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Abstract—Traversability prediction is a fundamental percep-
tion capability for autonomous navigation. The diversity of data
in different domains imposes significant gaps to the prediction
performance of the perception model. In this work, we make
efforts to reduce the gaps by proposing a novel coarse-to-fine
unsupervised domain adaptation (UDA) model – CALI. Our aim
is to transfer the perception model with high data efficiency,
eliminate the prohibitively expensive data labeling, and improve
the generalization capability during the adaptation from easy-
to-obtain source domains to various challenging target domains.
We prove that a combination of a coarse alignment and a fine
alignment can be beneficial to each other and further design
a first-coarse-then-fine alignment process. This proposed work
bridges theoretical analyses and algorithm designs, leading to
an efficient UDA model with easy and stable training. We show
the advantages of our proposed model over multiple baselines
in several challenging domain adaptation setups. To further
validate the effectiveness of our model, we then combine our
perception model with a visual planner to build a navigation
system and show the high reliability of our model in complex
natural environments where no labeled data is available. The
robot navigation demonstration can be seen in this video:
https://www.youtube.com/watch?v=Nqsegaq x-o.

I. INTRODUCTION

We consider the deployment of autonomous robots in
the real-world unstructured field environments, where the
environments can be extremely complex involving random
obstacles (e.g., big rocks, tree stumps, man-made objects),
cross-domain terrains (e.g., combinations of gravel, sand, wet,
uneven surfaces), as well as dense vegetation (tall and low
grasses, shrubs, trees). Whenever a robot is deployed in such
an environment, it needs to understand which area of the
captured scene is navigable. A typical solution to this problem
is the visual traversability prediction that can be achieved by
learning the scene semantic segmentation.

Visual traversability prediction has been tackled by us-
ing deep neural networks where the models are typically
trained offline with well-labeled datasets in limited scenarios.
However, there is a gap between the data used to train
the model and the real world. It is usually challenging for
existing datasets to well approximate the true distributions of

Fig. 1: Transferring models from the available domain to the target
domain. The existing available data might be from either a simulator
or collecting data in certain environments, at a certain time, and
with certain sensors. In contrast, the target deployment might have
significantly varying environments, time, and sensors.

the unseen target environments where the robot is deployed.
Even incrementally collecting and adding new training data
on the fly cannot guarantee the target environments to be
well in-distribution included. In addition, annotating labels for
dense predictions, e.g., semantic segmentation, is prohibitively
expensive. Therefore, developing a generalization-aware deep
model is crucial for robotic systems considering the demands
of the practical deployment of deep perception models and
the costs/limits of collecting new data in many robotic ap-
plications, e.g., autonomous driving, search and rescue, and
environmental monitoring.

To tackle this challenge, a broadly studied framework is
transfer learning [24] which aims to transfer models between
two domains – source domain and target domain – that have
related but different data distributions. The prediction on target
domain can be considered as a strong generalization since
testing data (in target domain) might fall out of the indepen-
dently and identically distributed (i.i.d.) assumption and follow
a very different distribution than the training data (in source
domain). The “transfer” process has significant meaning to
our model development since we can view the available public

https://www.youtube.com/watch?v=Nqsegaq_x-o
https://www.youtube.com/watch?v=Nqsegaq_x-o


datasets [29, 8, 35, 17] as the source domain and treat the data
in the to-be-deployed environments as the target domain. In
this case, we have access to images and corresponding labels
in source domain and images in target domain, but no access
to labels in target domain. Transferring models, in this set-up,
is called Unsupervised Domain Adaptation (UDA) [36, 40].

Domain Alignment (DA) [10, 12, 13, 32, 33] and Class
Alignment (CA) [31] are two conventional ways to tackle the
UDA problem. DA treats the deep features as a whole. It works
well for image-level tasks such as image classification, but has
issues with pixel-level tasks such as semantic segmentation,
as the alignment of whole distributions ignores the class
features and might misalign class distributions, even the whole
features from the source domain and target domain are already
well-aligned. CA is proposed to solve this issue for dense
predictions with multiple classes.

It is natural and necessary to use CA to tackle the UDA
of semantic segmentation as we need to consider aligning
class features. However, CA can be problematic and might
fail to outperform the DA for segmentation, and in a worse
case, might have unacceptable negative transfer, which means
the performance with adaptation is even degraded than that
without adaptation. Intuitively, we need to consider more
alignments in CA than in DA. Thus the searching space might
be more complicated, and training might be more unstable and
harder to converge to an expected minima, leading to larger
prediction errors.

To solve the issue of CA, we investigate the relationship
of the upper bounds of the prediction error on target domain
between DA and CA and provide a theoretical analysis of the
upper bounds of target prediction error in UDA setup, and
bridge the theoretical analysis and algorithm design for UDA
of traversability prediction.

In summary, our contributions include
• We prove that with proper assumptions, the upper bound

of CA is upper bounded by the upper bound of DA. This
indicates that constraining the training of CA using DA
can be beneficial. We then propose a novel concept of
pseudo-trilateral game structure (PTGS) for integrating
DA and CA.

• We propose an efficient coarse-to-fine alignments based
UDA model, named CALI, for traversability prediction.
The new proposal includes a trilateral network structure,
novel training losses, and an alternative training process.
Our model design is well supported by theoretical anal-
ysis. It is also easy and stable to train and converge.

• We show significant advantages of our proposed model
compared to several baselines in multiple challenging
public datasets and one self-collected dataset. We com-
bine the proposed segmentation model and a visual
planner to build a visual navigation system. The results
show high safety and effectiveness of our model.

II. RELATED WORK

Semantic Segmentation: Semantic segmentation aims to
predict a unique human-defined semantic class for each pixel

in the given images. With the prosperity of deep neural
networks, the performance of semantic segmentation has been
boosted significantly, especially by the advent of FCN [20]
that first proposes to use deep convolutional neural nets to
predict segmentation. Following works try to improve the
FCN performance by multiple proposals, e.g., using different
sizes of kernels or dilation rates to aggregate multi-scale
features [6, 7, 38]; building image pyramids to create multi-
resolution inputs [41]; applying probabilistic graph to smooth
the prediction [19]; compensating features in deeper level by
an encoder-decoder structure [30], and employing attention
mechanism to capture the long-range dependencies among
pixels in a more compact and efficient way [28]. We can also
see how excellent the current semantic segmentation SOTA
performance is from very recently released work [42, 37].
However, all of those methods belong to fully-supervised
learning and the performance might catastrophically be de-
graded when a domain shift exists between the training data
and the data when deploying. Considering the possible domain
shift and developing adaptation-aware models is extremely
practical and urgent.

Unsupervised Domain Adaptation: The main approaches
to tackle UDA include adversarial training (a.k.a., distribu-
tion alignment) [10, 12, 13, 32, 31, 33, 21, 34] and self-
training [43, 39, 23, 16]. Although self-training is becoming
another dominant method for segmentation UDA in terms
of the empirical results, it still lacks a sound theoretical
foundation. In this paper, we only focus on the alignment-
based methods that not only keep close to the UDA state-of-
the-art (SOTA) performance but also are well supported by
sound theoretical analyses [1, 3, 2].

The alignment-based methods adapt models via aligning the
distributions from the source domain and target domain in
an adversarial training process, i.e., making the deep features
of source images and target images indistinguishable to a
discriminator net. Typical approaches to UDA include Domain
Alignment (DA) [10, 12, 13, 32, 33], which aligns the two
domains using global features (aligning the feature tensor
from source or target as a whole) and Class Alignment (CA)
[31, 21, 34], which only considers aligning features of each
class from source and target, no matter whether the domain
distributions are aligned or not. In [31], the authors are inspired
by the theoretical analysis of [2] and propose a discrepancy-
based model for aligning class features. There is a clear
relation between the theory guidance [2] and the design of
network, loss, and training methods. There are some recent
works [21, 34] similar to the proposed work in spirit and show
improved results compared to [31], but it is still unclear to
relate the proposed algorithms with theory and to understand
why the structure/loss/training is designed as the presented
way.

III. BACKGROUND AND PRELIMINARY MATERIALS

We consider segmentation tasks where the input space is
X ⊂ RH×W×3, representing the input RGB images, and
the label space is Y ⊂ {0, 1}H×W×K , representing the



ground-truth K-class segmentation images, where the label
for a single pixel at (h,w) is denoted by a one-hot vector
y(h,w) ∈ RK whose elements are by-default 0-valued except
at location (h,w) which is labeled as 1. Domain adaptation
has two domain distributions over X × Y , named source
domain DS and target domain DT . In the setting of UDA for
segmentation, we have access to ms i.i.d. samples with labels
US = {xsi,ysi}ms

i=1 from DS and mt i.i.d. samples without
labels UT = {xtj}mt

j=1 from DT .
In the UDA problem, we need to reduce the prediction error

on the target domain. A hypothesis is a function h : X → Y .
We denote the space of h as H. With the loss function l(·, ·),
the expected error of h on DS is defined as

ϵS(h) := E(x,y)∼DS
l(h(x), y). (1)

Similarly, we can define the expected error of h on DT as

ϵT (h) := E(x,y)∼DT
l(h(x), y). (2)

Two important upper bounds related to the source and target
error are given in [2]. Basically,

Theorem 1 For a hypothesis h,

ϵT (h) ≤ ϵS(h) + d1(DS ,DT ) + λ, (3)

where d1(·, ·) is the L1 divergence for two distributions, and
the constant term λ does not depend on any h. However, it is
claimed in [2] that the bound with L1 divergence cannot be
accurately estimated from finite samples, and using L1 diver-
gence can unnecessarily inflate the bound. Another divergence
measure is thus introduced to replace the L1 divergence with
a new bound derived.

Definition 1 Given two domain distributions DS and DT
over X , and a hypothesis space H that has finite VC dimen-
sion, the H-divergence between DS and DT is defined as

dH(DS ,DT ) = 2 sup
h∈H

|Px∼DS
[h(x) = 1]−

Px∼DT
[h(x) = 1] |,

(4)

where Px∼DS
[h(x) = 1] represents the probability of x

belonging to DS . Same to Px∼DT
[h(x) = 1].

The H-divergence resolves the issues in the L1 divergence.
If we replace d1(DS ,DT ) in Eq. (3) with dH(DS ,DT ), then
a new upper bound for ϵT (h), named as UB1, can be written
as

ϵT (h) ≤ UB1,

UB1 = ϵS(h) + dH(DS ,DT ) + λ.
(5)

An approach to compute the empirical H-divergence is also
proposed in [2].

Lemma 1 For a symmetric hypothesis class H (one where
for every h ∈ H, the inverse hypothesis 1 − h is also in H)
and two sample sets US = {xi, i = 1, · · · ,ms, xi ∼ DS} and
UT = {xj , j = 1, · · · ,mt, xj ∼ DT }.

d̂H(DS ,DT ) = 2

(
1−min

η∈H

[
1

ms

ms∑
i=1

I[η(xi) = 0]+

1

mt

mt∑
j=1

I[η(xj) = 1]

])
,

(6)

where I[a] is an indicator function which is 1 if a is true, and
0 otherwise.

The second upper bound is based on a new hypothesis called
symmetric difference hypothesis.

Definition 2 For a hypothesis space H, the symmetric
difference hypothesis space H∆H is the set of hypotheses

g ∈ H∆H ⇔ g(x) = h(x)⊕h′(x) for some h, h′ ∈ H, (7)

where ⊕ denotes an XOR operation. Then we can define the
H∆H-distance as

dH∆H(DS ,DT ) = 2 sup
h,h′∈H

|Px∼DS
[h(x) ̸= h′(x)]−

Px∼DT
[h(x) ̸= h′(x)] |.

(8)

Similar to Eq. (5), if we replace d1(DS ,DT ) with
dH∆H(DS ,DT ), the second upper bound for ϵT (h), named
as UB2, can be expressed as

ϵT (h) ≤ UB2,

UB2 = ϵS(h) + dH∆H(DS ,DT ) + λ,
(9)

where λ is the same term as in Eq. (3).
A standard way to achieve the alignment for deep models

is to use the adversarial training method, which is also used
in Generative Adversarial Networks (GANs). Therefore we
explain the key concepts of adversarial training using the
example of GANs.

GAN is proposed to learn the distribution pr of a set of given
data {x} in an adversarial manner. The architecture consists
of two networks - a generator G, and a discriminator D. The
G is responsible for generating fake data (with distribution
pg) from random noises z ∼ pz to fool the discriminator D
that is instead to accurately distinguish between the fake data
and the given data. Optimization of a GAN involves a mini-
maximization over a joint loss for G and D.

min
G

max
D

V (G,D)

V (G,D) = Ex∼pr log [D(x)] + Ez∼pz log [1−D(G(z))] .
(10)

where we use 1 as the real label and 0 as the fake label. Train-
ing with Eq. (10) is a bilateral game where the distribution pg
is aligned with the distribution pr.

The two bounds (Eq. (5) and Eq. (9)) for the target domain
error are separately given in [2]. It has been independently
demonstrated that domain alignment corresponds to optimiz-
ing over UB1 [10], where optimization over the upper bound
UB1 (Eq. (5) with the divergence Eq. (6)) is proved as
equivalent to Eq. (10) with a supervised learning in the source
domain, and that class alignment corresponds to optimizing
over UB2 [31], where the dH∆H is approximated by the
discrepancy between two different classifiers.

Training DA is straightforward since we can easily define
binary labels for each domain, e.g., we can use 1 as the source
domain label and 0 as the target domain label. Adversarial
training over the domain labels can achieve domain alignment.
For CA, however, it is difficult to implement as we do not have
target labels, hence the target class features are completely



Fig. 2: An ideal iterative training process by integrating DA and CA.

unknown to us, thus leading naively using adversarial training
over each class impossible. The existing way well supported
by theory to perform CA [31] is to indirectly align class
features by devising two different classifier hypotheses. The
two classifiers have to be well trained on the source domain
and are able to classify different classes in the source domain
with different decision boundaries. Then considering the shift
between source and target domain, the trained two classifiers
might have disagreements on target domain classes. Note since
the two classifiers are already well trained on the source
domain, the agreements of the two classifiers represent those
features in the target domain that are close to the source
domain, while in contrast, the features where disagreements
happen indicate that there is a large shift between source and
target. We use the disagreements to approximate the distance
between source and target. If we are able to minimize the
disagreements of the two classifiers, then features of each class
between source and target will be enforced to be well aligned.

IV. METHODOLOGY

In this work we further investigate the relation between the
UB1 and UB2 and prove that UB1 turns out to be an upper
bound of UB2, meaning DA can be a necessary constraint
to CA. This is also consistent to our intuition: DA aligns
features globally in a coarse way while CA aligns features
locally in a finer way. Constraining CA with DA is actually
a coarse-to-fine process, which makes the alignment process
efficient and stable. By carefully studying the internal structure
of existing DA and CA work, we propose a novel concept,
pseudo-trilateral game structure, for efficiently integrating DA
and CA. We follow our theoretical analysis and proposed
PTGS to guide the development of CALI, including designs
of model structure, losses and training process.

Notations used in this paper is explained as follows. we
denote the segmentation model h as hθ,ϕ(x) = Cθ(Gϕ(x))
which consists of a feature extractor Gϕ parameterized by ϕ
and a classifier Cθ parameterized by θ, and x is a sample
from US or UT . If multiple classifiers are used, we will denote
the jth classifier as Cj . We denote the discriminator as Dψ

parameterized by ψ.

A. Bounds Relation

We start by examining the relationship between the DA and
the CA from the perspective of target error bound. We propose
to use this relation to improve the segmentation performance

Fig. 3: Pseudo-trilateral game structure (PTGS). Three players are
in the game, a feature extractor G, a domain discriminator D and
a family of classifiers Cs. The game between G and Cs is the CA
while the game between G and D is the DA. The DA and CA are
connected by sharing the same feature extractor G. Both D and Cs
are trying to adjust the G such that the features between source and
target generated from G could be well aligned globally and locally.

of class alignment, which is desired for dense prediction tasks.
We provide the following theorem:

Theorem 2 If we assume there is a hypothesis space H
for segmentation model hθ,ϕ and a hypothesis space HD for
domain classifiers Dψ , and H∆H ⊂ HD, then we have

ϵT (h) ≤ ÛB2 ≤ ÛB1,

ÛB1 = ϵS(h) +
1

2
dHD

(DS ,DT ) + λ,

ÛB2 = ϵS(h) +
1

2
dH∆H(DS ,DT ) + λ.

(11)

The proof of this theorem is provided in Appendix. VI-A.
Essentially, we limit the hypothesis space H and HD in

Eq. (11) into the space of deep neural networks. Directly
optimizing over ˆUB2 might be hard to converge since ˆUB2 is a
tighter upper bound for the prediction error on target domain.
The bounds relation in Eq. (11) shows that the ÛB1 is an
upper bound of ÛB2. This provides us a clue to improve the
training process of class alignment, i.e., the domain alignment
can be a global constraint and narrow down the searching
space for the class alignment. This also implies that integrating
the domain alignment and class alignment might boost the
training efficiency as well as the prediction performance of
UDA. An ideal training process is illustrated in Fig. 2 where
the searching space of ÛB2 (CA) is constantly bounded by that
of ÛB1 (DA), ensuring the whole training process converge
stably. This inspires us to design a new model, and we are
explaining next in details about our model structures, losses
and training process.

B. CALI Structure

The existing DA or CA works usually involve a bilateral
game. In CA, the game is between a feature extractor and a
family of classifiers. The two players are optimized over the
discrepancy of the two classifiers (note here the two players
are the two classifiers vs. the feature extractor) in an opposite
manner. In DA, the game happens between a segmentation net
and a domain discriminator. The two players are optimized
over the domain discrimination in an opposite way. It has
been empirically showed [33, 32] that DA performs well if the



Fig. 4: CALI network structure. xS and xT represent the source and
target images, respectively. yS is the label of the source image. See
Section. IV-B for more details.

domain alignment happens to the prediction probability (after
Softmax()). However, according to the identified relation
in Eq. (11), the two upper bounds ÛB1 and ÛB2 need to use
the same feature, hence we connect the domain alignment and
class alignment using a shared feature extractor and propose
a novel concept called PTGS (see Fig. 3) to illustrate an
interesting structure to integrate DA and CA. Both Cs and
D have game with G, but there is no game between Cs
and D, hence we call this game as pseudo-trilateral game.
Furthermore, as defined in Eq. (8), h and h

′
are two different

hypotheses, thus we have to ensure the classifiers in Cs are
different during the training.

Following the concept of PTGS, we design the structure
of our CALI model as shown in Fig. 4. Four networks are
involved, a shared feature extractor G, a domain discriminator
D and two classifiers C1 and C2. f represents the shared fea-
tures; P1/O1 and P2/O2 are the probability/class predictions
for C1 and C2, respectively; S/T represent the source domain
label (1) and target domain label (0); and L1 represents the
L1 distance measure between two probability distributions.
The one-way solid arrows indicate the forward propagation
of the data flow while the two-way dashed arrows indicate
losses are generated. The red arrows represent the source-
related data while the blue ones represent the target-related
data. The orange two-way dashed line indicates the structural
regularization loss between the C1 and C2.

Note that the supervision signal from source domain (yS in
Fig. 4) is used to train C1 and C2 because both classifiers are
expected to generate correct decision boundaries on source
domain. No label from target domain is used during the
training process.

C. CALI Losses

We denote raw images from source or target domain as
x, and the label from source domain as y. We use semantic
labels in source domain to train all of the nets, but the domain
discriminator, in a supervised way, see the solid red one-
way arrow in Fig. 4. We need to minimize the supervised
segmentation loss since Eq. (11) and other related Eqs suggest
that the source prediction error is also part of the upper bound
of target error. The supervised segmentation loss for training

CALI is defined as

Lseg(G,C1, C2) =
1

2

(
E(x,y)∼DS

[−y log(C1(G(x)))] +

E(x,y)∼DS
[−y log(C2(G(x)))]

)
= −1

2
E(x,y)∼DS

[yS log ((C1(G(x))⊙ (C2(G(x)))))],

(12)
where ⊙ represents the element-wise multiplication between
two tensors.

To perform domain alignment, we need to define the joint
loss function for G and D

V1(G,D) = − (CES(x) + CET (x)) , (13)

where no segmentation labels but domain labels are used, and
we use the standard cross-entropy to compute the domain
classification loss for both source (CES(x)) and target data
(CET (x)). We have

CES(x) = Ex∼DS
[CE([1, 0]T , [D(G(x)), 1−D(G(x))]T )]

= Ex∼DS
[− log(D(G(x)))].

(14)
and

CET (x) = Ex∼DT
[CE([0, 1]T , [D(G(x)), 1−D(G(x))]T )]

= Ex∼DT
[− log(1−D(G(x)))],

(15)
Note we include G in Eq. (14) since both the source data and
target data are passed through the feature extractor. This is
different than standard GAN, where the real data is directly
fed to D, without passing through the generator.

To perform class alignment, we need to define the joint loss
function for G, C1, and C2

V2(G,C1, C2) = Ex∼DT
[d(C1(G(x)), C2(G(x)))] , (16)

where d(·, ·) is the distance measure between two distributions
from the two classifiers. In this paper, we use the same L1

distance in [31] as the measure, thus d(p, q) = 1
K |p − q|1,

where p and q are two distributions and K is the number of
label classes.

To prevent C1 and C2 from converging to the same net-
work throughout the training, we use the cosine similarity
as a weight regularization to maximize the difference of the
weights from C1 and C2, i.e.,

WR(C1, C2) =
w1 ·w2

∥w1∥ ∥w2∥
, (17)

where w1 and w2 are the weight vectors of C1 and C2,
respectively.

D. CALI Training

We integrate the training processes of domain alignment and
class alignment to systematically train our CALI model. To be
consistent with Eq. (11), we adopt an iterative mechanism that
alternates between domain alignment and class alignment. Our
training process is pseudo-coded in Algorithm 1.



Algorithm 1: CALI Training Process

1 Input: Source dataset Us; Target dataset Ut; Initial model
G,C1, C2 and D; Maximum iterations M ; Iteration
interval I .

2 Output: Updated model parameters ϕG, θC1 , θC2 and ψD
3 Initialization: is domain=True; is class=False;
4 for m ← 1 to M do
5 if m%I == 0 and m ̸= 0 then
6 is domain = not is domain;
7 is class = not is class;

// Eq. (12)
8 minϕG,θC1

,θC2
Lseg(G,C1, C2);

// Eq. (17)
9 minθC1

,θC2
WR(C1, C2);

10 if is domain then
// Eq. (13)

11 maxψD minθG V1(G,D);

12 if is class then
// Eq. 16

13 maxθC1
,θC2

minϕG V2(G,C1, C2);

14 Return ϕG, θC1 , θC2 and ψD;

Note the adversarial training order of V1 in Algorithm 1
is maxψD

minϕG
, instead of the minϕG

maxψD
, meaning in

each training iteration we first train the feature extractor and
then the discriminator. The reason for this order is because
we empirically find that the feature from G is relatively easy
for D to discriminate, hence if we train D first, then the D
might become an accurate discriminator in the early stage of
training and there will be no adversarial signals for training G,
thus making the whole training fail. The same order applies
to training of the pair of G and Cs with V2.

E. Visual Planner

We design a visual receding horizon planner to achieve
feasible visual navigation by combining the learned image
segmentation. Specifically, first we compute a library of
motion primitives [14, 15] M = {p1,p2, · · · ,pn} where
each p∗ = {x1,x2, · · · ,xm} is a single primitive. We use
x∗ =

[
x y ψ

]T
to denote a robot pose. Then we project

the motion primitives to the image plane and compute the
navigation cost function for each primitive based on the
evaluation of collision risk in image space and target progress.
Finally, we select the primitive with minimal cost to execute.
The trajectory selection problem can be defined as:

poptimal = argmin
p

w1 · Cc(p) + w2 · Ct(p), (18)

where Cc(p) =
∑m
j c

j
c and Ct(p) =

∑m
j c

j
t are the collision

cost and target cost of one primitive p, and w1, w2 are
corresponding weights, respectively.

To efficiently evaluate the collision risk in the learned
segmentation images, we first classify the classes in terms
of their navigability, e.g., in off-road environments, grass
and mulch are classified as navigable while tree and bush
are classified as non-navigable. In this case, we are able to

extract the boundary between the navigable space and the non-
navigable space. We treat the boundary part close to the bottom
line of the image as the obstacle boundary. We further use the
obstacle boundary to generate a Scaled Euclidean Distance
Field (SEDF), where the values fall in [0, 1], representing the
risk level at the pixel position. Examples of different SEDF
with different scale factors can be seen in Fig. 6.

Assume xj is the jth pose in one primitive and its image
coordinates are

(
uj , vj

)
, then the collision risk for xj is

cjc = E[uj , vj ], (19)

where E represents the SEDF image.
To evaluate target progress during the navigation progress,

we propose to use the distance on SE(3) as the metric. We
define three types of frames: world frame Fw, primitive pose
frame Fpj , and goal frame Fg . The transformation of Fpj in
Fw is denoted as Twpj while that of Fg in Fw is Twg . A
typical approach to represent the distance is to split a pose
into a position and an orientation and define two distances
on R3 and SO(3). Then the two distances can be fused in a
weighted manner with two strictly positive scaling factors a
and b and with an exponent parameter p ∈ [1,∞] [5]:

d(Twpj ,Twg) =

[
a · drot(Rwpj ,Rwg)

p+

b · dtrans(twpj , twg)p
]1/p

.

(20)

We use the Euclidean distance as dtrans(twpj , twg), the Rie-
mannian distance over SO(3) as drot(Rwpj ,Rwg) and set p as
2. Then the distance (target cost) between two transformation
matrices can be defined [25] as:

cjt = d(Twpj ,Twg)

=
[
a ·
∥∥log(R−1

wpjRwg)
∥∥2 + b · ∥twpj − twg∥2

]1/2
.

(21)

V. EXPERIMENTS

A. Datasets

We evaluate CALI together with several baseline methods
on a few challenging domain adaptation scenarios, where
several public datasets, e.g., GTA5 [29], Cityscapes [8],
RUGD [35], RELLIS [17], as well as a small self-collected
dataset, named MESH (see the first column of Fig. 8), are
investigated. The GTA5 dataset contains 24,966 synthesized
high-resolution images in the urban environments from a video
game and pixel-wise semantic annotations of 33 classes. The
Cityscapes dataset consists of 5,000 finely annotated images
whose label is given for 19 commonly seen categories in
urban environments, e.g., road, sidewalk, tree, person, car, etc.
The RUGD and RELLIS are two recently released datasets
that aim to evaluate segmentation performance in off-road
environments. The RUGD and the RELLIS contain 24 and
20 classes with 8,000 and 6,000 images, respectively. RUGD
and RELLIS cover various scenes like trails, creeks, parks,
villages, and puddle terrains. Our dataset, MESH, includes



Fig. 5: Qualitative results on adaptation GTA5→Cityscapes. Results of our proposed model is listed in the last second column. GT represents
the ground-truth labels.

(a) (b) (c)
Fig. 6: Different SEDFs with varying scale factors of (a) α = 0.25,
(b) α = 0.55 and (c) α = 1.00. Values range from 0 to 1 by the
color from blue to yellow.

features like grass, trees (particularly challenging in winter due
to foliage loss and monochromatic colors), mulch, etc. It helps
us to further validate the performance of our proposed model
for traversability prediction in challenging scenes, particularly
the off-road environments.

B. Implementation Details

To be consistent with our theoretical analysis, the imple-
mentation of CALI only adopts the necessary indications by
Eq. (11). First, Eq. (11) requires that the input of the two
upper bounds (one for DA and the other one for CA) should be
the same. Second, nothing else but only domain classification
and hypotheses discrepancy are involved in Eq. (11) and other
related analyses (Eq. (3) - Eq. (9)). Accordingly, we strictly
follow the guidance of our theoretical analyses. First, CALI
performs DA in the intermediate-feature level (f in Fig. 4),
instead of the output-feature level used in [33]. Second, we
exclude the multiple additional tricks, e.g., entropy-based and

TABLE I: Quantitative comparison of different methods in UDA of
GTA5→Cityscapes. mIoU* represents the average mIoU over all of
classes.

Class SO DA CA CALI
Road 38.86 52.80 78.56 75.36

Sidewalk 17.47 18.95 2.79 27.12
Building 63.60 61.73 43.51 67.00

Sky 58.08 54.35 46.59 60.49
Vegetation 67.21 64.69 41.48 67.50

Terrain 7.63 7.04 8.37 9.56
Person 16.89 15.45 13.48 15.03

Car 30.32 43.41 31.64 52.25
Pole 11.61 12.38 9.68 11.91

mIoU* 34.63 36.76 30.68 42.91

multi-level features based alignment, and class-ratio priors in
[33] and multi-steps training for feature extractor in [31]. We
also implement baseline methods without those techniques for
a fair comparison. To avoid possible degraded performance
bought by a class imbalance in the used datasets, we regroup
those rare classes into classes with a higher pixel ratio. For
example, we treat the building, wall, and fence as the same
class; the person and rider as the same class in the adaptation
of GTA5→Cityscapes. In the adaptation of RUGD→RELLIS,
we treat the tree, bush, and log as the same class, and the rock
and rockbed as the same class. Details about remapping can



Fig. 7: Qualitative results on adaptation RUGD→RELLIS. Results of our proposed model is listed in the last second column. GT represents
the ground-truth labels.

TABLE II: Quantitative comparison of different methods in UDA
of RUGD→RELLIS. mIoU* is the average mIoU over all of classes.

Class SO DA CA CALI
Dirt 0.00 0.53 3.23 0.01

Grass 64.78 61.63 65.35 67.08
Tree 40.79 45.93 41.51 55.80
Sky 45.07 67.00 2.31 72.99

Building 10.90 12.29 10.91 10.28

mIoU* 32.31 37.48 24.66 41.23

be seen in Fig. 14 and Fig. 15 in Appendix. VI-B.
We use the PyTorch [26] framework for implementation.

Training images from source and target domains are cropped to
be half of their original image dimensions. The batch size is set
to 1 and the weights of all batch normalization layers are fixed.
We use the ResNet-101 [11] pretrained on ImageNet [9] as the
model G for extracting features. We use the ASPP module in
DeepLab-V2 [6] as the structure for C1 and C2. We use the
similar structure in [27] as the discriminator D, which consists
of 5 convolution layers with kernel 4 × 4 and with channel
size {64, 128, 256, 512, 1} and stride of 2. Each convolution
layer is followed by a Leaky-ReLU [22] parameterized by 0.2,
but only the last convolution layer is follwed by a Sigmoid
function. During the training, we use SGD [4] as the optimizer
for G,C1 and C2 with a momentum of 0.9, and use Adam [18]

to optimize D with β1 = 0.9, β2 = 0.99. We set all SGD
optimizers a weight decay of 5e-4. The initial learning rates
of all SGDs for performing domain alignment are set to 2.5e-4
and the one of Adam is set as 1e-4. For class alignment,
the initial learning rate of SGDs is set to 1e-3. All of the
learning rates are decayed by a poly learning rate policy, where
the initial learning rate is multiplied by (1− iter

max iters )
power

with power = 0.9. All experiments are conducted on a single
Nvidia Geforce RTX 2080 Super GPU.

C. Comparative Studies

We present comparative experimental results of our pro-
posed model, CALI, compared to different baseline methods
– Source-Only (SO) method, Domain-Alignment (DA) [33]
method, and Class-Alignment [31] method. Specifically, we
first perform evaluations on a sim2real UDA in city-like
environments, where the source domain is represented by
GTA5 while the target domain is the Cityscapes. Then we
consider a transfer of real2real in forest environments, where
the source domain and target domain are set as RUGD and
RELLIS, respectively. All models are trained with full access
to the images and labels in the source domain and with only
access to the images in the target domain. The labels in target
datasets are only used for evaluation purposes. Finally, we
further validate our model performance for adapting from
RUGD to our self-collected dataset MESH.

To ensure a fair comparison, all the methods use the same



Fig. 8: Qualitative results on adaptation RUGD→MESH. Results of our proposed model is listed in the last column.

feature extractor G; both DA and CALI have the same domain
discriminator D; both CA and CALI have the same two
classifiers C1 and C2. We also use the same optimizers and
optimization-related hyperparameters if any is used for models
under comparison.

We use the mean of Intersection over Union (mIoU) as the
metric to evaluate each class and overall segmentation perfor-
mance on testing images. IoU is computed as ntp

ntp+nfp+nfn
,

where ntp, ntn, nfp and nfn are true positive, true negative,
false positive and false negative, respectively.

1) GTA5→Cityscapes: Quantitative comparison results of
GTA5→Cityscapes are shown in Table. I, where segmentations
are evaluated on 9 classes (as regrouped in Fig. 14). Our
proposed method has significant advantages over multiple
baseline methods for most categories and overall performance
(mIoU*).

In our testing case, SO achieves the highest score for the
class person even without any domain adaptation. One possible
reason for this is the deep features of the source person and
the target person from the model solely trained on source
domain, are already well-aligned. If we try to interfere this
well-aligned relation using unnecessary additional efforts, the

target prediction error might be increased (see the mIoU values
of the person from the other three methods). We call this
phenomenon as negative transfer, which also happens to other
classes if we compare SO and DA/CA, e.g., sidewalk, building,
sky, vegetation, and so on. In contrast, CALI maintains an
improved performance compared to either SO or DA/CA. We
validate our analytical method for DA and CA (Section. IV-A)
by a comparison between CALI and baselines. This indicates
either single DA or CA is problematic for semantic segmen-
tation, particularly when we strictly follow what the theory
supports and do not include any other training tricks (that
might increase the training complexity and make the training
unstable). This implies that integration of DA and CA is
beneficial to each other with significant improvements, and
more importantly, CALI is well theoretically supported, and
the training process is easy and stable.

Fig. 5 shows the examples of qualitative comparison for
UDA of GTA5→Cityscapes. We find that CALI prediction is
less noisy compared to the baselines methods as shown in
the second and third columns (sidewalk or car on-road), and
shows better completeness (part of the car is missing, see the
fourth column).



(a) (b) (c)

Fig. 9: Target discrepancy changes during training process of (a) GTA5→Cityscapes; (b) RUGD→RELLIS; and (c) RUGD→MESH.

(a) (b)

Fig. 10: Using minmax can cause the collapse of training.

Fig. 11: An example of collapsed trained model using minmax.

2) RUGD→RELLIS: We show quantitative results of
RUGD→RELLIS in Table. II, where only 5 classes1 are
evaluated. It shows the same trend as Table. I. Both tables
show that CA has the negative transfer (compared with SO)
issue for either sim2real or real2real UDA. However, if we
constrain the training of CA with DA, as in our proposed
model, then the performance will be remarkably improved.
Some qualitative results are shown in Fig. 7.

3) RUGD→MESH: Our MESH dataset contains only un-
labeled images that restrict us to show only a qualitative
comparison for the UDA of RUGD→MESH, as shown in
Fig. 8. We have collected data in winter forest environments,
which are significantly different than the images in the source
domain (RUGD) - collected in a different season, e.g., summer
or spring. These cross-season scenarios make the prediction
more challenging. However, it is more practical to evaluate

1This is because other classes (in Fig. 15) frequently appearing in source
domain (RUGD) are extremely rare in target domain (RELLIS), hence no
prediction for those classes occurs especially considering the domain shift.

the UDA performance of cross-season scenarios, as we might
have to deploy our robot at any time, even with extreme
weather conditions, but our available datasets might be far
from covering every season and every weather condition. From
Fig. 8, we can still see the obvious advantages of our proposed
CALI model over other baselines.

D. Discussions

In this section, we aim to discuss our model behaviors in
more details. Specifically, first we will explain the advantages
of CALI over CA from the perspective of training process.
Second, we will show the vital influence of mistakenly using
wrong order of adversarial training.

The most important part in CA is the discrepancy between
the two classifiers, which is the only training force for the
functionality of CA. It has been empirically studied in [31]
that the target prediction accuracy will increase as the target
discrepancy is decreasing, hence the discrepancy is also an
indicator showing if the training is on the right track. We
compare the target discrepancy changes of CALI and our
baseline CA in Fig. 9, where the curves for the three UDA
scenarios are presented from (a) to (c) and we only show the
data before iteration 30k. It can be seen that before around
iteration 2k, the target discrepancy of both CALI and CA
are drastically decreasing, but thereafter, the discrepancy of
CA starts to increase. On the other hand, if we impose a
DA constraint over the same CA (iteratively), leading to our
proposed CALI, then the target discrepancy will be decreasing
as expected. This validates that integrating DA and CA will
make the training process of CA more stable, thus improving
the target prediction accuracy.

As mentioned in Algorithm 1, we have to use adversarial
training order of maxψD

minϕG
, instead of minϕG

maxψD
.

The reason for this is related to our designed net structure.
Following the guidance of Eq. (11), we use the same input
to the two classifiers and the domain discriminator, hence the
discriminator has to receive the intermediate-level feature as
the input. If we use the order of minϕG

maxψD
in CALI, then

the outputs of the discriminator will be like Fig. 10(a), where
the domain discriminator of CALI will quickly converge to the
optimal state and it can accurately discriminate if the feature
is from source or target domain. In this case, the adversarial



Fig. 12: Navigation behaviors in MESH#1 environment. The left-most column: top-down view of the environment; Purple triangle: the
starting point; Blue star: the target point; We also show the segmentation (top row) and planning results (bottom row) at four different
moments during the navigation, as shown from the second column to the last one.

Fig. 13: Navigation behaviors in MESH#2 environment. Same legends with Fig. 12.

loss for updating the feature extractor will be near 0, hence
the whole training fails, which is validated by changes of the
target discrepancy curve, as shown in Fig. 10(b), where the
discrepancy value is decreasing in a small amount in the first
few iterations and then quickly increase to a high level that
shows the training is divergent and the model is collapsed.
This is also verified by the prediction results at (and after)
around iteration 1k, as shown in Fig. 11, where the first row
is the source images while the second row is the target images.

E. Navigation Missions

To further show the effectiveness of our proposed model for
real deployments, we build a navigation system by combining
the proposed CALI (trained with RUGD→MESH set-up)
segmentation model with our visual planner. We test behaviors
of our navigation system in two different forest environments
(named MESH#1 in Fig. 12 and MESH#2 in Fig. 13), where
our navigation system shows high reliability. In navigation
tasks, the image resolution is [400, 300], and the inference time
for pure segmentation inference is around 33 frame per second
(FPS). However, since a complete perception system requires
several post-processing steps, such as navigability definition,
noise filtering, Scaled Euclidean Distance Field computation,
motion primitive evaluation and so on, the response time
for the whole perception pipeline (in python) is around 8
FPS without any engineering optimization. The inference of

segmentation for navigation is performed on an Nvidia Tesla
T4 GPU. We set the linear velocity as 0.3m/s and control the
angular velocity to track the selected motion primitive. The
path length is 32.26m in Fig. 12 and 28.63m in Fig. 13.
Although the motion speed is slow in navigation tasks, as
a proof of concept and with a very basic motion planner,
the system behavior is as expected, and we have validated
that the proposed CALI model is able to well accomplish the
navigation tasks in unstructured environments.

VI. CONCLUSION

We present CALI, a novel unsupervised domain adaptation
model specifically designed for semantic segmentation, which
requires fine-grained alignments in the level of class features.
We carefully investigate the relationship between a coarse
alignment and a fine alignment in theory. The theoretical
analysis guides the design of the model structure, losses, and
training process. We have validated that the coarse alignment
can serve as a constraint to the fine alignment and integrating
the two alignments can boost the UDA performance for seg-
mentation. The resultant model shows significant advantages
over baselines in various challenging UDA scenarios, e.g.,
sim2real and real2real. We also demonstrate the proposed
segmentation model can be well integrated with our proposed
visual planner to enable highly efficient navigation in off-road
environments.
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APPENDIX

A. Proof of Theorem 2
For a hypothesis h,

ϵT (h) ≤ ϵT (h
∗) + ϵT (h, h

∗)

= ϵT (h
∗) + ϵS(h, h

∗)− ϵS(h, h
∗) + ϵT (h, h

∗)

≤ ϵT (h
∗) + ϵS(h, h

∗) + |ϵT (h, h∗)− ϵS(h, h
∗)|

≤ ϵT (h
∗) + ϵS(h, h

∗) +
1

2
dH∆H(DS ,DT )

≤ ϵT (h
∗) + ϵS(h) + ϵS(h

∗) +
1

2
dH∆H(DS ,DT )

= ϵS(h) +
1

2
dH∆H(DS ,DT ) + ϵS(h

∗) + ϵT (h
∗)

= ϵS(h) +
1

2
dH∆H(DS ,DT ) + λ

= ϵS(h) + sup
h,h′∈H

|Px∼DS

[
h(x) ̸= h

′
(x)
]
−

Px∼DT

[
h(x) ̸= h

′
(x)
]
|+ λ

= ϵS(h) + sup
g∈H∆H

|Px∼DS
[g(x) = 1)]−

Px∼DT
[g(x) = 1] |+ λ

= ϵS(h) + sup
g∈H∆H

|Px∼DS
[g(x) = 1)]+

Px∼DT
[g(x) = 0]− 1|+ λ

≤ ϵS(h) + sup
g∈H∆H

|Px∼DS
[g(x) = 1)]+

Px∼DT
[g(x) = 0] | − inf

g∈H∆H
1 + λ

= ϵS(h) + sup
g∈H∆H

|Px∼DS
[g(x) = 1)]+

Px∼DT
[g(x) = 0] |+ λ− 1

= ϵS(h) +
1

2
dH(DS ,DT ) + 1 + λ− 1

= ϵS(h) +
1

2
dH(DS ,DT ) + λ,

(22)
where λ = ϵS(h

∗)+ϵT (h
∗) and h∗ is the ideal joint hypothesis

(see the Definition 2 in Section 4.2 of [2]).
We have the 4th, and the 8th line because of the Lemma

3 [2]; the 5th line because of the Theorem 2 [2]; the
last second line because of the Lemma 2 [2]. We have
the 11th line because sup |f1 − f2| = sup f1 − inf f2 ≤
sup |f1|−inf f2. ■

B. Remapping of Label Space

We regroup the original label classes according to the
semantic similarities among classes. In GTA5 and Cityscapes,
we cluster the building, wall and fence as the same category;
traffic light, traffic sign and pole as the same group; car, train.
bicycle, motorcycle, bus and truck as the same class; and treat
the person and rider as the same one. See Fig. 14. Similarly,
we also have regroupings for classes in RUGD and RELLIS,
as can be seen in Fig. 15.

Fig. 14: Lable remapping for GTA5→Cityscapes. Name of
each new group is marked as bold.

Fig. 15: Lable remapping for RUGD→RELLIS and
RUGD→MESH. Name of each new group is marked as bold.
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