
Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

1

Parameterized Differential Dynamic Programming
Alex Oshin∗†‡, Matthew D. Houghton†, Michael J. Acheson†, Irene M. Gregory† and Evangelos A. Theodorou∗

∗School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA
†NASA Langley Research Center, Hampton, VA
‡Correspondence to: alexoshin@gatech.edu

Abstract—Differential Dynamic Programming (DDP) is an
efficient trajectory optimization algorithm relying on second-
order approximations of a system’s dynamics and cost function,
and has recently been applied to optimize systems with time-
invariant parameters. Prior works include system parameter
estimation and identifying the optimal switching time between
modes of hybrid dynamical systems. This paper generalizes
previous work by proposing a general parameterized optimal
control objective and deriving a parametric version of DDP, titled
Parameterized Differential Dynamic Programming (PDDP). A
rigorous convergence analysis of the algorithm is provided, and
PDDP is shown to converge to a minimum of the cost regardless
of initialization. The effects of varying the optimization to more
effectively escape local minima are analyzed. Experiments are
presented applying PDDP on multiple robotics systems to solve
model predictive control (MPC) and moving horizon estimation
(MHE) tasks simultaneously. Finally, PDDP is used to determine
the optimal transition point between flight regimes of a complex
urban air mobility (UAM) class vehicle exhibiting multiple phases
of flight.

I. INTRODUCTION

Classically, optimal control research has focused on the
study of methods for trajectory optimization of underactuated
nonlinear systems. This attention is due to the fact that
underactuated systems are more difficult to control due to
having more degrees of freedom relative to the number of
controls available [25]. However, the emerging urban air
mobility (UAM) sector allows the opportunity to study the
application of optimal control methods to overactuated aircraft
whose complexity appears in the nonlinear transition dynamics
between flight phases [12, 11]. These UAM class vehicles
commonly exhibit three phases of flight — including vertical
takeoff and landing (VTOL), fixed-wing cruise, and a complex
transition phase between the two — and can thus be classified
as hybrid systems [6, 9, 13], transitioning between multiple
modes of the dynamics during a flight. While many algorithms
have been developed for hybrid systems trajectory optimiza-
tion in the past, most adopt a linear or reduced-order model,
with the focus on bipedal or quadrupedal robotics systems,
e.g. [22, 3, 7]. The lack of applications to UAM class vehicles
reveals an opportunity to develop hybrid systems optimization
techniques for unique aircraft dynamics which have not been
previously studied.

Past research has shown Differential Dynamic Program-
ming (DDP) is an effective algorithm for planning in high-
dimensional state spaces [28], and DDP has shown recent
success planning trajectories for UAM vehicles [14]. DDP is a
shooting method that achieves computational efficiency using

Fig. 1: Rendering of the NASA Lift+Cruise aircraft.

second-order approximations along a nominal trajectory and
admits quadratic convergence properties under mild assump-
tions [21, 15]. DDP is beneficial in that it requires no reduction
in the complexity of the dynamics model, and its convergence
properties make it a solid candidate for solving realtime model
predictive control (MPC) tasks [27].

Recent work has shown the value function derivatives
produced by DDP can be used to update the initial conditions
of the nominal trajectory, which allows optimization over time-
invariant parameters [16, 17]. While this update corresponds
to a Newton step on the parameters, modifying the initial
condition of DDP significantly affects the convergence of
the algorithm since the change induces a large shift of the
nominal trajectory in the state space. To remedy this issue, this
work introduces a general parameterized optimal control ob-
jective. Explicitly introducing the parameters into the system
dynamics and cost function allows a second-order algorithm
to be derived for iteratively updating both the controls and
parameters simultaneously, independent of the form of the
parameterization. This parameterized version of DDP is re-
ferred to as Parameterized Differential Dynamic Programming
(PDDP), and a rigorous convergence analysis is provided
showing the derived algorithm converges to a minimum of
the cost regardless of state or parameter initialization. Further,
the effects of the simultaneous optimization of parameters and
controls is studied. An optimization scheme is proposed that
more effectively escapes local minima, which is a common
issue of local methods such as DDP. The PDDP algorithm
is applied to two important robotics tasks, model parameter
estimation and hybrid systems optimization, and is used to



identify the optimal transition points between flight regimes
for the NASA Lift+Cruise UAM class vehicle developed
under NASA’s Revolutionary Vertical Lift Technology (RVLT)
project [24]. A rendering of the Lift+Cruise aircraft is provided
in Fig. 1.

The contributions of this work are as follows:
1) Generalize previous work by deriving a parameterized

form of DDP, referred to as PDDP.
2) Provide theoretical analysis of the convergence behavior

of the proposed PDDP algorithm and show it is globally
convergent to a minimum of the cost for optimization
problems with arbitrary dynamics and cost function
parameters.

3) Discuss and analyze three optimization choices for iter-
atively solving for the optimal controls and parameters.

4) Apply the proposed method on multiple robotics sys-
tems, including a cartpole, a quadrotor, and an ant
quadruped system using the open-source physics engine
Brax [10], and show PDDP is able to solve adaptive
MPC tasks using moving horizon estimation (MHE).

5) Apply PDDP to find the optimal transition point between
multi-modal dynamical systems, including a UAM class
vehicle exhibiting multiple phases of flight.

The paper is organized as follows. Section II derives the
PDDP algorithm and proves the convergence of the method.
Section III discusses applications of PDDP to system param-
eter estimation and switching time optimization for hybrid
systems. Section IV analyzes experimental results applying
PDDP to the previously discussed tasks. The paper concludes
with Section V by discussing future work.

II. PARAMETERIZED DIFFERENTIAL DYNAMIC
PROGRAMMING

In this section, the parameterized version of DDP is derived.
While the similarities are highlighted here, a full derivation of
standard DDP can be found in recent works such as [28].

A. Problem Formulation
This work considers parameterized discrete-time dynamics

that evolve according to

xt+1 = F(xt,ut;θ), (1)

where F : Rnx × Rnu × Rnθ → Rnx with xt ∈ Rnx ,
ut ∈ Rnu , and θ ∈ Rnθ , and x1 ∈ Rnx denoting the initial
condition. The semicolon emphasizes that the parameters
are time-invariant and separate from states or controls that
are time-varying. The same assumptions made in standard
DDP [15] are adopted here. Namely, the dynamics are assumed
to be twice differentiable with respect to state and control,
with the additional assumption that the dynamics are twice
differentiable with respect to the parameters.

Defining the control sequence U := {u1, . . . ,uT }, the
parameterized discrete-time optimal control problem is given
by

min
U,θ
J (U;θ) = min

θ
min
U

T∑
t=1

L(xt,ut;θ) + φ(xT+1;θ), (2)

where L and φ are the twice differentiable running cost and
terminal cost function, respectively, and T is the time horizon.
In the most general case, the parameters θ affect both the
dynamics and the cost.

The inner objective of Eq. (2) with θ fixed is equivalent
to the standard DDP optimal control problem. The value
function, now parameterized by θ, is given recursively by

V (xt;θ) = min
ut

[
L(xt,ut;θ) + V (xt+1;θ)︸ ︷︷ ︸

:=Q(xt,ut;θ)

]
, (3)

with V (xT+1;θ) = φ(xT+1;θ). Thus, the optimal θ is given
at the initial time t = 1 by

θ∗ = argmin
θ

V (x1;θ). (4)

B. Algorithm Derivation

Given the parameterized dynamics defined by Eq. (1), this
subsection will derive an iterative algorithm for finding the
control trajectory U and parameters θ that minimize the cost
function defined in Eq. (2).

As in standard DDP, the parameterized optimal control
problem is solved by considering quadratic approximations
of the value function along a nominal trajectory x̄t, ūt.
However, this derivation also includes terms expanding the
value function about a set of nominal parameters θ̄. Let
δxt, δut, δθ be the variation in state, control, and parameters,
respectively, so that

xt := x̄t + δxt, ut := ūt + δut, θ := θ̄ + δθ. (5)

The quadratic expansion of the value function about x̄t, θ̄
has the form

V (xt;θ) ≈ V 0
t + (V xt )>δxt + (V θt )>δθ

+
1

2

[
δxt
δθ

]> [
V xxt V xθt
V θxt V θθt

] [
δxt
δθ

]
,

(6)

where the partial derivatives of V are denoted using su-
perscripts and are evaluated at x̄t, θ̄, e.g., V 0

t = V (x̄t; θ̄),
V xt = ∇xV (x̄t; θ̄), etc. This superscript notation will be
adopted throughout the paper. In order to solve for the partial
derivatives of V , the quadratic expansion of the Q function
defined in Eq. (3) is taken about x̄t, ūt, θ̄:

Q(xt,ut;θ) ≈ Q0
t + (Qxt )>δxt + (Qut )>δut + (Qθt )

>δθ

+
1

2

δxtδut
δθ

> Qxxt Qxut Qxθt
Quxt Quut Quθt
Qθxt Qθut Qθθt

δxtδut
δθ

 , (7)



where

Q0
t = L0

t + V 0
t+1,

Qxt = Lxt + (Fxt )>V xt+1,

Qut = Lut + (Fut )>V xt+1,

Qθt = Lθt + V θt+1 + (Fθt )
>V xt+1,

Qxxt = Lxxt + (Fxt )>V xxt+1F
x
t ,

Qxut = Lxut + (Fxt )>V xxt+1F
u
t = (Quxt )>,

Qxθt = Lxθt + (Fxt )>V xθt+1 + (Fxt )>V xxt+1F
θ
t = (Qθxt )>,

Quut = Luut + (Fut )>V xxt+1F
u
t ,

Quθt = Luθt + (Fut )>V xθt+1 + (Fut )>V xxt+1F
θ
t = (Qθut )>,

Qθθt = Lθθt + V θθt+1 + 2(Fθt )
>V xθt+1 + (Fθt )

>V xxt+1F
θ
t .

(8)

Note the partial derivatives with respect to θ include extra
terms because both the value function and the dynamics
depend on θ. In Eq. (8), the second-order dynamics terms
have been dropped following the iterative Linear-Quadratic
Regulator (iLQR) algorithm [18]. A full derivation with all
second-order terms is given in Appendix A.

Substituting this quadratic approximation into Eq. (3) and
dropping the terms not dependent on δut gives

V (xt;θ) = min
δut

[
(Qut )>δut + δx>t Q

xu
t δut

+ δθ>Qθut δut +
1

2
δu>t Q

uu
t δut

]
.

(9)

Taking the gradient of the argument in the minimization and
setting it equal to zero yields the optimal control update

δu∗t = kt + Ktδxt + Mtδθ (10)

with
kt := −(Quut )−1Qut ,

Kt := −(Quut )−1Quxt ,

Mt := −(Quut )−1Quθt .

(11)

Note the gains kt and Kt match the standard DDP gains,
with an additional feedback gain Mt on δθ providing a
correction because the algorithm is optimizing over δut and
δθ simultaneously. Taking δθ = 0 in Eq. (10) means the
parameters are held constant which yields the usual DDP
control update.

The optimal θ minimizes Eq. (3) at time t = 1. Since the
initial condition is fixed, x1 = x̄1, which implies δx1 = 0.
Substituting in the quadratic approximation of Q into Eq. (4)
and dropping the terms not dependent on δθ, yields

δθ∗ = argmin
δθ

[
(Qθ1)>δθ + δu>1 Q

uθ
1 δθ +

1

2
δθ>Qθθ1 δθ

]
= −(Qθθ1 )−1Qθ1 − (Qθθ1 )−1Qθu1 δu1. (12)

At the initial time t = 1, there are two equations and two
unknowns δθ∗ and δu∗1. Substituting in δu∗1 from Eq. (10)
results in the parameter update

δθ∗ = m := −(Qθθ1 −Qθu1 (Quu1 )−1Quθ1 )−1

(Qθ1 −Qθu1 (Quu1 )−1Qu1 ).
(13)

When the feedforward gains kt of Eq. (10) and m of Eq. (13)
are too aggressive, the state trajectory may stray from the
region where the quadratic approximation is accurate, and the
cost may not decrease. To ensure convergence, the feedforward
gains are scaled by the parameter 0 < ε ≤ 1, such that

δu∗t = εkt + Ktδxt + Mtδθ
∗, (14)

δθ∗ = εm. (15)

The parameter ε is determined using line search and ensures
the optimizer makes sufficient progress towards the minimum
at each iteration, i.e. ensuring the update step satisfies Armijo’s
condition or the Wolfe conditions [5]. Further discussion is
given in Section II-C.

What remains is to solve the value function derivatives by
substituting in the expression for δu∗t . The expression for δθ∗

is not substituted back in, otherwise the terms in δθ∗ are
incorporated into the zero-order value function term and the
derivatives with respect to θ go to zero. This means that the
information for θ cannot be propagated backwards in time. In
Section II-C, to prove the cost reduction achievable, the full
expression for δθ∗ is substituted into Eq. (7).

Substituting Eq. (14) into Eq. (7) and equating like powers
of the value function expansion in Eq. (6) gives the following
expressions for the value function derivatives:

V 0
t = Q0

t + (
1

2
ε2 − ε)(Qut )>(Quut )−1Qut ,

V xt = Qxt −Qxut (Quut )−1Qut ,

V θt = Qθt −Qθut (Quut )−1Qut ,

V xxt = Qxxt −Qxut (Quut )−1Quxt ,

V xθt = Qxθt −Qxut (Quut )−1Quθt = (V θxt )>,

V θθt = Qθθt −Qθut (Quut )−1Quθt .

(16)

Eq. (16) and Eq. (8) provide the equations for the backward
pass of PDDP, with boundary conditions V 0

T+1 = φ(x̄T+1; θ̄),
V xT+1 = ∇xφ(x̄T+1; θ̄), etc. The derivatives of V and Q are
solved for backwards in time starting from t = T +1 down to
the initial time t = 1 along the nominal trajectory. The forward
pass of the algorithm consists of using the control updates from
Eq. (14) and parameter updates from Eq. (15) to compute the
new state trajectory starting from the initial condition x1. This
yields an updated nominal trajectory, and this process can be
repeated until some convergence criteria is met. Discussion
on regularization of the value function derivatives as well as
methods for updating the controls and parameters is given in
Section II-D once the convergence of the method is proven.

C. Convergence Analysis

This section provides a mathematically rigorous conver-
gence analysis of the proposed PDDP algorithm. The main
result is summarized in Theorem 1, which shows PDDP is
globally convergent to a minimum of the cost function. The
same assumptions as in [15] for classic DDP are made in this
work, including the differentiability of the dynamics and cost
function up to second-order.



The following proposition establishes the optimality of the
parameter update step by drawing comparisons to Newton’s
method.

Proposition 1. The parameter update δθ∗ is a (damped)
Newton step towards the minimum of the value function.

Proof: See Appendix B.
Proposition 1 implies PDDP converges quadratically fast to

the optimal parameters θ∗, adopting the convergence rate of
Newton’s method. It is important to note that PDDP differs
from a pure stagewise Newton’s method in that it uses the full
nonlinear dynamics during the forward pass, thus achieving
better numerical convergence properties [19].

However, for general nonlinear, nonconvex problems, it
cannot be guaranteed that V θθ1 or Quu1 remain positive definite,
which motivates the addition of regularization to ensure con-
vergence. Regularization can be accomplished through addi-
tion of a Levenberg-Marquardt parameter ensuring the Hessian
matrices are always positive definite [29]. Throughout this
work, the regularization scheme proposed in [27] is adopted.
Further discussion is given in Section II-D.

Next, the control updates are proven to reduce the cost after
each iteration of PDDP. To this end, an expression for the
gradient of the cost function with respect to an individual
control is derived, and it is shown that the variations in control,
state, and parameters are O(ε).

Lemma 1. The gradient of the cost function with respect to
the control at time t is given by

∇utJ = Lut + (Fut )>ηt+1, (17)

with ηt = Lxt + (Fxt )>ηt+1 for t = 1, . . . , T and ηT+1 =
φxT+1.

Proof: See Appendix C.

Lemma 2. For the form of δθ given in Eq. (15), it is true that

δθ = O(ε), (18)

where O(·) corresponds to big-O notation in ‖·‖2.
Further, for all t = 1, . . . , T ,

δut = O(ε), (19a)
δxt+1 = O(ε). (19b)

Proof: See Appendix D.
Next, the control updates are shown to be a descent direction

of the cost.

Proposition 2. The optimal control updates satisfy

(∇UJ )>∆U =

T∑
t=1

(∇utJ )>δut < 0. (20)

Proof: It can be shown that
T∑
t=1

(∇utJ )>δut

= −ε
T∑
t=1

λt + ε

(
T∑
t=1

γt

)
(V θθ1 )−1V θ1 +O(ε2),

where λt = (Qut )>(Quut )−1Qut and γt = (Qut )>(Quut )−1Quθt .
This implies there exists some ε sufficiently small such that
Eq. (20) holds. The full proof is given in Appendix E.
Remark 1. The row vector

∑T
t=1 γt can be thought of as

correcting for the change in θ, as both the parameters and the
controls are optimized simultaneously. The inner product be-
tween

∑T
t=1 γt and the parameter ascent direction (V θθ1 )−1V θ1

ensures that the optimizer does not take too large of a step in
the case when the controls and the parameters both contribute
to a reduction in cost.

To show the cost reduction achievable after a single iteration
of PDDP, the expression for δθ∗ must be substituted into
the value function approximation given by Eq. (7). This
substitution means the terms in δθ are now incorporated into
the zero-order term V 0

t . The previous expression for V 0
t given

in Eq. (16) only accounts for the change in controls δu∗t , which
was necessary to derive a backwards rule for the value function
derivatives with respect to θ. The following lemma establishes
the value function change by applying the updates δu∗t and
δθ∗.

Lemma 3. The zero-order value function approximation term
satisfies

V 0
t = Q0

t − ε(1−
1

2
ε)λt + ε(V θt )>m +

1

2
ε2m>V θθt m.

(21)

Further, at time t = 1, the following is true:

V 0
1 = Q0

1 − ε(1−
1

2
ε)(λ1 + ψ), (22)

where ψ = (V θ1 )>(V θθ1 )−1V θ1 .

Proof: See Appendix F.
Remark 2. ψ can be interpreted as the Newton decrement on
the parameters. Likewise, λt can be interpreted as the Newton
decrement on the controls at each timestep. These values can
be used as an effective stopping criteria for the algorithm as
well as verification for the line search parameter ε [5]. Further
discussion is provided in the following proposition.

Now, it is possible to show the cost reduction achievable
after an iteration of PDDP.

Proposition 3. The total cost reduction after each iteration of
PDDP is

∆J = −ε(1− 1

2
ε)

(
T∑
t=1

λt + ψ

)
+O(ε3). (23)

Proof: See Appendix G.
Remark 3. Proposition 3 implies that a valid line search
candidate at each iteration should satisfy the following cost
reduction:

∆J ≤ −κε

(
T∑
t=1

λt + ψ

)
, (24)



for a small constant κ > 0. This condition is similar to the line
search criteria for Newton’s method, and ensures that Armijo’s
condition or the Wolfe conditions hold [5].

Finally, the convergence of PDDP to a minimum of the cost
is proven.

Theorem 1. As the number of iterations of PDDP approaches
infinity, the cost J , the control trajectory U, and the param-
eters θ converge to a stationary point regardless of initializa-
tion.

Proof: See Appendix H.

D. Algorithm Design

The convergence result presented in Section II-C assumes
that the Hessian matrices Quut and V θθ1 remain positive definite
throughout the optimization process. One method of ensuring
this condition always holds is to use Levenberg-Marquardt reg-
ularization corresponding to adding a quadratic cost around the
nominal trajectory [29]. This regularization can be employed
to ensure V θθ1 is positive definite since this Hessian matrix
only needs to be invertible at the first timestep. However,
the authors of [27] have shown a more robust approach for
regularizing Quut places the regularization on the states rather
than the controls, ensuring the control perturbation does not
have different effects at different timesteps. Therefore, the
regularized derivatives can be computed using

Ṽ xxt+1 = V xxt+1 + µI

Ṽ θθ1 = V θθ1 + νI,
(25)

with hyperparameters µ, ν ≥ 0. The regularized Hessian Ṽ xxt+1

is used in place of the original during the backward pass
calculation of Eq. (8). The regularization of V xxt+1 and V θθ1

correspond to adding a quadratic cost to the deviation of the
state and parameters from the nominal values, thus ensuring
the update step does not stray too far from the region where the
quadratic approximation is accurate. However, the addition of
the regularization on V xxt+1 when calculating the derivatives in
Eq. (16) means the same cancellations of Quut and its inverse
are not possible. The updated derivatives are given as

V xt = Qxt + K>t Q
u
t +Qxut kt + K>t Q

uu
t kt,

V θt = Qθt + M>
t Q

u
t +Qθut kt + M>

t Q
uu
t kt,

V xxt = Qxxt +Qxut Kt + K>t Q
ux
t + K>t Q

uu
t Kt,

V xθt = Qxθt +Qxut Mt + K>t Q
uθ
t + K>t Q

uu
t Mt

V θθt = Qθθt +Qθut Mt + M>
t Q

uθ
t + M>

t Q
uu
t Mt.

(26)

An additional benefit of the proposed method is that the op-
timization of the controls and parameters can be coupled or de-
coupled without affecting the convergence. The result in The-
orem 1 assumes both the control and parameter feedforward
gains are applied simultaneously, but the same result holds if
the gains are applied in an alternating fashion, e.g. at every
odd iteration the controls are updated by applying the control
feedforward gain kt and at every even iteration the parameters
are updated by applying the parameter feedforward gain m.

The addition of the feedback term Mtδθ on the parameter
update when calculating the updated controls in Eq. (14)
ensures stability in the controls even when only the parameters
are being updated. Likewise, [17] adopt an approach where
the parameters are only updated once the controls have fully
converged. This approach is referred to as Switching Time
Optimization Differential Dynamic Programming (STO-DDP).
The alternating and simultaneous schemes are benchmarked
against STO-DDP through a numerical comparison on three
systems, which is presented in Section IV-B.

In summary, Algorithm 1 describes the proposed PDDP
algorithm.

Algorithm 1: Parameterized Differential Dynamic Pro-
gramming

Input: Nominal trajectory x̄t, ūt and parameters θ̄
1 while not converged do
2 Calculate derivatives of L, φ along x̄t, ūt, θ̄

// Backward pass
3 V 0

T+1 ← φ0T+1, V xT+1 ← φxT+1, V θT+1 ← φθT+1,
4 V xxT+1 ← φxxT+1, V xθT+1 ← φxθT+1, V θθT+1 ← φθθT+1

5 for t = T, . . . , 1 do
6 Calculate derivatives of Q according to Eq. (8)

and Eq. (25)
7 Calculate gains kt,Kt,Mt according to

Eq. (11)
8 Calculate derivatives of V according to Eq. (26)

// End backward pass
9 Calculate gain m according to Eq. (13)

// Line search
10 ε← 1
11 while cost decrease not sufficient do

// Forward pass
12 if update parameters then
13 δθ ← εm
14 else
15 δθ ← 0

16 θ ← θ̄ + δθ
17 x1 ← x̄1

18 for t = 1, . . . , T do
19 δxt ← xt − x̄t
20 if update controls then
21 δut ← εkt + Ktδxt + Mtδθ
22 else
23 δut ← Ktδxt + Mtδθ

24 ut ← ūt + δut
25 xt+1 ← F(xt,ut;θ)

// End forward pass
26 ε← ρε // Reduce ε

// End line search
27 x̄t ← xt, ūt ← ut, θ̄ ← θ

28 return optimal controls ut, optimal parameters θ



III. APPLICATIONS

In this section the proposed PDDP algorithm is applied to
two important robotics control tasks: parameter estimation and
switching time optimization.

A. Parameter Estimation

Estimating the unknown parameters and states of a dy-
namical system can be achieved through moving horizon
estimation (MHE). This framework reformulates the state esti-
mation problem as an optimization problem dual to MPC [8].
This work assumes full state observability, with the realized
discrete-time dynamics given by

xt+1 = F(xt,ut;θ
∗) + wt,

x1 ∼ N (x̂1,Σx1
),

where wt ∼ N (0,Σw) is some unknown additive Gaussian
process noise. If the controls are given, this corresponds to a
trajectory smoothing problem where the goal is to identify the
parameters θ and the realized disturbances wt that maximize
the likelihood of the observed states. The objective can be
formulated through maximum likelihood estimation (MLE) by
minimizing the negative log-likelihood

Jest(θ,x1) = − log p(x1,θ)

T∏
t=1

p(xt+1|xt,θ)

= − log p(x1,θ)−
T∑
t=1

log p(xt+1|xt,θ),

with p(xt+1|xt,θ) describing the likelihood of observing the
next state xt+1 given the current state xt and parameters θ,
and p(x1,θ) describing the prior distribution over the initial
state and parameters.

Assuming a Gaussian prior over the parameters θ ∼
N (θ̂,Σθ), the estimation cost takes the form

Jest(θ,x1) =
1

2

Test∑
t=1

‖xt+1 − F(xt,ut;θ)‖2Σ−1
w

+
1

2
‖θ − θ̂‖2

Σ−1
θ

+
1

2
‖x1 − x̂1‖2Σ−1

x1
.

(27)

The terms ‖θ − θ̂‖2
Σ−1
θ

and ‖x1 − x̂1‖2Σ−1
x1

ensure the new
estimates of the parameters and initial state do not deviate too
far from the prior, while ‖xt+1 − F(xt,ut;θ)‖2Σ−1

w
ensures

the predicted state trajectory matches the actual observed
states. This cost function setup allows PDDP to be used to
identify the true system parameters as well as an updated
estimate of the true state. The observed state trajectory is
assumed to be given, and the parameters are updated to
match the model predictions to the observed states through
minimization of Eq. (27).

The time horizon Test corresponds to the estimation horizon,
i.e. the number of steps in the history to estimate. In practice,
the horizon is shifted forward every step when the number
of observed states exceeds the time horizon Test to maintain
computational tractability, particularly in realtime applications.

This approach is why MHE is often referred to as the dual
problem to MPC [8], as the same receding horizon approach is
adopted to solve realtime tasks using solvers such as DDP [27].
In the MPC problem, the goal is to find the sequence of
controls that minimizes a finite-horizon cost function of the
form

Jmpc(U) =

Tmpc∑
t=1

L(xt,ut) + φ(xTmpc+1). (28)

While MHE optimizes over the past horizon Test up to the
current state at time t, MPC plans over the future time horizon
from the current time t up to Tmpc. In both methods, as a new
state observation is made, the time horizon is shifted forward
one step and the optimization proceeds again. A combined
cost can be derived to optimize over both tasks simultaneously
using PDDP:

Jcombined(U;θ,x1) = Jest(θ,x1) + Jmpc(U). (29)

This combined cost function is used in Section IV-A to find
the optimal parameters of a system while solving an MPC
task. At each timestep t, PDDP minimizes the MHE cost
over the past time horizon [t−Test, t], updating the parameter
estimate to best match the observed states. Simultaneously,
PDDP minimizes the MPC cost function, planning over the
future time horizon [t, t+Tmpc] and generating a control update
corresponding to standard DDP plus feedback based on the
simultaneous update of the parameters. This approach can be
interpreted as a variation of adaptive MPC [1] since the system
parameters are adapted to fit the true model at every step of the
MPC algorithm. The simultaneous optimization is possible due
to the explicit feedback gains provided during the derivation
of PDDP. This generalizes previous work by [16], which uses
DDP to only solve the MHE task.

B. Switching Time Optimization

Switching time optimization (STO) is proposed by the
authors of [17] and reformulates the trajectory optimization
of hybrid systems into an equivalent objective that is easier to
solve using iterative numerical solvers, including DDP.

A hybrid system is defined by a sequence of N modes such
that for each mode i = 1, . . . , N , the dynamics obey

ẋ = fi(x(t),u(t)). (30)

Example hybrid systems include bipedal robotic animals,
which transition between modes of flight and contact with the
ground while running, and UAM class vehicles, which exhibit
modes of vertical takeoff and landing, fixed-wing cruise, and
a transition phase between the two.

Given this fixed sequence of modes, the goal in hybrid
systems trajectory optimization is to find the optimal control
trajectory and the optimal set of times t = [t1, . . . , tN ]>

that minimize the cost, with each ti describing the terminal
time of mode i. This problem can be formulated through the



continuous-time objective

min
u,t

N∑
i=1

[∫ ti

ti−1

`i(x(t),u(t)) dt+ ϕi(x(ti))

]
, (31)

with the dynamics transitioning accordingly through the modes
defined in Eq. (30).

The authors of [17] show that this objective can be equiva-
lently expressed as trying to find the optimal amount of time
to spend in each mode through switching time optimization
(STO). The dynamics in Eq. (30) and objective in Eq. (31)
are reformulated over fixed time intervals of unit length, with
the dynamics and running cost scaled by the amount of time
that is spent in each mode. Letting θi = ti−ti−1 and adopting
the change of variable τ = (t− ti−1)/θi + i− 1 results in the
time scaled dynamics

ẋ = θifi(x(τ),u(τ)), (32)

and the objective can be rewritten as

min
u,θ

N∑
i=1

[∫ i

i−1
θi`i(x(τ),u(τ)) dτ + ϕi(x(i))

]
. (33)

The equivalent discrete-time optimal control problem is
given as

min
U,t

N∑
i=1

φi(xTi+1) +

Ti∑
t=Ti−1+1

θiLi(xt,ut)

 (34a)

subject to xt+1 = Fi(xt,ut; θi), (34b)

with a chosen integration step size h and Ti = Ti−1 + θi/h,
T0 = 0 denoting the number of timesteps in the horizon
up to the end of mode i. This objective is a parameterized
discrete-time optimal control problem that can be solved using
PDDP. In this problem, the optimized parameters are the
intervals of time spent in each mode θi. For a single mode,
this objective is an approximation to a free-horizon optimal
control problem, where the terminal time of the trajectory
parameterizes the dynamics and can be optimized using PDDP.
Similar parameterizations have been discussed in previous
works such as [20, 26].

Three key improvements are introduced to stabilize the
optimization using a numerical solver such as PDDP. First,
the number of timesteps per mode is set to be constant,
meaning timesteps do not have to be interpolated when the
amount of time in a mode changes during the optimization.
This improvement ensures that the convergence properties
described in Section II-C hold, as changing the number of
timesteps in the optimization modifies the objective, which can
cause unexpected problems and results in poor convergence.

Second, an improved integration scheme is adopted for
calculating the discrete-time dynamics. Using the typical for-
ward Euler integration with fixed step size h, the discrete-time
dynamics from Eq. (34b) are given as

xt+1 = xt + θifi(xt,ut)h. (35)

Note the time scaling in the dynamics by the amount of time
spent in each mode θi results in an equivalent scaling of the
integration step size h used in the forward Euler integration,
which causes inaccuracies in the dynamics, particularly as
the time scale θi becomes large. To remedy this issue, the
dynamics are integrated at a smaller underlying step size ∆t
for multiple substeps, which prevents numerical errors in the
dynamics causing the optimization to fail.

Finally, constraints are necessary in order to ensure the time
scales are always nonnegative. A popular choice to handle
box control limits is the projected Newton quadratic program
solver proposed in [28]. The same projected Newton solver is
used when calculating the parameter feedforward gain m to
ensure that the time scales never become negative.

IV. EXPERIMENTS

In this section, PDDP is applied to two separate tasks:
optimal parameter estimation and switching time optimization.
The results show PDDP can solve MHE and MPC problems
simultaneously, as well as optimize for time-optimal trajecto-
ries through STO.

A. Parameter Estimation

The dual optimization over the combined MHE and MPC
tasks proposed in Section III-A is solved by PDDP on mul-
tiple nonlinear, underactuated systems including a cartpole,
quadrotor, and ant quadruped.

0 25 50 75 100
MHE step

0

0.5

1

1.5

2

P
o
le

m
a
ss

(k
g
)

Estimate
True value

Fig. 2: Pole mass estimate for the cartpole system.

1) Cartpole: The cartpole is an underactuated, nonlinear
dynamical system with four states and one control. PDDP is
given a bad initial estimate of the pole mass of 2 kg in its dy-
namics model and is tasked with finding the correct pole mass
of 0.5 kg while simultaneously bringing the pole to the upright
position starting from the downward configuration. The MPC
and MHE horizons are chosen to be Tmpc = Test = 100
steps long, while the underlying discretization step of the
environment is given as ∆t = 0.02 s. The optimization is run
for 200 MPC steps.

The convergence of PDDP to the true mass is given in Fig. 2.
PDDP makes little progress for the first 15 steps since the
dynamics of the pole evolve slowly and the true mass is hard
to estimate. Once the pole velocity increases, the mass can be
estimated successfully within 50 steps.



0 5 10 15 20
MHE step

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
ss

(k
g
)

m estimate

True value

(a) Mass m estimate

0 5 10 15 20
MHE step

10-2

10-1

100

In
er

ti
a

(k
g

m
2
)

Jx estimate

Jy estimate

True value

(b) Inertia Jx and Jy estimates

0 5 10 15 20
MHE step

10-2

10-1

100

In
er

ti
a

(k
g

m
2
)

Jz estimate

True value

(c) Inertia Jz estimate

0

0

h
(m

)

5

y (m)

5

x (m)
5 0

(d) Quadrotor true trajectory

Fig. 3: (a-c): Parameter estimates for the quadrotor system. PDDP converges to the true values within 15 MHE steps. (d): The
spatial trajectory of the quadrotor as it arrives at the target state. Note the slow progress at the start while the dynamics model
is inaccurate.

(a) Initial estimate (b) Estimate, MHE step 1 (c) Estimate, MHE step 2

0 2 4 6 8 10
MHE step

0

0.2

0.4

0.6

0.8

1

L
en

g
th

(m
)

`1 estimate

True value

(d) Upper limb length `1

0 2 4 6 8 10
MHE step

0

0.5

1

1.5

2

L
en

g
th

(m
)

`2 estimate

True value

(e) Lower limb length `2

Fig. 4: (a-c): Leg length estimates for the ant system, rendered using Brax [10]. The estimate after MHE step 2 very closely
matches the true model. (d, e): Estimate history. PDDP converges to the true values within 4 MHE steps.

2) Quadrotor: The quadrotor has 6 degrees of freedom,
resulting in twelve states x = [x, y, h, φ, θ, ψ, ẋ, ẏ, ḣ, p, q, r]>

and four controls u = [F, τφ, τθ, τψ]> that correspond to the
total thrust produced by the rotors, and the rolling, pitching,
and yawing torques, respectively. The full description of the
dynamics is given by [4].

PDDP is tasked with estimating the mass and diagonal
inertia terms of the quadrotor while driving the quadrotor
to a target position of (5, 5, 5) m starting from the origin.
It is assumed that the quadrotor is symmetric about all
three axes, so the off-diagonal terms of the inertia matrix
are zero. The initial guesses of the parameters are given as
m = 1 kg, Jx = 1 kg m2, Jy = 1 kg m2, and Jz = 1 kg m2,
while the true parameters values are m = 0.468 kg,
Jx = 4.856× 10−3 kg m2, Jy = 4.856× 10−3 kg m2, and
Jz = 8.801× 10−3 kg m2, which are adapted from [2]. The
initial estimate is very poor, and assumes the rotors are very
heavy and/or far from the center of mass of the quadrotor.
For this task, the MPC and MHE horizons are chosen as
Tmpc = Test = 100 steps, and the dynamics is integrated at
a step size of ∆t = 0.01 s.

The results are plotted in Fig. 3. PDDP converges to the
true values within 15 MHE steps, meaning PDDP is able to
find the true parameters in under 0.2 s of total execution time.

The MPC task is then solved using the corrected dynamics
model, taking a total of 3 s to arrive at the target state.

3) Ant: The ant is a popular robotics system for continuous
control and reinforcement learning. The physics used for this
system is adapted from Brax [10]. This quadruped system is
described by nine rigid bodies and has a state dimension of 117
in Brax, 13 states for each rigid body describing their position,
quaternion rotation, linear velocity, and angular velocity. The
four legs of the ant have two torque-controlled joints each,
resulting in a control dimension of 8.

The MPC task is to maximize the forward velocity of
the robot, requiring periodicity in the motion of the legs to
generate the necessary forward force. The MPC horizon was
chosen as Tmpc = 100 steps with an underlying environment
discretization step size of ∆t = 0.05 s, resulting in a total
planning horizon of 5 s. The MPC cost function rewards
positive x velocity and penalizes deviation of the y position
and total control effort.

The simultaneous MHE task is to estimate the length of the
eight rigid bodies of the legs of the ant. Symmetry is enforced
to prevent instabilities, so the legs lengths are parameterized
by the upper limb length `1 and the lower limb length `2. The
true values are `1 = 0.443 m and `2 = 0.726 m, respectively,
with the initial estimate given by `1 = 1.0 m and `2 = 2.0 m,



0 20 40 60 80 100
Iteration

100

101

102
T
o
ta

l
co

st

STO-DDP
Simultaneous
Alternating

(a) Cartpole

0 100 200 300 400 500
Iteration

100

101

T
o
ta

l
co

st
(b) Quadrotor

0 20 40 60 80 100
Iteration

100

101

102

T
o
ta

l
co

st

(c) Lift+Cruise

Fig. 5: Convergence of PDDP on three switching time tasks for different choices of optimization scheme. A normal distribution
is fit to the cost at each iteration, with the dark lines corresponding to the mean and the shaded region showing the 95%
confidence interval. To make the comparison clearer, the total costs for each task have been normalized so the minimum cost
trajectory corresponds to a cost of 1.

resulting in vastly different dynamics.
The optimization is run for 250 total timesteps, with the

parameter estimate history shown in Figs. 4d and 4e. PDDP
converges to the true leg lengths in 4 steps. While the
dynamics model is inaccurate, the ant makes little progress
moving forward. However, once the true parameters are found,
PDDP is able to successfully drive the ant forward. The fast
convergence to the optimal parameters is in large part due to
the choice of parameterization. Since the limb lengths `1 and
`2 parameterize all four legs of the ant simultaneously, only a
small subset of lengths can accurately describe the observed
change in the state of all four legs.

B. Switching Time Optimization

In this section, PDDP is used to solve an STO task for
three systems, finding the minimum time to bring a cartpole
and quadrotor to two sequential target orientations, and solving
for the optimal transition point between flight regimes for an
overactuated UAM class vehicle. A numerical comparison is
performed to benchmark STO-DDP from [17] with the simul-
taneous and alternating schemes proposed in Section II-D. The
results are summarized in Fig. 5.

For each of the following experiments, the underlying
environment integration step size is chosen as ∆t = 0.01 s
(see discussion in Section III-B).

1) Multi-target cartpole: Starting from the origin with the
pole in the downward position, the goal of the multi-target
cartpole problem is to first bring the pole to the upright
position at an x position of −5 m with zero velocity, and then
bring the pole to the upright position at an x position of 5 m
with zero velocity.

In practice, the simultaneous optimization is highly depen-
dent on the initial guess of the nominal control trajectory.
Therefore, the method is warm started by only updating the
controls for the first 5 iterations, corresponding to standard
DDP.

1 2 3 4 5 6 7 8 9 10
Switching time (s)

0

0.2

0.4

0.6

0.8

1

3
1

1 2 3 4 5 6 7 8 9 10
Switching time (s)

0

0.2

0.4

0.6

0.8

1

3
2

STO-DDP
Simultaneous
Alternating

Fig. 6: Histogram of optimal time scales θ1 and θ2 for the
multi-target cartpole task. Bins are centered at each second
from 1 up to 10. From Fig. 5a, the alternating method consis-
tently finds low cost solutions despite different initializations
of the switching times, while STO-DDP and the simultaneous
method converge to suboptimal solutions.

For each optimization scheme, PDDP was run for 1000
initial guesses of the time scales θ1 and θ2, each sampled
uniformly from the interval [1, 10]. The convergence behavior
is plotted in Fig. 5a. The alternating scheme converges to
a solution half an order of magnitude lower in cost on
average than both the simultaneous scheme and the STO-DDP
approach that waits for the controls to converge. Note that the
simultaneous scheme reduces the cost quicker than waiting for
the controls to converge, but the final solutions are comparable.



0 2 4 6 8
Time (s)

0

2

4

6

8

10

x
p
os

it
io

n
(m

)

T
1
=

3
:7

0

T
2
=

7
:5

4

0 2 4 6 8
Time (s)

-5

0

5

y
p
os

it
io

n
(m

)

T
1
=

3
:7

0

T
2
=

7
:5

4

0 2 4 6 8
Time (s)

-5

0

5

h
al

ti
tu

d
e

(m
)

T
1
=

3
:7

0

T
2
=

7
:5

4

Fig. 7: Time-optimal trajectory for quadrotor STO task found using PDDP. The terminal times of each mode T1 and T2 are
plotted as dashed black lines. The target states are plotted as dashed red lines.

Overall, the alternating scheme vastly outperforms the others
on average. This success is attributed to the fact that alternating
between updating the controls and updating the parameters
allows the solution to more effectively escape local minima
throughout the optimization process. Fig. 6 shows a histogram
of the optimal time scales for each of the different optimization
schemes. The simultaneous and alternating scheme converge
to a solution of θ1 = 4 s and θ2 = 6 s in the majority of
cases. Waiting for the controls to converge in STO-DDP results
in a fairly flat distribution, suggesting the method quickly
falls into a suboptimal solution when analyzed together with
Fig. 5a. Likewise, the simultaneous method converges to simi-
lar switching times as the alternating method, but does not find
an optimal control solution, describing the poor convergence in
Fig. 5a. The alternating scheme is able to consistently converge
in both switching times and controls, resulting in lower cost
solutions.

2) Quadrotor: For the quadrotor STO task, starting from
the origin, the goal is to reach a first target position of
(5, 5, 5) m with zero velocity and then to reach a second
target of (10,−5,−5) m with zero velocity while optimizing
for the amount of time to reach both targets. The PDDP
algorithm was run until convergence for 1000 initial guesses
of the switching times, sampled uniformly from the range
[1, 10]. The convergence behavior is plotted in Fig. 5b. The
simultaneous scheme quickly falls into local minima, while
waiting for the controls to converge in STO-DDP results
in linear convergence. The alternating scheme outperforms
STO-DDP. The minimum cost trajectory is shown in Fig. 7.

3) NASA Lift+Cruise vehicle: The NASA Lift+Cruise ve-
hicle is a VTOL aircraft that operates as a fixed-wing aircraft
in forward flight, but has access to eight lifting rotors allowing
for VTOL capabilities. While optimal control algorithms,
including DDP, have been applied to these vehicles in the
past [14], to the authors’ best knowledge this work is the
first application of switching time optimization applied to
changing flight regimes within trajectory planning. The STO
task performed here is a vertical takeoff followed by a partial
transition from hover into cruise. PDDP was run for 500
initial guesses of the switching times sampled uniformly from

[5, 15] seconds, with the convergence results of each opti-
mization scheme plotted in Fig. 5c. On this complex task, the
simultaneous scheme converges to a poor solution. Meanwhile,
the alternating scheme and STO-DDP result in comparable
performance, with STO-DDP beating the alternating scheme
for the first 50 iterations. The alternating scheme makes little
change to the switching times while the control solution is still
suboptimal during the first 50 iterations, but as the controls
converge to a solution that is better able to solve the problem,
the alternating scheme is able to successfully find a low cost
solution for the switching times. A representative time-optimal
trajectory is shown in Fig. 8. The aircraft requires 5.63 s to
perform the vertical takeoff maneuver and reach the desired
altitude, then takes 9.79 s to increase its forward velocity to
the desired target speed.

To further demonstrate the planning capabilities of PDDP,
the reverse partial transition maneuver was tested. This task
requires the aircraft to transition from cruise to a hover config-
uration by bringing its forward velocity to zero within 500 ft,
and then perform a vertical landing. The solved trajectory
is shown in Fig. 9. This particular aircraft model does not
have access to flaps or a speed brake to decelerate, and
thus reduces its forward velocity by pitching back, pointing
the body z-axis forwards to generate the backwards thrust
necessary to reduce the aircraft’s speed. This cruise-to-hover
transition is accomplished within 6.87 s. The aircraft then
proceeds to lower its altitude down to the target, requiring
4.87 s to complete the landing.

V. CONCLUSIONS AND FUTURE WORK

This paper has derived a method generalizing previous
work for solving problems with time-invariant parameters
using DDP. The proposed PDDP algorithm is based on a
general parameterized optimal control objective and allows
direct optimization over time-invariant parameters with theo-
retical convergence guarantees. PDDP was applied to multiple
robotics systems through adaptive MPC using MHE and
hybrid systems optimization via STO. In particular, PDDP
is able to identify the optimal transition point between flight
regimes for a UAM class vehicle exhibiting complex transition



0 5 10 15
Time (s)

0

200

400

600

800

1000
x

p
os

it
io

n
(f
t)

T
1
=

5
:6

3

T
2
=

1
5
:4

2

(a) x position trajectory.

0 5 10 15
Time (s)

0

50

100

150

200

h
al

ti
tu

d
e

(f
t)

T
1
=

5
:6

3

T
2
=

1
5
:4

2

(b) h altitude trajectory.

0

1000

200

h
(f
t)

y (ft)

0

x (ft)

500

0

(c) Spatial trajectory.

Fig. 8: Time-optimal vertical takeoff to cruise maneuver for the Lift+Cruise vehicle found using PDDP. The terminal times
of each mode T1 and T2 are plotted as dashed black lines. The target altitude is plotted as a dashed red line. PDDP increases
the altitude up to the target state during the first mode, then increases the forward velocity while maintaining altitude during
the second mode.

0 5 10
Time (s)

0

200

400

600

x
p
os

it
io

n
(f
t)

T
1
=

6
:8

7

T
2
=

1
1
:7

4

(a) x position trajectory.

0 5 10
Time (s)

0

50

100

150

200

250

h
al

ti
tu

d
e

(f
t)

T
1
=

6
:8

7

T
2
=

1
1
:7

4

(b) h altitude trajectory.

0
h

(f
t)

500

200

y (ft)

0

x (ft)0

(c) Spatial trajectory.

Fig. 9: Time-optimal cruise to hover to vertical landing maneuver for the Lift+Cruise vehicle found using PDDP. The terminal
times of each mode T1 and T2 are plotted as dashed black lines. The target states are plotted as dashed red lines. PDDP
decreases the forward velocity of the aircraft by pitching back, then initiates a vertical landing.

dynamics. Various optimization schemes were analyzed and
an alternating approach between updating the controls and
parameters was shown to converge to a better solution by
effectively escaping local minima throughout the optimization
process.

In terms of runtime, a purely CPU-based MATLAB im-
plementation of Algorithm 1 with limited parallelization runs
the NASA Lift+Cruise STO task presented in Section IV-B3 in
roughly 1.5 s per iteration (including the line search) on an In-
tel i7-9850H 2.60 GHz processor. The runtime is dominated by
the complex dynamics calculations of the NASA Lift+Cruise
vehicle, especially the dynamics Jacobians calculations. The
other tasks run in under a second per iteration based on
the complexity of the dynamics. This is fairly slow for an

MPC algorithm, and thus improvements can be made, such as
improved parallelization [23], in order to make the algorithm
more suitable for realtime MPC tasks.

Additionally, as described in [20], DDP can be used as a
second-order optimizer for speeding up the training process of
neural networks. The addition of parameter-based optimization
into this approach can help improve the training performance
of modern machine learning methodologies.

REFERENCES

[1] Veronica Adetola, Darryl DeHaan, and Martin Guay.
Adaptive model predictive control for constrained nonlin-
ear systems. Systems & Control Letters, 58(5):320–326,
2009.



[2] Nigar Ahmed and Mou Chen. Sliding mode control for
quadrotor with disturbance observer. Advances in Me-
chanical Engineering, 10(7):1687814018782330, 2018.

[3] Taylor Apgar, Patrick Clary, Kevin Green, Alan Fern, and
Jonathan W Hurst. Fast online trajectory optimization
for the bipedal robot Cassie. In Robotics: Science and
Systems, volume 101, page 14, 2018.

[4] Randal W Beard. Quadrotor dynamics and control.
Brigham Young University, 19(3):46–56, 2008.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

[6] Michael S Branicky. Multiple Lyapunov functions and
other analysis tools for switched and hybrid systems.
IEEE Transactions on Automatic Control, 43(4):475–
482, 1998.

[7] Jared Di Carlo, Patrick M Wensing, Benjamin Katz,
Gerardo Bledt, and Sangbae Kim. Dynamic locomotion
in the MIT Cheetah 3 through convex model-predictive
control. In International Conference on Intelligent
Robots and Systems (IROS), pages 1–9. IEEE, 2018.

[8] Moritz Diehl, Hans Joachim Ferreau, and Niels Haver-
beke. Efficient Numerical Methods for Nonlinear
MPC and Moving Horizon Estimation, pages 391–417.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[9] Jelel Ezzine and AH Haddad. Controllability and ob-
servability of hybrid systems. International Journal of
Control, 49(6):2045–2055, 1989.

[10] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan
Girgin, Igor Mordatch, and Olivier Bachem. Brax — a
differentiable physics engine for large scale rigid body
simulation, 2021. URL http://github.com/google/brax.

[11] Irene M. Gregory. Urban air mobility: A control-
centric approach to addressing technical challenge.
IEEE FoRCE Webinar, June 14, 2021. URL
http://ieeecss.org/index.php/presentation/force-
webinars/urban-air-mobility-control-centric-approach-
addressing-technical.

[12] Irene M. Gregory, Natasha A. Neogi, Newton H. Camp-
bell, Jon Holbrook, Barton J. Bacon, Patrick C. Murphy,
Daniel D. Moerder, Benjamin M. Simmons, Michael J.
Acheson, Thomas C. Britton, and Jacob Cook. Intelligent
contingency management for urban air mobility. In AIAA
Scitech Forum, 2021. doi: 10.2514/6.2021-1000.

[13] Sven Hedlund and Anders Rantzer. Optimal control
of hybrid systems. In Proceedings of the 38th IEEE
Conference on Decision and Control, volume 4, pages
3972–3977. IEEE, 1999.

[14] Matthew D Houghton, Alexander B Oshin, Michael J
Acheson, Evangelos A Theodorou, and Irene M Gregory.
Path planning: Differential dynamic programming and
model predictive path integral control on VTOL aircraft.
In AIAA Scitech Forum, page 0624, 2022.

[15] David H Jacobson and David Q Mayne. Differential
dynamic programming. Number 24. Elsevier Publishing
Company, 1970.

[16] Marin Kobilarov, Duy-Nguyen Ta, and Frank Dellaert.

Differential dynamic programming for optimal estima-
tion. In International Conference on Robotics and
Automation (ICRA), pages 863–869. IEEE, 2015.

[17] He Li and Patrick M Wensing. Hybrid systems differen-
tial dynamic programming for whole-body motion plan-
ning of legged robots. IEEE Robotics and Automation
Letters, 5(4):5448–5455, 2020.

[18] Weiwei Li and Emanuel Todorov. Iterative linear
quadratic regulator design for nonlinear biological move-
ment systems. In ICINCO (1), pages 222–229. Citeseer,
2004.

[19] Li-zhi Liao and Christine A Shoemaker. Advantages of
differential dynamic programming over Newton’s method
for discrete-time optimal control problems. Technical
report, Cornell University, 1992.

[20] Guan-Horng Liu, Tianrong Chen, and Evangelos
Theodorou. Second-order neural ODE optimizer. Ad-
vances in Neural Information Processing Systems, 34,
2021.

[21] David Mayne. A second-order gradient method for
determining optimal trajectories of non-linear discrete-
time systems. International Journal of Control, 3(1):
85–95, 1966.

[22] David E Orin, Ambarish Goswami, and Sung-Hee Lee.
Centroidal dynamics of a humanoid robot. Autonomous
Robots, 35(2):161–176, 2013.

[23] Brian Plancher and Scott Kuindersma. A performance
analysis of parallel differential dynamic programming on
a GPU. In International Workshop on the Algorithmic
Foundations of Robotics, pages 656–672. Springer, 2018.

[24] Christopher Silva, Wayne R Johnson, Eduardo Solis,
Michael D Patterson, and Kevin R Antcliff. VTOL
urban air mobility concept vehicles for technology de-
velopment. In Aviation Technology, Integration, and
Operations Conference, page 3847, 2018.

[25] Mark W Spong. Underactuated mechanical systems. In
Control Problems in Robotics and Automation, pages
135–150. Springer, 1998.

[26] Kyle Stachowicz and Evangelos A Theodorou. Optimal-
horizon model-predictive control with differential dy-
namic programming. arXiv preprint arXiv:2111.09207,
2021.

[27] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis
and stabilization of complex behaviors through online
trajectory optimization. In International Conference on
Intelligent Robots and Systems (IROS), pages 4906–4913.
IEEE, 2012.

[28] Yuval Tassa, Nicolas Mansard, and Emo Todorov.
Control-limited differential dynamic programming. In
International Conference on Robotics and Automation
(ICRA), pages 1168–1175. IEEE, 2014.

[29] Emanuel Todorov and Weiwei Li. A generalized iterative
LQG method for locally-optimal feedback control of
constrained nonlinear stochastic systems. In Proceedings
of the American Control Conference, pages 300–306.
IEEE, 2005.

http://github.com/google/brax
http://ieeecss.org/index.php/presentation/force-webinars/urban-air-mobility-control-centric-approach-addressing-technical
http://ieeecss.org/index.php/presentation/force-webinars/urban-air-mobility-control-centric-approach-addressing-technical
http://ieeecss.org/index.php/presentation/force-webinars/urban-air-mobility-control-centric-approach-addressing-technical


APPENDIX

A. Full Q derivatives

The full Q function derivatives are given by

Q0
t = L0

t + V 0
t+1,

Qxt = Lxt + (Fxt )>V xt+1,

Qut = Lut + (Fut )>V xt+1,

Qθt = Lθt + V θt+1 + (Fθt )
>V xt+1,

Qxxt = Lxxt + (Fxt )>V xxt+1F
x
t + V xt+1 · Fxxt ,

Qxut = Lxut + (Fxt )>V xxt+1F
u
t + V xt+1 · Fxut = (Quxt )>,

Quut = Luut + (Fut )>V xxt+1F
u
t + V xt+1 · Fuut ,

Qxθt = Lxθt + (Fxt )>V xθt+1 + (Fxt )>V xxt+1F
θ
t

+ V xt+1 · Fxθt = (Qθxt )>,

Quθt = Luθt + (Fut )>V xθt+1 + (Fut )>V xxt+1F
θ
t

+ V xt+1 · Fuθt = (Qθut )>,

Qθθt = Lθθt + V θθt+1 + V θxt+1F
θ
t + (Fθt )

>V xθt+1

+ (Fθt )
>V xxt+1F

θ
t + V xt+1 · Fθθt .

(36)

The terms highlighted in red denote contractions of the
second-order derivative dynamics tensors with the vector V xt+1.
These terms are dropped in the implementation of PDDP
following iLQR [18].

B. Proof of Proposition 1

Proof: From Eqs. (13) and (15), δθ∗ has the following
form:

δθ∗= εm

= − ε(Qθθ1 −Qθu1 (Quu1 )−1Quθ1︸ ︷︷ ︸
V θθ1

)−1

× (Qθ1 −Qθu1 (Quu1 )−1Qu1︸ ︷︷ ︸
V θ1

)

= −ε(V θθ1 )−1V θ1 .

(37)

V θ1 and V θθ1 are the gradient and Hessian of the value function
with respect to the parameters at the first timestep. The step
in Eq. (37) corresponds exactly to the direction given by
an iteration of Newton’s method for minimizing the value
function at the initial time with respect to the parameters.

C. Proof of Lemma 1

Proof: Using the expression for the cost function J given
in Eq. (2),

∇utJ = ∇ut

[
T∑
i=1

L(xi,ui;θ) + φ(xT+1;θ)

]
= Lut +

(
(Lxt+1)>Fut

)>
+ . . .

+
(
(LxT )>FxT−1 . . .F

x
t+1F

u
t

)>
+
(
(φxT+1)>FxTFxT−1 . . .F

u
t

)>
= Lut + (Fut )>

(
Lxt+1 + (Fxt+1)>Lxt+2 + . . .

+ (Fxt+1)> . . . (FxT−1)>LxT
+ (Fxt+1)> . . . (FxT )>φxT+1

)
= Lut + (Fut )>

×

L
x
t+1 + (Fxt+1)>

Lxt+2 + . . .+ (Fxt+2)> . . . (FxT )>φxT+1︸ ︷︷ ︸
ηt+2


︸ ︷︷ ︸

ηt+1


= Lut + (Fut )>ηt+1.

This shows Eq. (17) of Lemma 1 is true.

D. Proof of Lemma 2

Proof: From the definition of δθ in Eq. (15),

δθ = εm = O(ε).

Now, Eq. (19) is proven true by induction. Starting with
t = 1,

δu1 = εk1 + K1 δx1︸︷︷︸
=0

+ M1δθ︸ ︷︷ ︸
=O(ε)

= O(ε),

δx2 = x2 − x̄2

= F(x̄1, ū1 + δu1; θ̄ + δθ)− F(x̄1, ū1; θ̄)

= Fu1δu1 + Fθ1δθ +O(‖δu1‖22 + ‖δθ‖22)︸ ︷︷ ︸
=O(ε2)

= O(ε).

This shows Eq. (19) is true for t = 1. Now, assume Eq. (19)
holds for t = i, namely δui = O(ε) and δxi+1 = O(ε). Then,
for t = i+ 1,

δui+1 = εki+1 + Ki+1δxi+1 + Mi+1δθ = O(ε),

δxi+2 = Fxi+1δxi+1 + Fui+1δui+1 + Fθi+1δθ

+O(‖δxi+1‖22 + ‖δui+1‖22 + ‖δθ‖22) = O(ε).

Therefore, by induction, Eq. (19) is true for all t = 1, . . . , T .



E. Proof of Proposition 2

Proof: To show Eq. (20) is true, it is sufficient to show

T∑
t=1

(∇utJ )>δut = −ε
T∑
t=1

(λt + γtm) +O(ε2), (38)

with λt = (Qut )>(Quut )−1Qut and γt = (Qut )>(Quut )−1Quθt .
To show Eq. (38), it is sufficient to prove using induction that

T∑
t=i

(∇utJ )>δut = − ε
T∑
t=i

(λt + γtm)

+ (V xi − ηi)>δxi +O(ε2)

. (39)

Starting at i = T ,

(∇uTJ )>δuT

= (LuT + (FuT )>φxT+1︸ ︷︷ ︸
QuT

)>(εkT + KT δxT + MT δθ)

= ε(QuT )>kT + (QuT )>KT δxT + (QuT )>MT δθ

= − ε (QuT )>(QuuT )−1QuT︸ ︷︷ ︸
λT

−ε (QuT )>(QuuT )−1QuθT︸ ︷︷ ︸
γT

m

+

QxT + (KT )>QuT︸ ︷︷ ︸
V xT

−QxT

 δxT
= − ε(λT + γTm)

+

V xT − (LxT + (FxT )>φxT+1︸ ︷︷ ︸
ηT

)


>

δxT

= −ε(λT + γTm) + (V xT − ηT )>δxT .

Next, assume Eq. (39) holds for i = k + 1, namely

T∑
t=k+1

(∇utJ )>δut = − ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>δxk+1 +O(ε2).

Then, for i = k,

T∑
t=k

(∇utJ )>δut = (∇ukJ )>δuk +

T∑
t=k+1

(∇utJ )>δut

= (∇ukJ )>δuk − ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>δxk+1 +O(ε2)

= (Luk + (Fuk)>ηk+1)>δuk − ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>
[
Fxkδxk + Fukδuk

+O(‖δxk‖2 + ‖δuk‖2)︸ ︷︷ ︸
O(ε2)

]
+O(ε2)

= (Luk + (Fuk)>ηk+1)>δuk − ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>Fxkδxk

+ (V xk+1 − ηk+1)>Fukδuk +O(ε2)

= (Luk + (Fuk)>
[
((((((ηk+1 − ηk+1 + V xk+1

]
)>δuk

− ε
T∑

t=k+1

(λt + γtm) + (V xk+1 − ηk+1)>Fxkδxk +O(ε2)

= (Luk + (Fuk)>V xk+1︸ ︷︷ ︸
Quk

)>δuk − ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>Fxkδxk +O(ε2)

= (Quk)>(εkk + Kkδxk + Mkδθ)

− ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>Fxkδxk +O(ε2)

= ε(Quk)>kk + (Quk)>Kkδxk + (Quk)>Mkδθ

− ε
T∑

t=k+1

(λt + γtm)

+ (V xk+1 − ηk+1)>Fxkδxk +O(ε2)

= − ε (Quk)>(Quuk )−1Quk︸ ︷︷ ︸
λk

−ε (Quk)>(Quuk )−1Quθk︸ ︷︷ ︸
γk

m

− ε
T∑

t=k+1

(λt + γtm) + (V xk+1 − ηk+1)>Fxkδxk

+ (Quk)>Kkδxk +O(ε2)

= − ε
T∑
t=k

(λt + γtm) +
[
Lxk −Lxk − (Fxk)>ηk+1︸ ︷︷ ︸

−ηk

+ (Fxk)>V xk+1 + K>k Q
u
k

]>
δxk +O(ε2)

= − ε
T∑
t=k

(λt + γtm)

+
[
Lxk + (Fxk)>V xk+1︸ ︷︷ ︸

Qxk

+K>k Q
u
k − ηk

]>
δxk +O(ε2)

= − ε
T∑
t=k

(λt + γtm)

+
[
Qxk + K>k Q

u
k︸ ︷︷ ︸

V xk

−ηk
]>
δxk +O(ε2)

= −ε
T∑
t=k

(λt + γtm) + (V xk − ηk)>δxk +O(ε2)

This implies, by induction, that Eq. (39) holds for all i =
T, . . . , 1. Taking i = 1 in Eq. (39) implies Eq. (38) is true,
since δx1 = 0.

Finally, by Proposition 1, the form of Eq. (38) can be



expressed as

T∑
t=1

(∇utJ )>δut = −ε
T∑
t=1

(λt + γtm) +O(ε2)

= −ε
T∑
t=1

λt + ε

(
T∑
t=1

γt

)
(V θθ1 )−1V θ1 +O(ε2).

This shows that there exists some ε sufficiently small such that
Eq. (20) holds.

F. Proof of Lemma 3

Proof: Starting with Eq. (7) and substituting in the
expressions for δu∗t from Eq. (14) and δθ∗ from Eq. (15)
yields

Q(xt,u
∗
t ;θ
∗)

≈
[
Q0
t + ε(Qut )>kt + ε(Qut )>Mtm + ε(Qθt )

>m

+
1

2
ε2k>t Q

uu
t kt + ε2k>t Q

uu
t Mtm

+
1

2
ε2m>M>

t Q
uu
t Mtm + ε2ktQ

uθ
t m

+ ε2m>M>
t Q

uθ
t m +

1

2
ε2m>Qθθt m

]
+

[
(Qxt )> + (Qut )>Kt + εk>t Q

ux
t

+ εm>M>
t Q

ux
t + εm>Qθxt + εk>t Q

uu
t Kt

+ εm>M>Quut Kt + εm>Qθut Kt

]
δxt

+
1

2
δx>t

[
Qxxt + 2Qxut Kt + K>t Q

uu
t Kt

]
δxt,

where the zero-, first-, and second-order terms in δxt have
been grouped together. Equating like powers in Eq. (6) gives

V 0
t = Q0

t + ε(Qut )>kt + ε(Qut )>Mtm + ε(Qθt )
>m

+
1

2
ε2k>t Q

uu
t kt + ε2k>t Q

uu
t Mtm

+
1

2
ε2m>M>

t Q
uu
t Mtm + ε2ktQ

uθ
t m

+ ε2m>M>
t Q

uθ
t m +

1

2
ε2m>Qθθt m

= Q0
t − ε (Qut )>(Quut )−1Qut︸ ︷︷ ︸

λt

−ε(Qut )>(Quut )−1Quθt m

+ ε(Qθt )
>m +

1

2
ε2 (Qut )>(Quut )−1Qut︸ ︷︷ ︸

λt

+ ε2(Qut )>(Quut )−1Quθt m +
1

2
ε2m>Qθut (Quut )−1Quθt m

− ε2(Qut )>(Quut )−1Quθt m− ε2m>Qθut (Quut )−1Quθt m

+
1

2
ε2m>Qθθt m

= Q0
t − ε(1−

1

2
ε)λt + ε(Qθt −Qθut (Quut )−1Qut︸ ︷︷ ︸

V θt

)>m

+
1

2
ε2m>(Qθθt −Qθut (Quut )−1Quθt︸ ︷︷ ︸

V θθt

)m,

which shows the form of Eq. (21). Now let t = 1 and
substituting in the expression for m given in Eq. (37) yields

V 0
1 = Q0

1 − ε(1−
1

2
ε)λ1

− ε (V θ1 )>(V θθ1 )−1V θ1︸ ︷︷ ︸
ψ

+
1

2
ε2 (V θ1 )>(V θθ1 )−1V θ1︸ ︷︷ ︸

ψ

= Q0
1 − ε(1−

1

2
ε)(λ1 + ψ),

which shows Eq. (22).

G. Proof of Proposition 3

Proof: Let the cost of the nominal trajectory x̄t, ūt, θ̄
after iteration k be J (k). The cost J (k+1) after iteration k+1
when applying the optimal control and parameter update is
given by V 0

1 given in Eq. (22) plus higher-order terms, namely

J (k+1) = V 0
1 +O(ε3)

= Q0
1 − ε(1−

1

2
ε)(λ1 + ψ) +O(ε3)

= L0
1 + V 0

2 − ε(1−
1

2
ε)(λ1 + ψ) +O(ε3)

= L0
1 +Q0

2 − ε(1−
1

2
ε)

(
2∑
t=1

λt + ψ

)
+O(ε3)

=

2∑
t=1

L0
t + V 0

3 − ε(1−
1

2
ε)

(
2∑
t=1

λt + ψ

)
+O(ε3)

...

=

T∑
t=1

L0
t + φ0T+1︸ ︷︷ ︸
J (k)

−ε(1− 1

2
ε)

(
T∑
t=1

λt + ψ

)
+O(ε3)

= J (k) − ε(1− 1

2
ε)

(
T∑
t=1

λt + ψ

)
+O(ε3).

Thus,

∆J (k+1) = J (k+1) − J (k)

= −ε(1− 1

2
ε)

(
T∑
t=1

λt + ψ

)
+O(ε3).



H. Proof of Theorem 1

Proof: First, note that for 0 < ε ≤ 1,

−(1− 1

2
ε) ≤ −1

2
=⇒ −ε(1− 1

2
ε) ≤ −1

2
ε.

Therefore, by Proposition 3, the cost reduction after the kth

iteration is upper bounded by

∆J (k) ≤ −1

2
ε

(
T∑
t=1

λt + ψ

)
. (40)

Now, by Proposition 1 and Proposition 2, there exists some
0 < ε1 ≤ 1 such that for all 0 < ε ≤ ε1,

T∑
t=1

(∇utJ )>δut ≤ −ε
T∑
t=1

λt + ε

(
T∑
t=1

γt

)
(V θθ1 )−1V θ1

δθ = −ε(V θθ1 )−1V θ1 .

Likewise, by Eq. (40), there exists some 0 < ε2 ≤ ε1 such
that for all 0 < ε ≤ ε2,

∆J (k) ≤ −1

2
ε

(
T∑
t=1

λt + ψ

)
,

which implies the sequence of costs after successive iterations
of PDDP is monotonically decreasing.

To proceed, it is assumed that the space of controls and
parameters is compact. Thus, since J is a continuous function
over a compact space, it is bounded, so there exists some U∗

and θ∗ such that

lim
k→∞

J (k) = J (U∗;θ∗), (41)

meaning the sequence of costs converge to a minimum.
Finally, it can be shown that U(k) and θ(k) converge to the
minimizers.

Note that Eq. (41) implies that ∆J (k) → 0 as k →∞. This
further implies that for all t = 1, . . . , T , λt → 0 and ψ → 0;
so

λt → 0 =⇒ (Qut )>(Quut )−1Qut → 0

=⇒ (Quut )−1Qut = kt → 0

ψ → 0 =⇒ (V θ1 )>(V θθ1 )−1V θ1 → 0

=⇒ (V θθ1 )−1V θ1 = m→ 0.

Recall δθ = εm, so δθ → 0 and θ(k) → θ∗ as k →∞. Using
induction, it is proven that for all t = 1, . . . , T ,

δut → 0

δxt+1 → 0,
(42)

as k →∞.
At time t = 1, since the initial condition is fixed, δx1 = 0;

thus

δu1 = εk1 + M1δθ → 0

δx2 = Fx1δx1 + Fu1δu1 + Fθ1δθ

+O(‖δx1‖22 + ‖δu1‖22 + ‖δθ‖22)→ 0.

Now, assume Eq. (42) holds for t = i, namely

δui → 0

δxi+1 → 0.

Then, for time t = i+ 1,

δui+1 = εki+1 + Ki+1δxi+1 + Mi+1δθ → 0

δxi+2 = Fxi+1δxi+1 + Fui+1δui+1 + Fθi+1δθ

+O(‖δxi+1‖22 + ‖δui+1‖22 + ‖δθ‖22)→ 0.

This proves Eq. (42) holds by induction, implying U(k) →
U∗.


	Introduction
	Parameterized Differential Dynamic Programming
	Problem Formulation
	Algorithm Derivation
	Convergence Analysis
	Algorithm Design

	Applications
	Parameter Estimation
	Switching Time Optimization

	Experiments
	Parameter Estimation
	Cartpole
	Quadrotor
	Ant

	Switching Time Optimization
	Multi-target cartpole
	Quadrotor
	NASA Lift+Cruise vehicle


	Conclusions and Future Work
	Appendix
	Full Q derivatives
	Proof of prop/parametersarenewtonstep
	Proof of lemma/costfngradient
	Proof of lemma/updatesorderepsilon
	Proof of prop/controlupdatesaredescentdirection
	Proof of lemma/valuefnfullzeroorderterm
	Proof of prop/costreduction
	Proof of thm/pddpconverges


