Example

	Conclusion

