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Abstract—We present SymForce, a library for fast symbolic
computation, code generation, and nonlinear optimization for
robotics applications like computer vision, motion planning, and
controls. SymForce combines the development speed and flexi-
bility of symbolic math with the performance of autogenerated,
highly optimized code in C++ or any target runtime language.
SymForce provides geometry and camera types, Lie group
operations, and branchless singularity handling for creating
and analyzing complex symbolic expressions in Python, built
on top of SymPy. Generated functions can be integrated as
factors into our tangent-space nonlinear optimizer, which is
highly optimized for real-time production use. We introduce
novel methods to automatically compute tangent-space Jacobians,
eliminating the need for bug-prone handwritten derivatives. This
workflow enables faster runtime code, faster development time,
and fewer lines of handwritten code versus the state-of-the-art.
Our experiments demonstrate that our approach can yield order
of magnitude speedups on computational tasks core to robotics.
Code is available at https://github.com/symforce-org/symforce.

I. INTRODUCTION

SymForce is a symbolic computation and code generation
library that combines the development speed and flexibility
of symbolic mathematics in Python with the performance of
autogenerated, highly optimized code in C++ or any target
runtime language. SymForce makes it possible to code a prob-
lem once in Python, experiment with it symbolically, generate
optimized code, and then run highly efficient optimization
problems based on the original problem definition.

Our approach was motivated by developing algorithms for
autonomous robots at scale at Skydio, where performance and
code maintainability are crucial for use cases like computer
vision, state estimation, motion planning, and controls.

SymForce builds on top of the symbolic manipulation
capabilities of the SymPy library [1]. Symbolic math allows
for rapid understanding, interactive analysis, and symbolic
manipulations like substitution, solving, and differentiation.
SymForce adds symbolic geometry and camera types with Lie
group operations, which are used to autogenerate fast run-
time classes with identical interfaces. By using one symbolic
implementation of any function to generate runtime code for
multiple languages, we improve the iteration cycle, minimize
the chance of bugs, and achieve performance that matches or
exceeds state-of-the-art approaches with no specialization.

Fig. 1: SymForce outperforms sparse and dense matrix multiplication
with the Eigen library [2] on our task in VIII-A, by sharing common
subexpressions and leveraging sparsity with no runtime overhead.

A significant advantage to our approach is not having
to implement, test, or debug any Jacobians. In the robotics
domain, correct and efficient computation of derivatives is
critical. The prevalent approach is to hand-write Jacobians
in C++ or CUDA for a core set of operations and rely on
automatic differentiation to chain them together [3]. SymForce
introduces novel methods to automatically compute tangent-
space Jacobians of functions that operate on Lie groups,
avoiding bug-prone handwritten derivatives. As a result, our
approach avoids dynamic memory allocation and chain ruling
at runtime. SymForce often dramatically outperforms standard
approaches by flattening code across expression graphs, shar-
ing subexpressions, and taking advantage of sparsity. We also
introduce a novel method for preventing singularities without
introducing branches, which has a key benefit to performance.

In summary, our key contributions are:

• A free and open-source library with:
– Symbolic implementations of geometry and camera

types with Lie group operations, and fast runtime
classes with identical interfaces,

– Code generation for turning arbitrary symbolic func-
tions into structured and fast runtime functions,

– A fast tangent-space optimizer in C++ and Python,
– Highly performant, modular, and extensible code,

• Novel contributions for automatically computing tangent-
space Jacobians, avoiding all handwritten derivatives,

• A novel method for avoiding singularities in complex
expressions without introducing branching,

• An exposition of the speed benefits afforded by flattening
computation across functions and matrix multiplications,
especially for outperforming automatic differentiation.

https://github.com/symforce-org/symforce


Fig. 2: SymForce architecture diagram - Symbolic expressions are written in Python, where they are easy to understand and debug with
symbolic manipulation tools. Fast runtime code is autogenerated from these expressions, which can then be used as standalone functions or
factors in our nonlinear optimizer. Together these three components provide a smooth workflow from prototypes to production code.

The paper is organized as follows: We review related work
in Sec. II. In Sec. III we present the major components of
SymForce as shown in Figure 2: symbolic computation with
geometry and camera types, code generation, and optimization.
Sec. IV highlights why SymForce is often faster than alterna-
tives. Sec. V discusses symbolic differentiation on Lie groups,
and Sec. VI describes our approach to branchless singularity
handling. Limitations are discussed in Sec. VII, experiments
in Sec. VIII, and we conclude in Sec. IX.

II. RELATED WORK

Symbolic Math – Libraries that manipulate symbolic ex-
pressions, such as Maple [4], Mathematica [5], and MAT-
LAB’s symbolic toolbox [6], have existed for decades. Sym-
bolic math libraries that generate fast code are used in sev-
eral niches of robotics [7] [8] [9], but are not general or
widespread. SymPy [1] is noteworthy for being open-source,
lightweight, and written in Python, which allows users to
modify it and leverage a large ecosystem of libraries. However,
it can scale poorly to complex expressions. SymEngine [10]
is a C++ backend that supports the SymPy API while being
up to two orders of magnitude faster [11]. These libraries also
provide routines for code generation and common subexpres-
sion elimination (CSE). SymForce builds on the capabilities
of SymPy and SymEngine by adding essential geometry
and vision types, Lie group operations, tools for handling
singularities, structured code generation, and integration with
optimization tools. These additions make SymForce a signifi-
cantly more complete tool for complex robotics tasks.

Nonlinear optimization -– Optimization libraries like GT-
SAM [12], Ceres [13], and g2o [14] provide useful tools
for efficiently formulating and minimizing cost functions,
especially for nonlinear least-squares problems found in the
field of robotics and computer vision. SymForce follows the

factor graph formulation used in GTSAM, but residual func-
tions are autogenerated from symbolic expressions. Relative to
alternatives, our optimizer has faster performance and lower
memory overhead for many tasks. In addition, our approach
eliminates the need for handwritten derivatives and avoids
the runtime overhead of applying the chain rule to Jacobians
during automatic differentiaton.

Geometric Lie Groups – Rotations, poses, and camera
models are central to robotics code, and getting efficient and
correct tangent-space Jacobians is a common task for many
optimization use cases. GTSAM defines geometry types and
their Lie calculus in C++ and wraps them in Python. Sophus
[15] uses SymPy implementations to generate some derivative
expressions. Manif [16] is a C++ library with handwritten Lie
group operations. The wave geometry library [17] provides
expression template-based automatic differentiation of Lie
groups in C++. LieTorch [18] implements Lie groups in
PyTorch. SymForce is inspired by GTSAM and Sophus. The
definitions of our geometry types are symbolic, with improved
naming and consistency over Sophus and no hardcoded deriva-
tives. SymForce autogenerates runtime classes that resemble
the GTSAM variants in C++, but have faster performance and
do not require maintaining handwritten code.

Automatic Differentiation – Libraries like PyTorch [19],
TensorFlow [20], and JAX [21] can build up computation
graphs by tracing python code and applying automatic differ-
entiation (AD) to compute gradients. These libraries often have
high overhead for the small input dimensions that SymForce
is built to tackle (tens to hundreds of variables). They also per-
form poorly for second-order optimization techniques common
in robotics, because they are primarily targeted at computing
gradients and not Hessians, and have poor performance for
sparse matrices. In contrast, SymForce can compute Jacobians



Fig. 3: Symbolic expressions - Representation of a simple two-vector symbolic expression (A) as defined in Python code, (B) automatically
displayed as LATEX, (C) the underlying representation as a sequence of expression trees, (D) generated C++ and Eigen code. Complex
expressions can contain hundreds of thousands of operations.

and Hessians of complex expressions with no operational
overhead, making it suitable for use on resource-constrained
embedded platforms. In addition, SymForce avoids the need
for matrix multiplication at runtime that is needed for AD.
Julia provides several AD libraries [22], but does not reach
the performance of C++ and lacks the broader ecosystem of
Python. Numba [23] can accelerate arbitrary Python functions,
but does not compute derivatives.

III. ARCHITECTURE

This section describes the major components and workflows
of the SymForce library, as summarized in Figure 2. Outside
of this paper, the online documentation provides many tutorials
and examples to gain a practical understanding of the library.

A. Symbolic Computation

SymForce provides tools for building and analyzing com-
plex symbolic expressions in Python, by extending the SymPy
API. There is a complete separation between code structure
and performance, allowing the user to encapsulate their code
without sacrificing performance.

Symbolic computation centers around manipulation of
mathematical expressions as algebraic instead of numerical
quantities. Functions, symbols, and literals are stored as classes
in code that can be traversed and transformed with symbolic
substitution, simplification, differentiation, and solving. These
tools allow users to interactively study and refine their func-
tions. Fig. 3 shows multiple forms of a simple expression.

SymForce supports two symbolic backends – SymPy and
SymEngine. SymEngine is a C++ implementation compatible
with the SymPy API, but is dramatically faster for manipulat-
ing large expressions. It is the default choice.

1) Geometry and Camera Types: SymForce implements
several core types used in robotics, such as matrices, rotations,
poses, camera models, noise models, and barrier functions.
These types have symbolic implementations defined as Python
classes. Fast runtime classes with identical interfaces are
autogenerated for target languages.

The generated classes do not depend on the rest of Sym-
Force and can be deployed as standalone tools with minimal
dependencies. For example, the generated C++ classes depend

only on Eigen and the Python types only on NumPy. In C++
they are templated on the scalar type, and require zero dynamic
memory allocation, making them suitable for embedded envi-
ronments. The autogenerated runtime classes are functional,
with readable interfaces and excellent test coverage.

2) Lie Group Operations: To allow generic code to operate
on all geometry types we use a concepts (or traits) mechanism
[24] inspired by GTSAM. Using concepts instead of inheri-
tance allows generic programming with external types such as
language-defined scalar and sequence types, or NumPy and
Eigen matrices. It also makes it easy to extend or add new
types, both within SymForce and in user code.
There are three primary concepts defined in SymForce:

1) StorageOps allow all types to be converted to and from
a sequence of scalars which comprise the internal rep-
resentation of the type. For example, the SO(3) type is
represented by a quaternion, whose storage contains 4
scalars. It also supports common tasks like substitution,
numerical evaluation, and simplification.

2) GroupOps register types as mathematical groups. A
group type must have an associative composition oper-
ation, an identity element, and an inverse.

3) LieGroupOps register types as Lie groups, meaning that
in addition to being groups, they are differentiable man-
ifolds with operations to go from group elements to
perturbations in a local Euclidean space (tangent space).

In Python, this mechanism is implemented with dynamic
dispatch, for example ops.GroupOps.inverse(element). In
C++, this is done via template specialization, for example sym

::GroupOps<sym::Pose3f>::Inverse().
The correctness of group and Lie group operations, and their

Jacobians, have been rigorously tested both symbolically and
numerically. See Sec. V and VI for details on our approach.

B. Code Generation

Generation of fast runtime code from symbolic expressions
is the core of SymForce. Our Codegen class is the primary tool
for all code generation tasks. It uses SymPy’s code printers and
adds support for struct types, Eigen / NumPy matrices, and our
geometry and camera types. The resulting function contains
flattened native code, but with a structured and human-readable



template <typename Scalar>
Eigen::Matrix<Scalar, 3, 1> PointResidual(

const sym::Pose3<Scalar>& world_T_local,
const Eigen::Matrix<Scalar, 3, 1>& world_point,
const Eigen::Matrix<Scalar, 3, 1>& local_point

) {
// Total ops: 53

const Eigen::Matrix<Scalar, 7, 1>& _world_T_local
= world_T_local.Data();

// Common subexpressions (11)
const Scalar _tmp0 = -2 * std::pow(_world_T_local

[1], Scalar(2));
// _tmp1 through _tmp9 omitted for brevity
const Scalar _tmp10 = _tmp4 * _world_T_local[3];

Eigen::Matrix<Scalar, 3, 1> _res;
_res(0, 0) = -_world_T_local[4] - local_point(0,

0) * (_tmp0 + _tmp1) -
local_point(1, 0) * (-_tmp3 + _tmp5)

- local_point(2, 0) * (_tmp6 + _tmp7) +
world_point(0, 0);

_res(1, 0) = -_world_T_local[5] - local_point(0,
0) * (_tmp3 + _tmp5) -

local_point(1, 0) * (_tmp1 + _tmp8) -
local_point(2, 0) * (-_tmp10 + _tmp9) +

world_point(1, 0);
_res(2, 0) = -_world_T_local[6] - local_point(0,

0) * (-_tmp6 + _tmp7) -
local_point(1, 0) * (_tmp10 + _tmp9)

- local_point(2, 0) * (_tmp0 + _tmp8 + 1) +
world_point(2, 0);

return _res;
}

Fig. 4: Generated C++ code for point_residual

interface that integrates nicely with our geometry types and
optimization framework.

C++ is the most important code generation backend for
SymForce. Generated C++ functions are templated on the
scalar type with support for float, double, and std::complex.
However, we make it simple to add code generation backends
targeting new languages, leveraging our template system based
on the jinja Python library [25].

A critical step in code generation is common subexpres-
sion elimination (CSE), which is the process of traversing a
symbolic expression to find duplicate intermediate terms and
pulling them out into temporary variables that are computed
only once. CSE results in enormous efficiency gains, as
described in Sec. IV-A and IV-B.

Take the following symbolic function that computes the
residual of the position of a point expressed in a local frame
to a point expressed in the world frame:

def point_residual(
world_T_local: geo.Pose3,
world_point: geo.Vector3,
local_point: geo.Vector3

) -> geo.Vector3:
return world_point - world_T_local * local_point

Passing this symbolic function into our Codegen.function

method will generate a native function. An example for our
C++ backend is shown in Fig. 4.

C. Optimization Framework

SymForce provides an optimization library in C++ and
Python which works naturally with our code generation tools
and Lie group types. It performs tangent space optimization
using a factor graph formulation inspired by GTSAM [12] and
a low-overhead implementation of the Levenberg-Marquardt
algorithm [26, 27, 28]. It is highly optimized for real-time
execution, as shown in Sec. VIII.

As an example, the point_residual function can be in-
terpreted as a residual between two points, parameterized
by the pose world_T_local. To minimize this residual, a
function is generated that computes the the Jacobian J of
the residual b, as well as the Gauss-Newton approximation
for the Hessian JTJ and right-hand side JT b, which form
the Gauss-Newton update δx = −(JTJ)JT b. This function is
generated automatically from point_residual using Codegen.

with_linearization. For brevity, we only show the signature:
template <typename T>
void PointFactor(

const sym::Pose3<T>& world_T_local,
const Eigen::Matrix<T, 3, 1>& world_point,
const Eigen::Matrix<T, 3, 1>& local_point,
Eigen::Matrix<T, 3, 1>* res,
Eigen::Matrix<T, 3, 6>* jacobian,
Eigen::Matrix<T, 6, 6>* hessian,
Eigen::Matrix<T, 6, 1>* rhs);

Note that we could simply output J and b and compute
JTJ and JT b by doing matrix multiplications at runtime, but
computing these products symbolically is typically computa-
tionally advantageous, as explained in Sec. IV-B.

This function is used to construct Factor objects, which
represent residual blocks within the optimization that touch
a set of optimized variables. All problem inputs and initial
guesses are stored in a Values class, and the Optimizer class is
invoked to minimize the residual of all factors. The optimizer
uses the LieGroupOps concept on the C++ Values to perform
tangent space retraction.

All of this machinery is also available in Python via a
wrapped version of the optimization framework. This allows
for quick prototyping without compiling any code, with the
ability to generate C++ from the same symbolic implementa-
tion and have confidence that runtime results will be identical.

In the example illustrated above, one instance of the gen-
erated factor is instantiated per measurement in C++. This is
very flexible and allows using our library of existing factors
or handwritten functions without writing any symbolic code.
However, SymForce also supports generating an entire prob-
lem consisting of many residual terms as one large function.
This approach can yield large efficiency gains because of
expressions automatically shared between multiple factors, as
we show in Sec. VIII-C. We provide an OptimizationProblem

class to organize large symbolic problems and generate
functions at multiple levels of granularity to feed to the
Optimizer.

Finally, we provide a GncOptimizer subclass of Optimizer
that implements Graduated Non-Convexity (GNC) [29]. GNC
is a method for transitioning from a convex cost function to



a robust cost function as the optimization converges, to create
a wider basin of convergence while still incorporating outlier
rejection. We provide an implementation of the adaptive robust
loss function from [30] using the singularity handling approach
described in Sec. VI. Our GNC optimizer works with any
tunable loss function.

IV. SPEED ADVANTAGES

We highlight three ways that symbolic computation speeds
up code by reducing the work performed at runtime – function
flattening, sparsity exploitation, and algebraic simplification.

A. Function Flattening

SymForce gains enormous performance advantages by gen-
erating runtime functions that consist of a single branchless
chain of instructions that share all common subexpressions.

Software engineers strive to organize code into easily
composable functions. Often, computing a desired quantity
requires invoking many sub-functions. While having structured
code improves usability, both the author and the compiler
have limited ability to optimize for speed across function
boundaries, leading to tension between usability and speed.

Below is a trivial example of a function that uses two
helpers, each of which compute common terms inside:
def helper_1(a, b):

return a**2 + abs(a / b) / b**2

def helper_2(a, b):
return abs(a / b) + (a**2 - b**2)

def func(a, b):
return helper_1(a, b) - helper_2(a, b)

Naively, computing func(a, b) requires 13 operations and
the overhead of two function calls, but a capable compiler
could inline these tiny functions and compute the result in
just 6 operations, making use of helper variables:

x0 = b2

x1 =
∣∣∣a
b

∣∣∣ (1)

x0 − x1 +
x1

x0

In realistic scenarios, most larger functions are too costly
for the compiler to inline [31], so the execution approaches the
naive case. If the redundant calculations and function calls are
not acceptable, the alternative is to hand-optimize at the cost
of usability by manually flattening the functions or sharing
state between the helpers.

Symbolic code addresses this problem with explicit separa-
tion between the symbolic and the runtime contexts. The sym-
bolic code is written with small, composable functions, but any
evaluated quantities are generated as flat expressions amenable
to optimization. In SymForce, computing the runtime variant
of func(a, b) requires 6 operations with no additional work,
and the benefits scale to very large expressions.

This process of flattening also helps with cache perfor-
mance, as we demonstrate in detail in Sec. VIII.

B. Sparsity Exploitation

SymForce can yield order of magnitude speedups in the
multiplication of matrices that include zero entries. Any
amount of sparsity will lead to a large number of terms that
do not need to be computed, as they would otherwise be
multiplied by zero at runtime.

Take as an example two (6, 6) matrices X and Y :

X =


a 0 b 2b 0 0
0 ab 0 a

b a2 0
0 0 ab2 0 a

b2 0
a
b3 0 0 ab3 0 a

b4

0 b2 0 0 ab4 0
0 0 0 0 0 ab4

 (2)

Y =


0 −ab b 0 0 0
ab 0 −a 0 0 0
−b a 0 0 0 0
0 a2 0 a 0 0
0 0 b2 0 b 0
a2 0 0 0 0 ab

 (3)

Dense multiplication consumes (N + (N − 1))N2 scalar
operations, or 396 for N = 6. Combined with 21 operations
to compute the values within the matrices, it takes a total of
417 symbolic operations to compute XY .

By multiplying matrices symbolically and generating code
for the result, we both exploit the structure of the matrices and
share expressions between them. XY can be computed in just
34 symbolic operations, a 12x reduction:

x0 = b2, x1 = ab, x2 = a2, x3 = bx2,

x4 = x0x2, x5 = a3, x6 =
1

b
, x7 = b3, (4)

x8 = ax7, x9 =
1

x0
, x10 = b6, x11 = b5,


−x0 x1 + x3 x1 2x1 0 0
x4 x5x6 −x3 + x4 x2x6 x3 0
−x8 x4 a 0 ax6 0
x5

b4 −x2x9 + x5x7 ax9 x2x7 0 x2

x7

x8 0 −ax0 + ax10 0 ax11 0
x11x5 0 0 0 0 x10x2

. (5)

Beyond the symbolic operation count, memory effects must
be considered. Instructions are needed to load inputs into
registers, with significant penalties for cache misses. Our
method greatly improves cache performance, because the CPU
only needs to manage 12 intermediate inputs rather than the
72 entries of the dense matrices. In other words, most entries
of X and Y are never represented.

In robotics and computer vision, matrix multiplication is
prevalent in transformations, projections, uncertainty propa-
gation, and especially for Jacobians during automatic differ-
entiation. Performance gains compound from longer chains
of matrix multiplications and more complex shared terms
between them. SymForce can flatten code across thousands



of function calls and matrix multiplications into a single
branchless function that shares all common subexpressions.

See Sec. VIII-A for a detailed performance analysis of this
key concept across varying matrix sizes and sparsity patterns.

C. Algebraic Simplification
Symbolic expressions can be algebraically simplified into

forms that are faster to compute. Categories of simplifications
include expansion, factorization, term collection, cancellation,
fraction decomposition, trigonometric and logarithmic identi-
ties, series expansions, and limits.

SymPy provides a wide array of simplifications. Basic sim-
plifications are done automatically on expression construction,
but most require specific invocation, for example with sm.

simplify.1 While powerful, this technique can require domain
expertise and careful effort to achieve notable improvements.

V. SYMBOLIC DIFFERENTIATION

In this section we discuss the advantages of symbolic differ-
entiation and present novel techniques for computing tangent-
space Jacobians. We demonstrate that users do not have to
implement or test any bug-prone handwritten derivatives. In
addition, our approach is often faster by avoiding dynamic
memory allocation and dense chain ruling at runtime.

We build on tools in SymPy and SymEngine to automat-
ically compute derivatives of vector-space symbolic expres-
sions and extend them to handle our geometry types and
Values class. A key capability provided by SymForce is
computing tangent-space derivatives of arbitrary user-defined
functions operating on Lie group types, which is necessary for
on-manifold optimization and uncertainty propagation.

Sec. VIII-B shows how these advantages lead to order of
magnitude speedups over automatic differentiation.

A. Symbolic vs Automatic Differentiation
Symbolic differentiation has compelling advantages over

automatic differentiation, both by requiring less handwritten
code, and by sharing more subexpressions and eliminating the
need for matrix multiplication at runtime.

Automatic differentiation (AD) is the prevalent approach for
computing derivatives of large computation graphs [3]. Given
a computation graph, AD produces another computation graph
to compute a particular derivative, with the size of the resulting
graph no bigger than a constant multiple of the original.

It is often claimed that symbolic differentiation is intractable
or produces exponentially large computation graphs, and is
therefore unusable for nontrivial computations. Consider the
chain of function calls f(g(h(x, y))). The gradient of f with
respect to

[
x y

]
is expanded as

∇f =

[
∂f(g(h(x,y)))
∂g(h(x,y))

∂g(h(x,y))
∂h(x,y)

∂h(x,y)
∂x

∂f(g(h(x,y)))
∂g(h(x,y))

∂g(h(x,y))
∂h(x,y)

∂h(x,y)
∂y

]
. (6)

Naively, it appears that g is redundantly evaluated. However,
this ignores the use of CSE, which results in one evaluation
of each unique function and its derivatives, like in AD.

1https://docs.sympy.org/latest/tutorial/simplification.html

Furthermore, as described in Sec. IV, representing the
derivative as a flattened symbolic expression allows for pow-
erful simplifications across function and matrix multiplication
boundaries, for instance in the common case where the Jaco-
bians used by AD contain shared terms or zeros. As a result,
our symbolic differentiation and code generation approach
outperforms runtime AD for many robotics problems.

B. Tangent-Space Differentiation on Lie Groups
We present two novel methods to automatically and effi-

ciently compute tangent-space derivatives of Lie group el-
ements such as SO(3) and SE(3), leveraging vector-space
symbolic differentiation. While we describe the techniques for
functions that map Lie groups to Rn, the approach generalizes
to functions that output Lie groups.

Lie groups are common parameterizations in robotics and
computer vision. When computing a ”derivative” of a function
whose input is a member of a Lie group, typically the desired
quantity is the derivative with respect to a perturbation in the
tangent space around the input. Explicitly, consider a function
f(R), f : SO(3) → Rn. Given a retraction operator R ⊕ v
that applies the perturbation v ∈ R3 to R, the desired quantity
is d

dv [f(R⊕ v))]
∣∣
v=0

.
In most packages, painstaking care is taken to hand-write

these tangent-space derivatives. SymForce computes them all
automatically. We provide two approaches for this – symbolic
application of the chain rule and first-order retraction:

1) Symbolic Chain Rule Method: First, it is important to
note that while a user of the code operates on Lie group
objects, those objects are internally represented as a set of
scalar symbols (their “storage”, as described in III-A1). For
instance, we represent SO(3) using unit quaternions. So while
the user can implement f using only group operations without
knowing about the internals, the expression we build for f(R)
is a function of 4 scalars, the quaternion components of R. We
define functions S : SO(3) → R4 and S−1 : R4 → SO(3)
to map from the manifold object to the storage representation
as a vector and back. If we then let s = S(R ⊕ v), we can
rewrite the derivative as

d
dv [f(R⊕ v)]

= d
dv

[
f(S−1(S(R⊕ v)))

]
(7)

= d
ds

[
f(S−1(s))

]
d
dv [S(R⊕ v)))] .

The term d
dv [S(R⊕ v)))]

∣∣
v=0

on the right is simply the
derivative of the storage of R with respect to the perturbation,
and does not depend on f . This is a typically simple function
of the group elements. The left term does depend on f ; but as
we noted before, we already have the symbolic representation
of f(S−1(s)), and we can simply take the symbolic derivative
of that expression to get this term. Notably, neither of these
derivatives needs to be handwritten, they can be computed
automatically from the form of f and from the other functions
specifying the group representation, respectively. Then the fi-
nal tangent-space derivative can be computed by symbolically
multiplying these two matrices, and generating a flattened
expression for runtime.



2) First-Order Retraction Method: Alternatively, we can
directly differentiate f(R ⊕ v), which is a function between
vector spaces, using a first-order approximation of R ⊕ v at
v = 0. This significantly outperforms the previous method in
nearly all our trials and is the default approach for computing
tangent-space Jacobians in SymForce.

To do this, we first build expressions for the storage entries
of R ⊕ v, which comprise of scalar functions of v. We then
substitute each of these expressions for the storage of R in our
expression for f(R), producing an expression for f(R ⊕ v)
which we can then symbolically differentiate.

Because we only care about the behavior at v = 0, we
can use a first-order approximation of R ⊕ v to simplify the
expression without loss of correctness. Explicitly, we use:

R⊕ v ≈ S−1

(
S(R) +

d

dv
[S(R⊕ v)]

∣∣∣∣
v=0

v

)
, (8)

which is typically much simpler than R⊕ v.

VI. BRANCHING AND SINGULARITY HANDLING

This section describes techniques to avoid branches in
algorithmic functions, particularly in the context of handling
singularity points. Avoiding branches greatly simplifies rou-
tines for manipulating complex expressions, and also has a
critical impact on runtime performance.

Symbolic expressions are computation graphs that are sepa-
rate from the code that builds them. Every symbolic operation
has a function, a deterministic number of inputs, and a single
output. SymForce does not support arbitrary branching logic
within a single expression – adding conditional statements to
Python code will change the structure of the expression being
built, but not add conditionals to the generated code.

Instead, many branches can be formulated with primitives
like the sign function, absolute value, floor, min, and max.
For example, a comparison like (z <= 3) ? a : b can be
represented symbolically as a + max(sign(z − 3), 0)(b − a).
These operations are performed with bit operations at the as-
sembly level, and do not introduce true branches. As a benefit,
this type of branchless programming improves performance
because the CPU can pipeline instructions without fear of
branch prediction failures [32].

A. Handling Singularities with Epsilon

We present a novel method for handling removable singu-
larities within symbolic expressions that introduces minimal
performance impact by avoiding the need for branching. Func-
tions encountered in robotics are often smooth, but properly
addressing singularity points is critical to avoid NaN values.

Consider the function

f(x) =
sin(x)

x
. (9)

This function is smooth on its whole domain but has a
singularity at x = 0, where it takes the form 0/0. We can
define f(0) = limx→0

sin(x)
x = 1 and get a smooth function,

but the question remains of how to compute this function in
a numerically safe way. A typical approach may be:

def f(x):
if abs(x) < epsilon:

# Approximation for small x
return 1 - x**2 / 6

else:
return sin(x) / x

This has two problems - it does not result in a single
symbolic expression for the result, and might introduce a
costly branch. Our method is to shift the input to the function
away from the singular point with an infinitesimal variable ϵ. If
we assume for a moment that we only care about non-negative
x, this corresponds to defining a new function

fsafe(x) = f(x+ ϵ) = sin(x+ϵ)
x+ϵ , (10)

where ϵ is a small positive constant.
For the general case where x ∈ R, we first define a function

sign_no_zero, or snz, as

snz(x) =

{
1 ifx >= 0

−1 ifx < 0
, (11)

but we can also define it as a branchless expression as

snz(x) = 2min (0, sign(x)) + 1. (12)

Substituting snz into Eq. 10 makes fsafe valid for x ∈ R:

fsafe(x) = f(x+ snz(x)ϵ) =
sin(x+ snz(x)ϵ)

x+ snz(x)ϵ
. (13)

For a function f(x) with a removable singularity, if f
is Lipschitz with constant M , it is simple to show that
||fsafe(x) − f(x)|| <= Mϵ. This is typically a perfectly
acceptable level of error with a sufficiently small choice of
ϵ. The SymForce default epsilon is 2.2e-15 for doubles and
1.2e-6 for floats, chosen as 10x the machine epsilon.2

It is worth noting that several common functions do not
satisfy the above requirement and have values or derivatives
that are not Lipschitz. sqrt and acos are defined on [0,∞)
and [−1, 1], respectively, and have infinite derivatives on the
boundary. atan2 and abs have non-removable singularities at 0
in their value and gradient, respectively. In these cases snz can
still perturb the inputs away from the boundary or singularity
to prevent unsafe values at runtime, but the general error bound
from above does not apply.

In this example the singularity is at x = 0, but this approach
trivially generalizes to singularities anywhere.

B. Testing for Correctness

SymForce can check the correctness of a given symbolic
function fsafe(x, ϵ) that supposedly uses ϵ to avoid a removable
singularity point at x = x0.

First, the symbolic value of fsafe(x0, 0) is computed. This
should evaluate to an indeterminate form like 0/0, which
SymPy will represent as NaN. If the value instead is ±∞, the

2The machine epsilon for a floating point type is defined as the smallest
number which, when added to 1.0, produces a different number [33].



user is trying to correct for a non-removable singularity. ϵ
cannot correct for this, and an error is returned.

Next, we take limx→x0 fsafe(x, 0), which is the correct value
of the function at the singularity. We then additionally compute
limϵ→0 fsafe(x0, ϵ). This should be a finite value, and it should
be equal to the first limit, indicating that the function converges
to the correct value for small ϵ.

For many functions, it is crucial that the first derivative is
also correct at the singularity. This can be tested automatically
with the same strategy.

The typical alternative to our approach, used in e.g. GTSAM
and Sophus, is to add branching near the singularity. It is
common to locally approximate the point with a Taylor series
for this purpose. A similar approach can be approximated in
symbolic code using piecewise functions, but these come at a
cost of added complexity and slower performance.

VII. LIMITATIONS

This section describes potential drawbacks to our approach.
The separation between symbolic and runtime contexts

requires thinking at a higher level of abstraction than di-
rectly writing runtime code. There are many benefits to this
approach, but it takes practice. One common error is that
conditional statements in Python will not result in branches
in runtime code. Users must conceptualize instruction-level
branching and employ our concept of epsilon to avoid singu-
larities, as discussed in Sec. VI.

Another common drawback is that our method of flattening
expressions becomes impractical with highly nested expres-
sions, such as long chains of integrations or loops. Since the
generated code unrolls these chains, it can lead to long compile
times, poor cache performance, or other bottlenecks. Further
work is required to handle loops or sub-functions as a construct
of symbolic expressions. Similar bottlenecks can happen when
attempting to generate a linearization function with a very
large number of variables. In some cases, it is a better trade-
off to generate multiple functions and call them dynamically at
runtime, with some sacrifices made in shared subexpressions.
SymForce provides tools for exploring these tradeoffs.

Some symbolic routines, like simplification and factoriza-
tion, become slow with large expressions. We recommend
understanding the computational cost of these routines and
using them in careful and targeted ways.

SymForce is most suitable for generating functions with up
to hundreds of input variables, and hundreds of thousands of
instructions. However, functions can be invoked dynamically
in much larger optimization problems. SymForce does not
directly support data parallelism like operating over pixels of
an image, and does not attempt to compete with libraries that
do so. However, it can efficiently generate the inner kernel for
a single pixel in such a use case.

Finally, SymForce is a young library and there are many
things it does not do. For example, our optimizer does not
support hard constraints or specialized solvers. However, soft
constraints implemented using barrier functions work well and

SymForce generated functions can be readily used with other
optimization libraries.

VIII. EXPERIMENTS

In this section we present benchmark results on multiple
problems implemented with SymForce and alternatives. We
compare with Eigen for sparse and dense matrix multiplica-
tion, GTSAM, Sophus, and JAX for tangent space differentia-
tion, and GTSAM, Ceres, and JAX for nonlinear least-squares.

We measure CPU time, instruction counts, and L1 cache
loads on an Intel i7 CPU and NVIDIA Tegra X2 ARM CPU.
All tests are compiled with -O3 -march=native -ffast-

math, double precision, executing on core 2. Note that while
CPU time and L1 cache loads can vary several percent across
runs, instruction counts vary by < 1% in all experiments. In
addition, we we measure execution time in JAX on an RTX
2080 Ti GPU. We provide code for all experiments.

A. Matrix Multiplication Experiment

We first present an experiment demonstrating the perfor-
mance impact of flattening functions and exploiting sparsity
in matrix multiplication, as introduced in Sec. IV-A and IV-B.

We select a series of matrix structures of varying sizes
and sparsity from the SuiteSparse Matrix Collection [34].
We generate random expressions into the nonzero entries of
the matrices from a small set of scalar symbols, using the
strategy described by Lample [35]. Our benchmark task is
computing XTY , where X and Y have the same sparsity
pattern but with differently generated random expressions.
In this example, the expressions are functions of 5 scalar
symbols, with approximately 5 operations per expression.

We compare against sparse matrices, dynamic-size dense
matrices, and fixed-size dense matrices using the Eigen library
in C++. Table I displays CPU time for computing XTY
across all matrices and methods. In each case, there are two
function calls to compute X and Y independently, then they
are multiplied together. Against these we compare a SymForce
flattened function that outputs the product XTY directly.

We note that the flattened function outperforms the dense
fixed approach in all categories. We leverage the benefits
of sparse multiplication, but without the memory and index
management overhead it introduces.

The results also show that for small matrices, dynamic
memory allocation is a poor tradeoff and dominates the com-
putational time. Dense multiplication foregoes any benefits of
sparsity, but better leverages SIMD instructions.

Table II shows detailed results for the matrix n3c4 b2,
which is 20 x 15 and has 20% sparsity. Our method outper-
forms the second best by 8.7x on Intel and 11.6x on Tegra.
One dramatic difference is in the number of L1 data cache
loads required. For this small size, most of the variables are
simply kept on CPU registers. The CPU only needs to manage
intermediate inputs rather than all the entries of the dense
matrices. In other words, most entries of X and Y are never
explicitly held in registers.



TABLE I: Benchmark for computing the matrix product XTY in C++ for matrices of varying sizes and sparsity patterns. CPU Time, in
nanoseconds, is shown for each method on each matrix. lp sc105 failed to fit on the stack for the dense fixed approach.

b1 ss Tina DisCog n3c4 b2 bibd 9 3 lp sc105 rotor1
(7x7), 31% (11x11), 40% (20x15), 20% (36x84), 8% (105x163), 2% (100x100), 7%

Intel Core i7-4790 CPU @ 4GHz, Clang 10.0.1
Sparse 1426.9 3713.1 4264.0 30471.3 23653.0 85965.5
Dense Dynamic 523.0 714.7 998.8 16834.6 345705.8 102303.0
Dense Fixed 108.9 547.8 815.1 16707.6 N/A 64874.6
SymForce Flattened 22.7 75.0 94.0 9609.0 6165.2 25684.6
SymForce Speedup over Second Best 4.8x 7.3x 8.7x 1.7x 3.8x 2.5x

Tegra X2 ARM Denver CPU @ 2.035 GHz, GCC 7.5.0
Sparse 2738.2 6949.8 7618.4 65411.6 51313.9 260341.9
Dense Dynamic 806.9 1401.9 3443.9 97706.6 1772193.8 559305.4
Dense Fixed 477.5 1178.7 2771.7 94184.5 N/A 337921.8
SymForce Flattened 38.1 205.5 239.2 17865.8 9885.4 76670.0
SymForce Speedup over Second Best 12.5x 5.7x 11.6x 3.7x 5.2x 3.4x

TABLE II: Detailed results for the matrix n3c4 b2, which is 20 x 15
and has 20% sparsity. Measured with the linux perf tool, amortized
across one million runs. Here we also show the time required by
JAX, both on the CPU and GPU. Even amortized over a batch size
of 1000, a large amount of overhead remains.

Time (ns) Instructions L1 Loads
Intel Core i7-4790 CPU @ 4GHz, Clang 10.0.1

JAX, Batch = 1000 3205.4 N/A N/A
Sparse 4264.0 42755 14185
Dense Dynamic 998.8 9812 2777
Dense Fixed 815.1 8182 2671
SymForce Flattened 94.0 870 225

Tegra X2 ARM Denver CPU @ 2.035 GHz, GCC 7.5.0
Sparse 7618.4 29030 98439
Dense Dynamic 3443.9 13737 28627
Dense Fixed 2771.7 10735 2243
SymForce Flattened 239.2 892 278

RTX 2080 Ti GPU @ 1850MHz
JAX, Batch = 1000 6699.3 N/A N/A

B. Inverse Compose Experiment

We now extend the idea of the previous experiment into
a practical example of computing tangent space Jacobians.
Consider transforming a point by the inverse of a pose, a
common operation in SLAM or bundle adjustment problems.
This expression can be computed by invoking two functions -
inversion and composition:

result = pose.inverse() * point

The automatic differentiation approach to compute the Ja-
cobian of this expression with respect to the tangent space of
the pose is to chain the Jacobians of the inverse and compose
operations. In pseudocode, the operations that actually happen
at runtime might look like:
inverse, inverse_D_pose = InverseWithJacobian(pose);
res, res_D_inverse = ComposeWithJacobian(

inverse, point);
res_D_pose = res_D_inverse * inverse_D_pose;

This approach is typical in robotics because it leverages ex-
isting Jacobian implementations for the underlying functions,
and avoids handwriting a Jacobian for the combined function.
However, as described in Sec. IV, this sacrifices performance
because it misses the opportunity to share common subexpres-
sions between the operations and requires dense multiplication
of the matrices at runtime.

We use SymForce to generate Jacobian functions for the
inverse and compose functions independently, and compare to

TABLE III: Benchmark results for the inverse compose experiment.
* - GTSAM includes a handwritten derivative for this operation.

Time (ns) Instructions L1 Loads
Intel Core i7-9700K CPU @ 4.6GHz, Clang 10.0.0

JAX, Batch = 1000 1950.0 N/A N/A
Sophus Chained 139.4 1904.4 443.6
GTSAM Chained 74.9 922.2 295.6
SymForce Chained 42.9 448.1 127.6
GTSAM Custom* 11.3 102.1 36.6
SymForce Flattened 7.9 134.0 26.6

Tegra X2 ARM Denver CPU @ 2.035 GHz, GCC 7.5.0
Sophus Chained 360.6 482.4 294.9
GTSAM Chained 230.8 690.1 312.4
SymForce Chained 106.6 372.8 107.3
GTSAM Custom* 58.7 133.8 77.6
SymForce Flattened 20.3 105.7 23.0

RTX 2080 Ti @ 1850MHz
JAX, Batch = 1000 6642.4 N/A N/A

a flattened function that fuses them together. We can estimate
the runtime from the number of symbolic operations required,
using the SymPy count_ops function after performing CSE:

Function Operations
Inverse + Jacobian 73
Compose + Jacobian 85
(3, 6) by (6, 6) Matrix Multiplication 198
Total for AD Approach 356
Flattened Inverse Compose + Jacobian 91

By this heuristic, the flattened expression (91 ops) should be
approximately 4x faster than the AD approach (356 ops). This
ignores memory effects, but our approach also reduces the
number of intermediate terms accessed.

We present benchmark results comparing automatic differ-
entiation (chaining) with our flattened expressions in Table III.

First, we note that the chained versions are significantly
slower than the flattened versions. We also note that the
SymForce chained function is faster than alternative chained
versions, due to the efficient implementations of the autogen-
erated geometry types.

“GTSAM Custom” refers to the function gtsam::Pose3

::transform_to, which provides a handwritten value and
Jacobian for the inverse compose operation, separately from
the inverse or compose functions used in the chaining method.
The SymForce generated flattened function outperforms the
handwritten method, with no specialization required. In the
case of the Intel CPU, the GTSAM Custom function has fewer



Fig. 5: Robot Localization example. This shows the converged
solution, with robot poses in blue, and landmarks in orange.

instructions but the SymForce Flattened function has higher
speed and better cache performance.

Note that for larger expressions, there will typically not
preexist a handwritten method with Jacobians. It is often
difficult or impossible to implement handwritten Jacobians for
large functions, and doing so consumes valuable engineering
time. In the general case, it is fair to compare the autogen-
erated SymForce Flat version with the chained approaches of
alternative libraries, which in this case yields 9.5x and 11.5x
improvements on the Intel and Tegra CPUs.

C. Robot 3D Localization Example

Next, we show a practical example of estimating a robot
trajectory given point measurements. As shown in Figure 5,
we set up a sequence of 5 poses. The environment contains 20
point landmarks at known world positions. At each timestep,
the robot measures the position of each landmark in its local
frame and measures its odometry from the previous timestep
as a relative pose, both with Gaussian noise. We initialize the
poses at the origin and optimize the poses to convergence.

We show timing results in Table IV. The “Dynamic” formu-
lation generates one factor per measurement and builds a factor
graph at runtime. This allows for dynamically sized problems,
where the number of poses is not known at code generation
time or may change over time. The “Fixed” formulation
represents generating a single function to linearize the entire
problem. This requires that the size of the problem is fixed
at code generation time. However, we demonstrate significant
performance gains in cases where this is possible, due to
common subexpression elimination between factors.

TABLE IV: Results for the Robot Localization example. The ex-
perimental setup is exactly as detailed in the caption of Table II.
Linearize is the time to evaluate the residual, Jacobian, and Hessian
of the problem. Iterate includes linearization, solving, and updating
the variables. All optimizers show similar convergence at around 12
iterations, so we focus on the timing for a single iteration.

Time (us) Instructions L1 Loads
Intel Core i7-9700K CPU @ 4.6GHz, Clang 10.0.0

Linearize: Ceres 42.6 526.0 151.0
Linearize: JAX, Batch = 1000 35.4 N/A N/A
Linearize: GTSAM 30.0 351.7 87.6
Linearize: SymForce Dynamic 15.1 220.4 54.3
Linearize: SymForce Fixed 5.4 43.2 17.4

Tegra X2 ARM Denver CPU @ 2.035 GHz, GCC 7.5.0
Linearize: Ceres 591.1 1203.9 517.2
Linearize: GTSAM 190.0 572.0 186.7
Linearize: SymForce Dynamic 73.6 192.1 61.6
Linearize: SymForce Fixed 40.8 60.4 23.3

RTX 2080 Ti @ 1850MHz
Linearize: JAX, Batch = 1000 8.9 N/A N/A

Intel Core i7-9700K CPU @ 4.6GHz, Clang 10.0.0
Iterate: Ceres 108.6 1152.5 315.0
Iterate: GTSAM 155.4 1713.4 427.8
Iterate: SymForce Dynamic 47.0 587.2 151.6
Iterate: SymForce Fixed 25.6 223.0 73.5

Tegra X2 ARM Denver CPU @ 2.035 GHz, GCC 7.5.0
Iterate: Ceres 967.8 1809.5 747.6
Iterate: GTSAM 557.6 1289.7 438.5
Iterate: SymForce Dynamic 231.6 551.5 189.1
Iterate: SymForce Fixed 166.1 272.9 107.3

We note that SymForce is the fastest of the dynamic vari-
ants, due to our efficient linearization function and geometry
types. In addition, our fixed variant significantly outperforms
our dynamic variant. This demonstrates that for smaller prob-
lems, it is very compelling to flatten the entire linearization
into a single function that shares all computation.

We also note that the GPU time for JAX is competitive at
a batch size of 1000. In contrast to previous problems, this
example is large enough to amortize the overhead. However,
in many cases it is impractical to run with a batch size of
1000, and the per-instance evaluation slows down massively
with smaller batch sizes.

IX. CONCLUSION

In this paper we presented SymForce and its underlying
approaches as a powerful strategy for solving a range of
computational problems. For its primary domain of real-
time robotics applications, SymForce results in faster runtime
code, sometimes by an order of magnitude, while requiring
less development time and fewer lines of handwritten code
versus state-of-the-art alternatives. Its geometry types, sym-
bolic manipulation tools, code generator, and tangent-space
optimization machinery work together to provide a workflow
from prototyping of ideas to running in production. Its key
performance advantages come from autogenerating code that
flattens across function calls and matrix multiplications, taking
advantage of all common subexpressions and any amount of
problem sparsity, particularly avoiding unnecessary operations
that come from the chain rule in automatic differentiation.
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