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Fig. 1: SymForce outperforms sparse and dense matrix multiplication

with the Eigen library[[2] on our task {n VIT-A, by sharing common

subexpressions and leveraging sparsity with no runtime overhead.

Abstract—We present SymForce, a library for fast symbolic
computation, code generation, and nonlinear optimization for
robotics applications like computer vision, motion planning, and
controls. SymForce combines the development speed and flexi-

100%
bility of symbolic math with the performance of autogenerated,  so%
highly optimized code in C++ or any target runtime language.
SymForce provides geometry and camera types, Lie group
operations, and branchless singularity handling for creating
and analyzing complex symbolic expressions in Python, built I II I
@ (

on top of SymPy. Generated functions can be integrated as  ° = ) © d
factors into our tangent-space nonlinear optimizer, which is
highly optimized for real-time production use. We introduce
novel methods to automatically compute tangent-space Jacobians,
eliminating the need for bug-prone handwritten derivatives. This
workflow enables faster runtime code, faster development time,

e (f;

and fewer lines of handwritten code versus the state-of-the-art.
Our experiments demonstrate that our approach can yield order
of magnitude speedups on computational tasks core to robotics.
Code is available at https://github.com/symforce-org/symforce.

A signi cant advantage to our approach is not having
to implement, test, or debug any Jacobians. In the robotics
domain, correct and efcient computation of derivatives is
critical. The prevalent approach is to hand-write Jacobians

in C++ or CUDA for a core set of operations and rely on

automatic differentiation to chain them together [3]. SymForce
introduces novel methods to automatically compute tangent-
space Jacobians of functions that operate on Lie groups,

SymForce is a symbolic computation and code generatigiiding bug-prone handwritten derivatives. As a result, our
library that combines the development speed and exibilitfPProach avoids dynamic memory allocation and chain ruling
of symbolic mathematics in Python with the performance &t funtime. SymForce often dramatically outpe_rforms standard
autogenerated, highly optimized code in C++ or any targgpproaches by_ attening code across expression graphs, shar-
runtime language. SymForce makes it possible to code a priif} subexpressions, and taking advantage of sparsity. We also
lem once in Python, experiment with it symbolically, generat@troduce a novel method for preventing singularities without
optimized code, and then run highly ef cient optimizatiorintroducing branches, which has a key bene t to performance.
problems based on the original problem de nition. In summary, our key contributions are:

Our approach was motivated by developing algorithms for « A free and open-source library with:
autonomous robots at scale at Skydio, where performance and — Symbolic implementations of geometry and camera
code maintainability are crucial for use cases like computer types with Lie group operations, and fast runtime
vision, state estimation, motion planning, and controls. classes with identical interfaces,

SymForce builds on top of the symbolic manipulation - Code generation for turning arbitrary symbolic func-
capabilities of the SymPy library [1]. Symbolic math allows tions into structured and fast runtime functions,
for rapid understanding, interactive analysis, and symbolic — A fast tangent-space optimizer in C++ and Python,
manipulations like substitution, solving, and differentiation. = Highly performant, modular, and extensible code,
SymForce adds symbolic geometry and camera types with Liee Novel contributions for automatically computing tangent-
group operations, which are used to autogenerate fast run- space Jacobians, avoiding all handwritten derivatives,
time classes with identical interfaces. By using one symbolic « A novel method for avoiding singularities in complex
implementation of any function to generate runtime code for expressions without introducing branching,
multiple languages, we improve the iteration cycle, minimize « An exposition of the speed bene ts afforded by attening
the chance of bugs, and achieve performance that matches or computation across functions and matrix multiplications,
exceeds state-of-the-art approaches with no specialization. especially for outperforming automatic differentiation.

I. INTRODUCTION


https://github.com/symforce-org/symforce
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Fig. 2: SymForce architecture diagram - Symbolic expressions are written in Python, where they are easy to understand and debug with
symbolic manipulation tools. Fast runtime code is autogenerated from these expressions, which can then be used as standalone functions ©
factors in our nonlinear optimizer. Together these three components provide a smooth work ow from prototypes to production code.

The paper is organized as follows: We review related woflctor graph formulation used in GTSAM, but residual func-
in Sec.[T]. In Sec[Tll we present the major components @ibns are autogenerated from symbolic expressions. Relative to
SymForce as shown in Figufé 2: symbolic computation withlternatives, our optimizer has faster performance and lower
geometry and camera types, code generation, and optimizatimemory overhead for many tasks. In addition, our approach
Sec[1V highlights why SymForce is often faster than alternaliminates the need for handwritten derivatives and avoids
tives. Sec[ Y discusses symbolic differentiation on Lie grouphe runtime overhead of applying the chain rule to Jacobians
and Sec| V]I describes our approach to branchless singuladtyring automatic differentiaton.
handling. Limitations are discussed in SEC.]VII, experiments

. . Geometric Lie Groups — Rotations, poses, and camera
in Sec[ VI, and we conclude in Sec-]IX. P P

models are central to robotics code, and getting ef cient and
1. RELATED WORK correct tangent-space Jacobians is a common task for many

Symbolic Math — Libraries that manipulate symbolic ex_optimization use cases. GTSAM de nes geometry types and

pressions, such as Maplgl [4], Mathematica [5], and MA heir Lie calculus in C++ and wraps them in Python. Sophus
uses SymPy implementations to generate some derivative

LAB's symbolic toolbox [6], have existed for decades. Sym ; Mani ) ib th handwri Li
bolic math libraries that generate fast code are used in s&yPressions. anif[16] is a C++ library with handwritten Lie

eral niches of robotics[[7][]8][]9], but are not general of"oup o_peratlons. The waygeometry_llbrqry [11]7] prowdes )
widespread. SymPy [1] is noteworthy for being open-sourc‘t:'e),(p“':'ss'.On templa_te—based aut(_)matlc d|ﬁerept|at|on of .L'e
lightweight, and written in Python, which allows users t roups in C++. Lle_To_rch |:_[I8] implements Lie groups in
modify it and leverage a large ecosystem of libraries. Howevey }/T(.)r'ch. SymForce is inspired by GTSAM 'and 'So_phus. The
it can scale poorly to complex expressions. SymEndine [1 n!tlons of our geometry types are symbolic, with |mproveq
is a C++ backend that supports the SymPy API while bei ming and consistency over Sophu§ and no hardcoded deriva-
up to two orders of magnitude fastér [11]. These libraries aldyes: SymForcg autqgenerates runtime classes that resemble
provide routines for code generation and common subexprg%@ GTSAM.varlan_ts n .C++’ but ha}ve faster performance and
sion elimination (CSE). SymForce builds on the capabilitie%0 not require maintaining handwritten code.
of SymPy and SymEngine by adding essential geometryAutomatic Differentiation — Libraries like PyTorch[[19],
and vision types, Lie group operations, tools for handlingensorFlow [[20], and JAX[[21] can build up computation
singularities, structured code generation, and integration wighaphs by tracing python code and applying automatic differ-
optimization tools. These additions make SymForce a signientiation (AD) to compute gradients. These libraries often have
cantly more complete tool for complex robotics tasks. high overhead for the small input dimensions that SymForce
Nonlinear optimization -— Optimization libraries like GT- is built to tackle (tens to hundreds of variables). They also per-
SAM [12], Ceres [[1B], and g20[14] provide useful tooldorm poorly for second-order optimization techniques common
for efciently formulating and minimizing cost functions, in robotics, because they are primarily targeted at computing
especially for nonlinear least-squares problems found in theadients and not Hessians, and have poor performance for
eld of robotics and computer vision. SymForce follows thesparse matrices. In contrast, SymForce can compute Jacobians



Fig. 3: Symbolic expressions - Representation of a simple two-vector symbolic expression (A) as de ned in Python code, (B) automatically
displayed asAIpX, (C) the underlying representation as a sequence of expression trees, (D) generated C++ and Eigen code. Complex
expressions can contain hundreds of thousands of operations.

and Hessians of complex expressions with no operatiorally on Eigen and the Python types only on NumPy. In C++
overhead, making it suitable for use on resource-constrairtbey are templated on the scalar type, and require zero dynamic
embedded platforms. In addition, SymForce avoids the nee@mory allocation, making them suitable for embedded envi-
for matrix multiplication at runtime that is needed for ADronments. The autogenerated runtime classes are functional,
Julia provides several AD libraries [22], but does not reachith readable interfaces and excellent test coverage.

the performance of C++ and lacks the broader ecosystem o) Lie Group Operations: To allow generic code to operate
Python. Numba [23] can accelerate arbitrary Python functiore all geometry types we use a concepts (or traits) mechanism

but does not compute derivatives. [24] inspired by GTSAM. Using concepts instead of inheri-
tance allows generic programming with external types such as
Il. ARCHITECTURE language-de ned scalar and sequence types, or NumPy and

This section describes the major components and work ovidgen matrices. It also makes it easy to extend or add new
of the SymForce library, as summarized in Fighfe 2. Outsidgpes, both within SymForce and in user code.
of this paper, the online documentation provides many tutorialéere are three primary concepts de ned in SymForce:
and examples to gain a practical understanding of the libraryl) StorageOps allow all types to be converted to and from
) ) a sequence of scalars which comprise the internal rep-
A. Symbolic Computation resentation of the type. For example, the SO(3) type is
SymForce provides tools for building and analyzing com-  represented by a quaternion, whose storage contains 4
plex symbolic expressions in Python, by extending the SymPy scalars. It also supports common tasks like substitution,
API. There is a complete separation between code structure numerical evaluation, and simpli cation.
and performance, allowing the user to encapsulate their cod®) GroupOps register types as mathematical groups. A
without sacri cing performance. group type must have an associative composition oper-
Symbolic computation centers around manipulation of ation, an identity element, and an inverse.
mathematical expressions as algebraic instead of numeric8l) LieGroupOps register types as Lie groups, meaning that
guantities. Functions, symbols, and literals are stored as classes in addition to being groups, they are differentiable man-
in code that can be traversed and transformed with symbolic ifolds with operations to go from group elements to
substitution, simpli cation, differentiation, and solving. These  perturbations in a local Euclidean space (tangent space).
tools allow users to interactively study and re ne their func- |n Python, this mechanism is implemented with dynamic
tions. Flg[} shows mU|tip|e forms of a Simple expreSSion' dispatch, for examp|®ps.GroupOps.inverse (element). In
SymForce supports two symbolic backends — SymPy aagd-+, this is done via template specialization, for example
SymEngine. SymEngine is a C++ implementation compatible ;- oupops<sym: :Pose3f>: : Tnverse ().
with the SymPy API, but is dramatically faster for manipulat- The correctness of group and Lie group operations, and their
ing large expressions. It is the default choice. Jacobians, have been rigorously tested both symbolically and

1) Geometry and Camera Types: SymForce implements numerically. See Sef.]V afd VI for details on our approach.
several core types used in robotics, such as matrices, rotations,

poses, camera models, noise models, and barrier functiofs.Code Generation

These types have symbolic implementations de ned as PythonGeneration of fast runtime code from symbolic expressions

classes. Fast runtime classes with identical interfaces #¢he core of SymForce. Oubdegen class is the primary tool

autogenerated for target languages. for all code generation tasks. It uses SymPy's code printers and
The generated classes do not depend on the rest of Syudds support for struct types, Eigen / NumPy matrices, and our

Force and can be deployed as standalone tools with miningglometry and camera types. The resulting function contains

dependencies. For example, the generated C++ classes depattehed native code, but with a structured and human-readable



template <typename Scalar> C. Optimization Framework

Eigen::Matrix<Scalar, 3, 1> PointResidual ( . .. . . .
const sym::Pose3<Scalar>s world T local, SymForce provides an optimization library in C+ and
const Eigen::Matrix<Scalar, 3, 1>& world_point,
Python which works naturally with our code generation tools
const Eigen::Matrix<Scalar, 3, 1>& local point and Lie group types. It performs tangent space optimization
using a factor graph formulation inspired by GTSAM[[12] and
a low-overhead implementation of the Levenberg-Marquardt
const Elgen::Matrix<Scalar, 7, 1>& _world T local  galgorithm [26,[27[28]. It is highly optimized for real-time
= world_T_local.Data(); . .
execution, as shown in Sdc. VlIl.
// Common subexpressions (11) As an example, th@oint_residual function can be in-
Con[slt] S‘;alalr —(tzf;llg)o = —2 * std::pow(_world T local terpreted as a residual between two points, parameterized
, Scalar g L. . .
// _tmpl through tmp9 omitted for brevity by the pOSeworld_T_local. TO minimize this residual, a
const Scalar _tmpl0 = _tmp4 % _world_T_local[3]; function is generated that computes the the Jacobiaof
the residualb, as well as the Gauss-Newton approximation

for the Hessian/”J and right-hand side/”b, which form

) A
// Total ops: 53

Eigen::Matrix<Scalar, 3, 1> _res;
_res(0, 0) = —_world_T_local[4] - local_point (0,

0) * (_tmp0 + _tmpl) - the Gauss-Newton update = —(.J7.J).J7b. This function is
local_point (1, 0) * (~_tmp3 + _tmp5) generated automatically fropdint_residual USINgCodegen.
- ecelponnt @B, ) 5 [aeb § Lagmh ith_linearization. FOr brevity, we only show the signature:
world_point (0, 0); with_linearization. Y, Yy g .
_res(l, 0) = —_world T _local[5] - local_point (0,

template <typename T>
void PointFactor (
const sym::Pose3<T>& world_T_local,

0) » (_tmp3 + _tmp5) -
local_point (1, 0) * (_tmpl + _tmp8) -

local_point (2, 0) * (=_tmpl0 + _tmp9) + const Eigen::Matrix<T, 3, 1>& world_point,
world point (1, 0); ‘ const Eigen::Matrix<T, 3, 1>& local_point,
_res(2, 0) = —_world_T_local[6] - local_point (O, Eigen::Matrix<T, 3, 1>+ res,
0) * (-_tmp6 + _tmp7) - Eigen::Matrix<T, 3, 6>+ jacobian,

local_point (1, 0) * (_tmpl0 + _tmp9)
- local_point (2, 0) x (_tmp0 + _tmp8 + 1) +
world_point (2, 0);

3
Eigen::Matrix<T, 6, 6>* hessian,
Eigen::Matrix<T, 6, 1> rhs);

Note that we could simply outpuf and b and compute
JTJ and JTb by doing matrix multiplications at runtime, but
computing these products symbolically is typically computa-

Fig. 4: Generated C++ code fepbint_residual tionally advantageous, as explained in Sec. |V-B.

This function is used to construétictor Objects, which
interface that integrates nicely with our geometry types amdpresent residual blocks within the optimization that touch
optimization framework. a set of optimized variables. All problem inputs and initial

C++ is the most important code generation backend fguesses are stored irvaiues class, and theptinizer class is
SymForce. Generated C++ functions are templated on tingoked to minimize the residual of all factors. The optimizer
scalar type with support faficat, double, andstd: : complex. USES th&ieGroupops concept on the C++alues to perform
However, we make it simple to add code generation backertdagent space retraction.
targeting new languages, leveraging our template system basedll of this machinery is also available in Python via a
on thejinja Python library [25]. wrapped version of the optimization framework. This allows

A critical step in code generation is common subexprefer quick prototyping without compiling any code, with the
sion elimination (CSE), which is the process of traversing ability to generate C++ from the same symbolic implementa-
symbolic expression to nd duplicate intermediate terms ariibn and have con dence that runtime results will be identical.
pulling them out into temporary variables that are computed In the example illustrated above, one instance of the gen-
only once. CSE results in enormous efciency gains, a&rated factor is instantiated per measurement in C++. This is
described in Se¢._TVIA and 1ViB. very exible and allows using our library of existing factors

Take the following symbolic function that computes th@r handwritten functions without writing any symbolic code.
residual of the position of a point expressed in a local frantéowever, SymForce also supports generating an entire prob-
to a point expressed in the world frame: lem consisting of many residual terms as one large function.
This approach can yield large efciency gains because of
expressions automatically shared between multiple factors, as

return _res;

def point_residual (
world_T_ local: geo.Pose3,

world_point: geo.Vector3, we show in Se@. We provide afbtimizationProblem
) localfpoint; geo.Vector3 class to organize large symbolic problems and generate
—> geo.Vector3: . . .
return world point — world T local = local point functions at multiple levels of granularity to feed to the
Optimizer.
Passing this symbolic function into odbdegen. function Finally, we provide ancoptimizer subclass obptimizer

method will generate a native function. An example for ouhat implements Graduated Non-Convexity (GNC) [29]. GNC
C++ backend is shown in Fig] 4. is a method for transitioning from a convex cost function to



a robust cost function as the optimization converges, to cre@e Sparsity Exploitation
a yvidgr basin of convergence while §ti|l incorporatin_g outlier SymForce can yield order of magnitude speedups in the
rejection. We provide an implementation of the adaptive robusfytiplication of matrices that include zero entries. Any
loss function from/[30] using the singularity handling approachmount of sparsity will lead to a large number of terms that
described in Seq:yl. Our GNC optimizer works with anyjy not need to be computed, as they would otherwise be
tunable loss function. multiplied by zero at runtime.

IV. SPEEDADVANTAGES Take as an example two (6, 6) matricE&sand Y':

We highlight three ways that symbolic computation speeds

up code by reducing the work performed at runtime — function a 0 b 20 0 0
attening, sparsity exploitation, and algebraic simpli cation. 0 ab 0 ¢ a® 0
. . x— |0 0 a* 0 % 0 @
A. Function Flattening = a0 0 ab® 0 &
SymForce gains enormous performance advantages by gen- 0 ¥ 0 0 ab* 0
erating runtime functions that consist of a single branchless 0 0 O 0 0 ab*
chain of instructions that share all common subexpressions. 0O —ab b 0 0 0
Software engineers strive to organize code into easily b 0 —a 0 0 0
composable functions. Often, computing a desired quantity b a 0 00 0O
requires invoking many sub-functions. While having structured Y=10 2 0 a0 0 3)
code improves usability, both the author and the compiler 0 0 2o b 0
have limited ability to optimize for speed across function a2 0 0 0 0 ab

boundaries, leading to tension between usability and speed.

Below is a trivial example of a function that uses two Dense multiplication consumesV + (N — 1))N? scalar
helpers, each of which compute common terms inside: operations, or 396 foV = 6. Combined with 21 operations
def helper 1(a, b): to compute the values within the matrices, it takes a total of

return a++2 + abs(a / b) / bx«2 417 symbolic operations to compuléY’.

By multiplying matrices symbolically and generating code
for the result, we both exploit the structure of the matrices and
share expressions between thext” can be computed in just

def func(a, b): 34 symbolic operations, a 12x reduction:
return helper_1(a, b) - helper_2(a, b)

def helper_2(a, b):
return abs(a / b) + (ax**2 — bx*2)

Naively, computingfunc (a, b) requires 13 operations and
the overhead of two function calls, but a capable compiler
could inline these tiny functions and compute the result in €4 = ToT2, Ts = a3, w6 = }’ zr = 0P, (4)
just 6 operations, making use of helper variables: b

1

6 5

Tg = az7, Tg = —— , T10 = b, x11 =07,
0

xo = b2, 11 = ab, xo = a®, x3 = bxo,

o = b2
a
T, = ‘7’ (1) —Xo 1+ X3 Ty 23]1 0 0
b 1 Ty T5%6 —x3+ x4 Tokg T3 0
o —T1 + — —xg Ty a 0 azxg 0 (5)
To W —Taxg + w577 azxy zowy 0 s
In realistic scenarios, most larger functions are too costly | *3 0 —aro+aryy 0 arn 0
T11T5 0 0 0 0 T10T2

for the compiler to inline[[31], so the execution approaches the
naive case. If the redundant calculations and function calls areBeyond the symbolic operation count, memory effects must
not acceptable, the alternative is to hand-optimize at the cbst considered. Instructions are needed to load inputs into
of usability by manually attening the functions or sharingegisters, with signi cant penalties for cache misses. Our
state between the helpers. method greatly improves cache performance, because the CPU
Symbolic code addresses this problem with explicit sepamanly needs to manage 12 intermediate inputs rather than the
tion between the symbolic and the runtime contexts. The sy@2 entries of the dense matrices. In other words, most entries
bolic code is written with small, composable functions, but argf X andY are never represented.
evaluated quantities are generated as at expressions amenabla robotics and computer vision, matrix multiplication is
to optimization. In SymForce, computing the runtime variargrevalent in transformations, projections, uncertainty propa-
of func(a, b) requires 6 operations with no additional workgation, and especially for Jacobians during automatic differ-
and the bene ts scale to very large expressions. entiation. Performance gains compound from longer chains
This process offlattening also helps with cache perfor-of matrix multiplications and more complex shared terms
mance, as we demonstrate in detail in $ec.]VIII. between them. SymForce can atten code across thousands



of function calls and matrix multiplications into a single Furthermore, as described in Séc.] IV, representing the
branchless function that shares all common subexpressionderivative as a attened symbolic expression allows for pow-
See Sed. VITI-A for a detailed performance analysis of thisrful simpli cations across function and matrix multiplication
key concept across varying matrix sizes and sparsity patterbsundaries, for instance in the common case where the Jaco-
bians used by AD contain shared terms or zeros. As a result,

our symbolic differentiation and code generation approach

Symbolic expressions can be algebraically simpli ed im%utperforms runtime AD for many robotics problems.
forms that are faster to compute. Categories of simpli cations

include expansion, factorization, term collection, cancellatioff; Tangent-Space Differentiation on Lie Groups

fraction decomposition, trigonometric and logarithmic identi- We present two novel methods to automatically and ef -

ties, series expansions, and limits. ciently compute tangent-space derivatives of Lie group el-
SymPy provides a wide array of simpli cations. Basic simements such as SO(3) and SE(3), leveraging vector-space

pli cations are done automatically on expression constructiosymbolic differentiation. While we describe the techniques for

but most require specic invocation, for example with. functions that map Lie groups ®", the approach generalizes

simpliny]While powerful, this technique can require domaio functions that output Lie groups.

expertise and careful effort to achieve notable improvements.Lie groups are common parameterizations in robotics and

computer vision. When computing a "derivative” of a function

whose input is a member of a Lie group, typically the desired

In this section we discuss the advantages of symbolic diffg{yantity is the derivative with respect to a perturbation in the
entiation and present novel techniques for computing tangegifgent space around the input. Explicitly, consider a function
space Jacobians. We demonstrate that users do not hav (tg) f:SO(3) — R". Given a retraction operataR & v

implement or test any bug-prone handwritten derivatives. JRat applies the perturbationc R? to R, the desired quantity
addition, our approach is often faster by avoiding dynamig di [f(R@U))H

X R . . v v=0"
memory allocation and dense chain ruling at runtime. In most packages, painstaking care is taken to hand-write
_ We build on tools in SymPy and SymEngine {0 automajnese tangent-space derivatives. SymForce computes them all
ically compute derivatives of vector-space symbolic expregytomatically. We provide two approaches for this — symbolic

sions and extend them to handle our geometry types aghjication of the chain rule and rst-order retraction:
values class. A key capability provided by SymForce is ;) sympolic Chain Rule Method: First, it is important to

computing tangent-space derivatives of arbitrary user-de nfdte that while a user of the code operates on Lie group
functions operating on Lie group types, which is necessary fgpjects, those objects are internally represented as a set of

C. Algebraic Simplification

V. SYMBOLIC DIFFERENTIATION

on-manifold optimization and uncertainty propagation. scalar symbols (their “storage”, as described n IM-A1). For
Sec.[VIN-B shows how these advantages lead to order jpktance, we represent SO(3) using unit quaternions. So while

magnitude speedups over automatic differentiation. the user can implemerft using only group operations without

A. Symbolic vs Automatic Differentiation knowing about the internals, the expression we buildffaR)

P o ; function of 4 scalars, the quaternion component®.diVe
Symbolic differentiation has compelling advantages ovﬁa X ' N S 4
automatic differentiation, both by requiring less handwritte € ne functions S : SO(3) — R* and §7" : R* = 50(3)

code, and by sharing more subexpressions and eliminating fRdnap from th(ej rSanllfoll;j Obje;t tolthf ZLOIr%age representation
need for matrix multiplication at runtime. as a vector and back. If we then let= S(R @ v), we can

Automatic differentiation (AD) is the prevalent approach fofWrite the derivative as

computing Qerivatives of large computation graghs [3]. Given d% [f(Rew)]

a computation gra_lph, AD p_rod_uces _another_computatlon gr_aph :(Tdv [f(S‘l(S(R @ U)))] @)
to compute a particular derivative, with the size of the resulting 4 = J

graph no bigger than a constant multiple of the original. ~ds [f(S (3))] 2 [S(R®)))].

Itis often claimed that symbolic differentiation is intractablehe term - [S(R®v)))]|,_, on the right is simply the
or produces exponentially large computation graphs, anddeérivative of the storage ot with respect to the perturbation,
therefore unusable for nontrivial computations. Consider th@d does not depend gh This is a typically simple function
chain of function callsf(g(h(z,y))). The gradient off with  of the group elements. The left term does depend dout as

respect tO[x y] is expanded as we noted before, we already have the symbolic representation
Of(a(h(z.w))) Da(h(ea)) dh(zy) of F(S™1(s)), ar_1d we can simply take the symbo_lic derivative

Vf= 8?(9(8%,;,))))) 8a(hh((:c,y))) ahe(ax |- (6) of tlhat_expressmn to get this ter_m. Notably, neither of these

agg(h(mf;jf)) %h(;’yy) a‘"’;’y derivatives needs to be handwritten, they can be computed

automatically from the form of and from the other functions
gRecifying the group representation, respectively. Then the -
nal tangent-space derivative can be computed by symbolically
multiplying these two matrices, and generating a attened
Lhttps://docs.sympy.org/latest/tutorial/simpli cation.html expression for runtime.

Naively, it appears that is redundantly evaluated. However
this ignores the use of CSE, which results in one evaluati
of each unique function and its derivatives, like in AD.



2) First-Order Retraction Method: Alternatively, we can def f(x):

directly differentiatef(R @ v), which is a function between
vector spaces, using a rst-order approximation ®fp v at

if abs(x) < epsilon:
# Approximation for small x
return 1 — xx*2 / 6

else:
return sin(x) / x

v = 0. This signi cantly outperforms the previous method ir
nearly all our trials and is the default approach for computir

tangent-space Jacobians in SymForce. _ This has two problems - it does not result in a single
To do this, we rst build expressions for the storage entrie§mpolic expression for the result, and might introduce a
of R & v, which comprise of scalar functions of We then ¢ty pranch. Our method is to shift the input to the function
substitute each of these expressions for the storageinfour 44y from the singular point with an in nitesimal variablelf
expression forf(R), producing an expression fof(R @ v) e assume for a moment that we only care about non-negative
which we can then symbolically differentiate. z, this corresponds to de ning a new function
Because we only care about the behaviorvat 0, we )
can use a rst-order approximation @t @ v to simplify the feate(2) = f(z +€) = %, (10)
wheree is a small positive constant.

expression without loss of correctness. Explicitly, we use:
For the general case wherez R, we rst de ne a function

@
=0 sign_no_zero, OF SNZ, as

1
snz(z) =
VI. BRANCHING AND SINGULARITY HANDLING -1

This section describes techniques to avoid branches iny,t we can also de ne it as a branchless expression as
algorithmic functions, particularly in the context of handling

singularity points. Avoiding branches greatly simpli es rou-

tines for manipulating complex expressions, and also has a

critical impact on runtime performance. Substituting snz into Eq. 10 makés,. valid for z € R:
Symbolic expressions are computation graphs that are sepa-

rate from the code that builds them. Every symbolic operation

has a function, a deterministic number of inputs, and a single fsate(z) = f(z + snz(z)e) =

output. SymForce does not support arbitrary branching logic

within a single expression — adding conditional statements toFor a function f(z) with a removable singularity, iff

Python code will change the structure of the expression beitsg Lipschitz with constant), it is simple to show that

built, but not add conditionals to the generated code. || fsate(z) — f(z)|| <= Me. This is typically a perfectly
Instead, many branches can be formulated with primitivésceptable level of error with a suf ciently small choice of

like the sign function, absolute value, oor, min, and max¢- The SymForce default epsilon #s2e-15 for doubles and

For example, a comparison like: <= 3) 2 a : b can be 1.2e6 for oats, chosen as 10x the machine eps[ﬂ)n.

represented symbolically as+ max(sign(z — 3),0)(b — a). It is worth noting that several common functions do not

These operations are performed with bit operations at the &8tisfy the above requirement and have values or derivatives

sembly level, and do not introduce true branches. As a beneftat are not Lipschitzsqrt and acos are de ned onl0, cc)

this type of branchless programming improves performana&d [—1,1], respectively, and have in nite derivatives on the

because the CPU can pipeline instructions without fear Bpundaryacanz andabs have non-removable singularities at 0
branch prediction failures [32]. in their value and gradient, respectively. In these cases snz can

still perturb the inputs away from the boundary or singularity
to prevent unsafe values at runtime, but the general error bound
We present a novel method for handling removable singffom above does not apply.
larities within symbolic expressions that introduces minimal In this example the singularity is at= 0, but this approach
performance impact by avoiding the need for branching. Funicivially generalizes to singularities anywhere.
tions encountered in robotics are often smooth, but properl )
addressing singularity points is critical to avoid NaN valuesB: Testing for Correctness
Consider the function SymForce can check the correctness of a given symbolic
function fsate (2, €) that supposedly usedo avoid a removable
singularity point atr = x.
First, the symbolic value 0fs.t.(zo,0) is computed. This
ghould evaluate to an indeterminate form like 0/0, which
SymPy will represent asan. If the value instead is-co, the

Rpuv~S! (S(R) + d% [S(R & v)]

which is typically much simpler thai® @ v.

o
Te>=0 (11)
ifz <0

snz(z) = 2min (0, sign(z)) + 1. (12)

sin(z + snz(x)e)
x + snz(x)e (13)

A. Handling Singularities with Epsilon

This function is smooth on its whole domain but has
singularity atz = 0, where it takes the fornt/0. We can
de ne f(0) = lim,_ % = 1 and get a smooth function,
but the question remains of h_OW to compute this function iN2rpe machine epsilon for a oating point type is de ned as the smallest
a numerically safe way. A typical approach may be: number which, when added to 1.0, produces a different nuribér [33].



user is trying to correct for a non-removable singularity. SymForce generated functions can be readily used with other

cannot correct for this, and an error is returned. optimization libraries.
Next, we takdim, ., fsate(2,0), Which is the correct value
of the function at the singularity. We then additionally compute VIIl. EXPERIMENTS

lime—0 fsate (2o, €). This should be a nite value, and it should ) s section we present benchmark results on multiple
be equal to the rst limit, indicating that the function Convergeﬁroblems implemented with SymForce and alternatives. We
to the correct Va'“_e for_sr_nadsl ) .., compare with Eigen for sparse and dense matrix multiplica-

For many functions, it is crucial that the rst derivative is;jon cTSAM Sophus, and JAX for tangent space differentia-
also correct at the singularity. This can be tested automaticaly, and GTSAM. Ceres. and JAX for nonlinear least-squares.

with the same strategy. We measure CPU time, instruction counts, and L1 cache

The typical alternative to our approach, used in e.9. GTSAMads on an Intel i7 CPU and NVIDIA Tegra X2 ARM CPU.
and Sophus, is to add branching near the singularity. It i tests are compiled with

i . 8 X -03 -march=native -ffast-
common to locally approximate the point with a Taylor series, .\, ‘gouble precision, executing on core 2. Note that while

for this purpose. A similar approach can be approximated #py time and L1 cache loads can vary several percent across
symbolic code using piecewise functions, but these come giigs instruction counts vary by 1% in all experiments. In
cost of added complexity and slower performance. addition, we we measure execution time in JAX on an RTX

2080 Ti GPU. We provide code for all experiments.
VII. L IMITATIONS

This section describes potential drawbacks to our approach, Matrix Multiplication Experiment

The separation between symbolic and runtime contextsWe rst present an experiment demonstrating the perfor-
requires thinking at a higher level of abstraction than dimance impact of attening functions and exploiting sparsity
rectly writing runtime code. There are many bene ts to thig matrix multiplication, as introduced in S¢c. TV-A apd TV-B.
approach, but it takes practice. One common error is thatWe select a series of matrix structures of varying sizes
conditional statements in Python will not result in branchesnd sparsity from the SuiteSparse Matrix Collection] [34].
in runtime code. Users must conceptualize instruction-levdle generate random expressions into the nonzero entries of
branching and employ our concept of epsilon to avoid singthe matrices from a small set of scalar symbols, using the
larities, as discussed in Séc.]VI. strategy described by Lamplé_|35]. Our benchmark task is

Another common drawback is that our method of atteningomputing X7Y, where X and Y have the same sparsity
expressions becomes impractical with highly nested exprgmttern but with differently generated random expressions.
sions, such as long chains of integrations or loops. Since timethis example, the expressions are functions of 5 scalar
generated code unrolls these chains, it can lead to long comgijenbols, with approximately 5 operations per expression.
times, poor cache performance, or other bottlenecks. FurtheiMe compare against sparse matrices, dynamic-size dense
work is required to handle loops or sub-functions as a construmatrices, and xed-size dense matrices using the Eigen library
of symbolic expressions. Similar bottlenecks can happen whian C++. Table[]l displays CPU time for computing 7Y
attempting to generate a linearization function with a vergcross all matrices and methods. In each case, there are two
large number of variables. In some cases, it is a better tradigaction calls to computeX andY independently, then they
off to generate multiple functions and call them dynamically a&re multiplied together. Against these we compare a SymForce
runtime, with some sacri ces made in shared subexpressiorsttened function that outputs the produgt” Y directly.
SymForce provides tools for exploring these tradeoffs. We note that the attened function outperforms the dense

Some symbolic routines, like simpli cation and factoriza-xed approach in all categories. We leverage the bene ts
tion, become slow with large expressions. We recommenfl sparse multiplication, but without the memory and index
understanding the computational cost of these routines amdnagement overhead it introduces.
using them in careful and targeted ways. The results also show that for small matrices, dynamic

SymForce is most suitable for generating functions with upemory allocation is a poor tradeoff and dominates the com-
to hundreds of input variables, and hundreds of thousandspoftational time. Dense multiplication foregoes any bene ts of
instructions. However, functions can be invoked dynamicallparsity, but better leverages SIMD instructions.
in much larger optimization problems. SymForce does notTable[T] shows detailed results for the matrix n3b2,
directly support data parallelism like operating over pixels afhich is 20 x 15 and has 20% sparsity. Our method outper-
an image, and does not attempt to compete with libraries thiatms the second best by 8.7x on Intel and 11.6x on Tegra.
do so. However, it can ef ciently generate the inner kernel fabne dramatic difference is in the number of L1 data cache
a single pixel in such a use case. loads required. For this small size, most of the variables are

Finally, SymForce is a young library and there are marsimply kept on CPU registers. The CPU only needs to manage
things it does not do. For example, our optimizer does nisttermediate inputs rather than all the entries of the dense
support hard constraints or specialized solvers. However, sofatrices. In other words, most entries BfandY are never
constraints implemented using barrier functions work well arekplicitly held in registers.
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