
Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

1

Learning Forward Dynamics Model and Informed
Trajectory Sampler for Safe Quadruped Navigation

Yunho Kim, Chanyoung Kim, Jemin Hwangbo
Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

{awesomericky, slowturtle99, jhwangbo}@kaist.ac.kr

Abstract—For autonomous quadruped robot navigation in var-
ious complex environments, a typical SOTA system is composed
of four main modules – mapper, global planner, local planner,
and command-tracking controller – in a hierarchical manner. In
this paper, we build a robust and safe local planner which is
designed to generate a velocity plan to track a coarsely planned
path from the global planner. Previous works used waypoint-
based methods (e.g. Proportional-Differential control and pure
pursuit) which simplify the path tracking problem to local point-
goal navigation. However, they suffer from frequent collisions
in geometrically complex and narrow environments because of
two reasons; the global planner uses a coarse and inaccurate
model and the local planner is unable to track the global
plan sufficiently well. Currently, deep learning methods are an
appealing alternative because they can learn safety and path fea-
sibility from experience more accurately. However, existing deep
learning methods are not capable of planning for a long horizon.
In this work, we propose a learning-based fully autonomous
navigation framework composed of three innovative elements:
a learned forward dynamics model (FDM), an online sampling-
based model-predictive controller, and an informed trajectory
sampler (ITS). Using our framework, a quadruped robot can
autonomously navigate in various complex environments without
a collision and generate a smoother command plan compared
to the baseline method. Furthermore, our method can reactively
handle unexpected obstacles on the planned path and avoid them.
(Video1)

I. INTRODUCTION

Thanks to recent advances in legged robot control re-
search [23, 1, 13, 51, 15], legged robots have become more
robust and more agile in diverse environments. Notably,
learning-based control approaches have shown great perfor-
mance in complex outdoor environments. Unfortunately, those
are largely blind: they only use proprioceptive sensors [33] or
very local information of the terrain [38]. Furthermore, they
can follow the given velocity commands but it is not trivial
how we can generate adequate velocity commands in various
environments. For autonomous navigation, the robot should be
able to plan a safe and efficient plan.

We are interested in a point-goal navigation task, where
the legged robot should autonomously navigate to the given
goal position using real-time exteroceptive and proprioceptive
sensor data. For robust autonomous navigation, many previous
works [30, 6, 4, 48, 18, 11, 35, 50] proposed a hierarchical
framework composed of four main modules: mapper, global

1Supplementary materials:
awesomericky.github.io/projects/FDM ITS navigation/

Fig. 1: Using our safe navigation framework, quadruped robot
can safely navigate in complex environments. The yellow
cylinder is the goal position. The yellow dotted line is the
planned path by the global planner. The blue dotted line is the
generated trajectory by the optimized command sequence.

planner, local planner, and command-tracking controller. The
roles of each modules are as following:

• Mapper: Build a map of the environment using extero-
ceptive sensors such as a lidar and camera.

• Global planner: Find a rough path from the current
location to the goal location using the map built by the
mapper. A variety of planning algorithms such as search-
based methods (e.g. A* [16]), sampling-based methods
(e.g. RRT [32], PRM [31], RRT*, PRM* [28]), and
heuristic methods (e.g. Potential Field [29]) can be used.

• Local planner: Generate a high-level command for the
robot to track the planned path from the global planner.
During the process, the roughly planned path is projected
to a locally feasible trajectory that the robot can track.
Various types of high-level commands can be planned by
the local planner. In this work, we will focus on a local
planner generating velocity commands.

• Command-tracking controller: Generate a joint-level
command to track the given high-level command from the
local planner. A learning-based [23] or model-based [1]
controller can be used for this purpose.

All four modules should work in concert for safe and
robust navigation. However, compared to recent advances

https://awesomericky.github.io/projects/FDM_ITS_navigation/
https://awesomericky.github.io/projects/FDM_ITS_navigation/
https://awesomericky.github.io/projects/FDM_ITS_navigation/

in mapping and global planning techniques [17, 7, 10, 9],
there were relatively little developments in local planning. In
geometrically complex environments, local planning becomes
a challenging problem. In these environments, the local plan-
ner should be capable of generating long horizon plans that
satisfies the kinematic and dynamics constraints of the robot
and the performance characteristics of the command-tracking
controller. Furthermore, it has to be reactive enough to handle
unexpected obstacles that have not been accounted for during
global planning.

In this light, we propose a learning-based, fully autonomous
navigation framework composed of three innovative ele-
ments: a learned forward dynamics model (FDM), an on-
line sampling-based model-predictive control module, and an
informed trajectory sampler (ITS). We demonstrate how the
dynamics of a quadruped robot and its surroundings can be
captured accurately using deep neural networks (i.e. FDM),
which is trained with a self-supervised learning framework,
and used for predicting the future outcomes of a given
command sequence. We then used FDM in conjunction with
an online sampling-based model-predictive control module to
track a roughly planned path from the global planner, as
illustrated in Fig. 1. To handle the curse of dimensionality in
sampling-based motion planning, we learned the implicit com-
mand sampling distribution (i.e. ITS) which generates samples
close to optimal solutions and used it with the proposed online
sampling-based model-predictive control module.

Because the learned FDM can be evaluated very fast in
a GPU-enabled hardware, we can simulate 1,500 of 6-second
trajectories in a 3 ms window, which is more than 20,000 times
and 20 times faster than the simulation of the full and approx-
imate robot model, respectively. An extensive evaluation in a
physics simulator [22] shows that the proposed method for
local planning enables safer autonomous navigation in diverse
geometrically complex environments compared to widely used
baseline methods. Furthermore, the proposed method can
reactively handle unexpected obstacles on the planned path
and be easily modified for both fully-autonomous and semi-
autonomous tasks.

II. RELATED WORK

To generate a velocity command to track a path from the
global planner, many previous works [6, 4, 48, 50] used
waypoint-based methods which simplify the path tracking
problem into local point-goal navigation. These methods re-
peat (1) determining a waypoint on the planned path that
is within an adequate distance range and (2) generating a
command to move toward the determined waypoint. Com-
mands are generated using a PD (i.e. Proportional-Differential)
controller based on the position and orientation error between
the current and desired configuration in the waypoint. How-
ever, these methods suffer from frequent collisions in complex
and narrow environments. Enlarging the approximated robot
collision body can be a solution for the global planner to find
a more conservative path, but it results in a compromising
path or failure to find one. Post-processing the planned path

heuristically [50] for smoothness still cannot be a complete
solution to guarantee safety in local planning. Some works
used reactive methods [37, 30, 18] with vector field repre-
sentation for local obstacle avoidance, but they result in jerky
and discrete command changes due to the lack of long horizon
planning. Gilroy et al. [11] and Li et al. [35] used collocation-
based trajectory optimization to handle long horizon planning,
but the decoupled nature between the local planner and the
command-tracking controller can still cause a collision in
complex environments because the local planner cannot take
into account the performance characteristics of the command-
tracking controller. Furthermore, these methods cannot handle
unexpected obstacles on the globally planned path.

Learning-based methods are an appealing alternative be-
cause they can accurately learn the safety and path feasibility
from experience. Previous works [46, 47, 40, 20] used imi-
tation learning and model-free deep reinforcement learning to
learn a collision-free control policy for a wheeled mobile robot
and a quadruped robot. However, the results were a reactive
single-step planning policy and also cannot be integrated
with the existing hierarchical navigation framework. When
deploying the resulting policy for a point-goal navigation task,
the robot will easily get stuck in a local optimum due to the
lack of a long horizon planning module.

There were recent advances in the global planner using
learning-based methods to find the global path faster [2, 41, 42,
24, 53] or to find a controller-aware path [14, 52]. However,
these methods still require a robust local planner to safely
track the planned path.

Our work is closely related to the one presented by Kahn et
al. [27]. They presented a forward dynamics model, composed
of deep neural networks, that predicts the path that the robot
will take, the corresponding collision probabilities, and the
terrain properties. Our work differs from theirs in three ways.
First, their focus was on identifying the traversability of the
terrain from an RGB image in open field environments and use
this information in finding a command trajectory that leads
the robot toward the goal. Because the environments they
experimented had less obstacles, the robot can safely navigate
to the goal without a globally planned path. However, in
geometrically complex environments that we are interested in,
the robot will easily get stuck in a local optimum without using
the global planner. Thus, we focused on finding a command
trajectory to track the planned path from the global planner
in environments with densely placed obstacles, requiring a
more reactive controller and a different problem formulation.
Second, we improved the sampling-based motion planner used
by Kahn et al. [27] by learning the implicit command
sampling distribution (i.e. ITS) using Conditional Variational
Inference [43], which results in a safer motion plan. Lastly, we
tested our controller with a legged robot, which manifests more
complicated dynamics and kinematics compared to wheeled
mobile robots, and a 360-degree lidar sensor readings for safe
navigation in all directions, rather than front view camera
images.

Fig. 2: Block diagram of the proposed safe navigation frame-
work.

III. METHOD

Our goal is to improve the existing hierarchical navigation
system by building a more robust and safe local planner that
can generate a sequence of velocity commands to track the
coarsely planned path from the global planner in a geometri-
cally complex environment with flat terrain and many static
obstacles. Thus, the proposed safe navigation framework is
constructed similarly to the existing navigation system with
four main modules: mapper, global planner, local planner, and
command-tracking controller (Fig. 2). Although our frame-
work can be easily combined with a mapper for navigation
in unknown environments similar to previous works [35, 11],
we assume that the map is given ahead of time, because it
is not the focus of this paper. For global planning, we used
an open-source implementation [44] of BIT* [10] because of
its speed and robustness. However, many other path planning
algorithms [16, 28, 9] can be used with our framework as well.
The global planner finds a rough path from the start location
to the goal location and returns a list of x, y coordinates,
represented in the world frame, to the local planner. The global
planner does not consider the orientation of the robot due to the
computation complexity in real-time usage and uses a minimal
bounding sphere to simplify the robot’s collision bodies [48].

The local planner is composed of three core elements: a
learned forward dynamics model (FDM), an online sampling-
based model-predictive control module, and an informed tra-
jectory sampler (ITS) (Fig. 2). In the rest of the subsections,
we will introduce each element and summarize the overall
working pipeline. For the command-tracking controller, we use
a controller proposed in our previous work, which is acquired
using model-free deep reinforcement learning [23].

We use a simulated ANYmal C robot [21] for both training
and testing of our proposed framework in the RaiSim simulator
[22]. For perception, we use a 2D line-scan lidar sensor
attached to the back of the robot. Lidar readings are modeled
with a Gaussian noise N(0, 0.2) [m] and normalized with the
maximum available sensing range of 10 m.

A. Forward dynamics model

To plan for a long horizon, we learn the dynamics of the
environment rather than a task-specific control policy, inspired
by numerous previous works [8, 39, 27, 26]. Our learned FDM
works as a fast virtual simulator for a quadruped robot and
predicts the future base coordinates and the probability of
collision on the trajectory. To be specific, it takes as input
the current lidar sensor data, history of selected generalized

Environment type Parameter Sampling distribution

Open-fields

cylinder radius U(0.05, 1.0) [m]
box side U(0.1, 2.0) [m]
grid size U(2.3, 5.0) [m]

center randomness U(0.1, 0.9) [m]

Cross-corridors

cylinder radius U(0.05, 1.0) [m]
box side U(0.1, 2.0) [m]
grid size U(2.3, 5.0) [m]

center randomness U(0.1, 0.9) [m]
corridor width U(2.0, 6.0) [m]
corridor length U(8.0, 30.0) [m]

TABLE I: Parameters for the random environment generation

coordinates and velocities, and a sequence of future intended
commands, and predicts the future x, y coordinates of the
robot with respect to the robot’s current body frame and the
probability of collision. The history of selected generalized
coordinates and velocities correspond to the history of base
orientation, base linear velocity, and base angular velocity (10
steps of history, each step corresponding to 0.05 second). The
history term was included due to the dynamic movements
of the origin of the lidar frame. We denote this model as
fθ (ot ,ct:t+H) = {x̂t+1:t+H+1, ŷt+1:t+H+1, p̂t+1:t+H+1}, which is
parameterized by the vector θ , that takes as input the cur-
rent observation ot and a sequence of H future commands
ct:t+H = {ct ,ct+1, ...,ct+H−1}. The model predicts the x, y
coordinates x̂, ŷ and probability of collision p̂ for H future
time steps.

FDM is a deep neural network composed of fully connected
layers and subsequent recurrent layers to predict the future
positions and collision probabilities conditioned on the current
observations and a sequence of commands. The current obser-
vations, which include both proprioceptive and exteroceptive
sensor information, are encoded to latent features using fully
connected layers. The final output of these layers serves as a
hidden state initialization for a recurrent neural network, which
sequentially processes each of the H future commands ct:t+H
and outputs the future navigational outcomes. We use the
LSTM (i.e. Long Short-Term Memory) cells for the recurrent
layers [19].

To let FDM learn the dynamics of the environment, we
focus on generating diverse environments to capture both a
broad lidar data distribution and a future outcome distribution.
We train FDM on two types of parameterized environments:
open-fields with densely placed cylinders/boxes, and cross-
shaped corridors with densely placed cylinders/boxes. Each
of these environments is randomly generated by sampling the
corresponding parameters from the predefined range given in
Table I. The map is divided into equal sizes of grids, and each
grid contains one obstacle. The position of the obstacle inside
the grid is sampled from U(center randomness, grid size−
center randomness), where center randomness determines
the overall randomness of the obstacle distribution. Using
our parameterization, we can generate various environments
with both convex and concave obstacles, due to the occlusion
between cylinders/boxes, and let FDM learn the general ability
to detect collisions.

To take advantage of the fast parallel data generation process

Fig. 3: Overall framework to train FDM. The neural network architecture of FDM was inspired by the ones used by Kahn
et al. [27].

of the simulator, we alternate between a data collection and
model training step. In the data collection step, we randomly
generate Nenv environments with different types of obstacles
in the same proportion. During the data collection period, a
quadruped robot is randomly placed in each environments and
given velocity command sequences sampled from {U(-1.0,
1.0), U(-0.4, 0.4), U(-1.2, 1.2)}, each elements corresponds
to forward velocity [m/s], lateral velocity [m/s], and turning
rate [rad/s]. The specific command sequence sampling method
used for training FDM is described in APPENDIX-A.

We use a self-supervised data labeling technique, similar to
[27], to process the data for training without human super-
vision. Simple coordinate transformation is used to compute
x, y coordinates in the robot’s current body frame. For the
probability of collision, binary collision state, computed by
solving the contact dynamic in the physics simulation, is used
[22]. Data tuples {ot ,ct:t+H ,xt+1:t+H+1,yt+1:t+H+1,
pt+1:t+H+1} are recorded to the data buffer and used later for
training.

The model is trained to minimize a loss function that penal-
izes the distance between the predicted and actual outcomes.
The mean squared error and cross-entropy loss are used for
the x, y coordinates and probability of collision, respectively.
The overall training framework is summarized in Fig. 3.
Hyperparameters used for the data collection and training are
shown in the APPENDIX-B.

We train FDM to predict 12 steps of future navigational
outcomes, each step corresponding to 0.5 s period which

results in 6 s of the maximum prediction horizon, and use it
for the experiments done in section IV.

B. Online sampling-based model-predictive control

In this section, we present an online sampling-based
model predictive control algorithm using learned FDM, which
works as a fast virtual simulator with collision checking,
for safe quadruped navigation. We define a reward function
R(fθ (ot ,ct:t+H)) in terms of the future navigational outcomes
predicted by FDM, conditioned on the given task of the robot.
Using this reward function and FDM, we repeatedly solve the
following optimization problem,

c∗t:t+H = argmax
ct:t+H∈C

R(fθ (ot ,ct:t+H)), (1)

and execute the first step of the resulting command sequence
for a single command period, where C is the available
command range.

To solve Eqn. 1, we use a gradient-free optimizer similar to
the ones used by Nagabandi et al. [39] and Kahn et al. [27].
At every time step, N commands c0:N

t:t+H are generated by
computing the weighted average of time-correlated random
command sequences c̃0:N

t:t+H and previously optimized results
ĉt:t+H as

cn
t:t+H = (1−β) · c̃n

t:t+H + β · ĉt:t+H

s.t. c̃n
t+k+1 ∼ N(c̃n

t+k,σ)

c̃n
t ∼ Bin(cmin,cmax)

∀ k ∈ {0..,H −2}, ∀ n ∈ {0..,N −1}

(2)

where Bin is a bin sampling method, which divides the
command range into Nb equally spaced bins and samples
uniformly from each of them.

Each command sequence is then fed to FDM to compute
the corresponding reward Rn = R(fθ (ot ,cn

t:t+H)). Using
the sampled command sequences and computed rewards, we
update the optimized command sequence via reward-weighted
average as

ĉt:t+H =
∑

N−1
n=0 exp(γ ·Rn) · cn

t:t+H

∑
N−1
n′=0 exp(γ ·Rn′)

, (3)

similar to the equation by recent model-predictive path integral
work [49, 36].

We then execute the first step of the planned command
sequence for a single command period and repeat the process.
Parameters β ∈ [0,1] and γ ∈ R+ of the optimizer work as
a time correlation factor and a high-reward weighting factor,
respectively. The optimizer we used shows stable performance
in complex environments due to the ability to sample a dense
set of trajectories. The performance of our algorithm will
be further analyzed in section IV. Our overall algorithm is
summarized as follows (Alg. 1).

Algorithm 1 Online sampling-based model-predictive control
with learned FDM

1: input: learned FDM fθ , reward function R
2: while task is not complete do
3: get current observation ot from sensors
4: solve Eqn. 1 using Eqn. 2 and Eqn. 3
5: execute ĉt in optimized command sequence ĉt:t+H

C. Implementation for path tracking

For the robot to safely track the planned path, we use the
sum of two rewards, Rtrack and Rsa f ety, defined as

Rtotal = Rtrack +Rsa f ety

s.t. Rtrack = exp(
−DTW (gt ,qt+1:t+H+1)

τ
)

Rsa f ety =
∑

H
k=1(1− p̂t+k)

H

(4)

where gt = Lt g (g ⊂ G, G: Global path), qt+k =
{Lt x̂t+k,

Lt ŷt+k}, and τ is a temperature constant for normal-
ization.

Rtrack is to incentivize command sequences that result in a
similar path with the currently considered global path. Thus,
we used the output of normalized Dynamic Time Warping
(DTW) for Rtrack. DTW is a similarity function between
two series of data by finding their optimal alignment which
minimizes the cumulative distance between aligned elements.
Because DTW does not require two series of data to have
the same length or constant difference in successive data, it
has recently been used as an evaluation metric for navigation
tasks [25]. In this work, we applied it in continuous planning
for path tracking.

To compute Rtrack, we truncate the globally planned path
that is 4.8m ahead from the current location, resulting in 0.8
m/s of desired average speed, and transform the coordinates
of the considered path into the robot’s local frame. DTW
between the considered path in the robot’s local frame and the
predicted path from FDM is computed and normalized. Open-
source implementation [12] is used for computing DTW. The
truncated global path considered in the current step will be
referred to as the waypoint trajectory hereinafter.

To generate safer navigation plan, the collision probability
outputs from FDM is used for both hard and soft constraints.
For hard constraint, we filter out the sampled command
trajectories that collide with obstacles within a fixed period
(3s). For soft constraint, we compute Rsa f ety and include it in
the total reward formulation to give additional weights to the
trajectories that show a low probability of collision.

The planning module runs at 2Hz. In each planning period,
we plan 12 steps of command trajectory to track the global
path, each step corresponding to 0.5s period which results in
6s of the maximum planning horizon.

D. Informed trajectory sampler

Although the robot showed overall high performance by
just sampling random time-correlated command sequences as
Eqn. 2, it is still not free from the curse of dimensionality in
sampling-based motion planning and thus often fails in com-
plex environments. Considering that the command dimension
is three, the number of planning steps is H, and the number
of bins used for bin sampling is Nb, we need at least Nb

3H

number of samples to guarantee a near-optimal solution in any
cases. However, as we are building methods that are capable
of long-distance planning (i.e. large H) it is impossible to
consider Nb

3H samples online.
Therefore, we additionally use the informed trajectory sam-

pler (ITS) that can generate command sequences close to the
optimal solution.

ITS is a deep neural network modeled with Conditional
Variational AutoEncoder (CVAE) [43]. CVAE is a conditional
generative model that uses conditional variational inference
to handle the intractable posterior distribution. The model is
trained by optimizing the Evidence Lower BOund (ELBO) as
shown in

logpθ (x|y)
= Ez∼qφ (z|x,y)[logpθ (x|z,y)] − DKL(qφ (z|x,y)||pθ (z|y))

+ DKL(qφ (z|x,y)||pθ (z|x,y))
≥ Ez∼qφ (z|x,y)[logpθ (x|z,y)] − DKL(qφ (z|x,y)||pθ (z|y))
= Ez∼qφ (z|x,y)[logpθ (x|z,y)] − DKL(qφ (z|x,y)||pθ (z))

ELBO

.

(∵ Assume y and z independent)

(DKL corresponds to Kullback–Leibler divergence)

(5)

In our case, x corresponds to a command trajectory and y
corresponds to an observation and a global path considered in
the current step (i.e. waypoint trajectory). Observation includes
the current lidar sensor data and history of selected generalized

coordinates and velocities, same as FDM. Waypoint trajectory
is represented as a list of x, y coordinates included in the
globally planned path and transformed into the robot’s local
frame.

Because sampling-based path planning algorithms, such
as BIT*, output list of nodes that show irregular distances
between them, waypoint trajectory sometimes include very few
nodes. In this case, we interpolate it to guarantee a minimum
number of nodes.

ITS is composed of fully connected layers and recurrent
layers. We use the GRU (i.e. Gated Recurrent Unit) cells for
the recurrent layers [5] and sequence-to-sequence model to
encode and decode command trajectory and waypoint trajec-
tory [45]. 160K number of training data is collected by rolling
out the robot, controlled with Alg. 1, in randomly generated
environments (Fig. 3) and goal positions. For the learned
sampler to generate locally diverse samples, we use a variant
of the CVAE objective function proposed by Bhattacharyya
et al. [3]. Hyperparameters used for training ITS are shown in
the APPENDIX-B.

Learned ITS is then used with the time-correlated ran-
dom sampler to generate command sequences for the online
sampling-based model-predictive control module. The detailed
model architecture of ITS is shown in Fig. 4.

E. Summary

We now provide a summary of our safe navigation frame-
work (Fig. 2). N command sequences are first sampled from
both a time-correlated random sampler and ITS. For each
sample, the future navigation outcomes and rewards are then
predicted with FDM and Eqn. 4. Based on Eqn. 3, the optimum
command sequence is predicted and the first step command of
it is executed by passing it to the command tracking controller,
which outputs the target joint torque. This process repeats until
the task is completed.

IV. EXPERIMENT

In our experiments, we study how the proposed learning-
based safe navigation framework enables a quadruped robot
to autonomously navigate in various complex environments.
Hyperparameters of the sampling-based model-predictive con-
troller were set constant for all the experiments (APPENDIX-
B).

In the experiments, we used AMD Ryzen9 5950X and
NVIDIA GeForce RTX 3070 for computation. FDM and ITS,
which are composed of neural networks, inference were done
on GPU (i.e. Graphics Processing Unit) and other computa-
tions such as sampling-based optimization were done on CPU
(i.e. Central Processing Unit).

A. FDM evaluation

We first evaluated the performance of FDM in terms of
prediction accuracy and computation speed. As FDM works
as a fast virtual simulator to predict the future navigation
outcomes, the performance was compared with two baseline

models that use a real-time collision checking algorithm in the
physics simulator [22].

• Complete: A method that runs the forward simulation of
a quadruped robot with complete kinematic and dynamic
models. Velocity tracking controller [23] was used to map
the given velocity command to a joint-level command.

• Approximate: A method that runs the forward simula-
tion of a quadruped robot with approximated kinematic
models. For fast collision checking, the robot was approx-
imated to a box with a size that covers the entire body of
it in the nominal configuration. Future coordinates were
computed analytically by assuming that the robot follows
the velocity command perfectly.

For the baseline methods, we assumed the terrain model of
the environment is known apriori for the physics simulator to
run a collision checking algorithm.

The accuracy of FDM was evaluated on 3.5M samples
collected in randomly generated environments, which were not
seen during training. The generated environments include both
open-fields with densely placed cylinders/boxes, and cross-
shaped corridors with densely placed cylinders/boxes (Fig. 3,
Table I). A probability threshold of 0.3 was used for deciding
collision.

FDM showed high collision checking accuracy (94.6%) and
low coordinate prediction error per step (0.1m) (Fig 5.A).
Furthermore, we could simulate 1,500 of 6-second trajectories
in about 3 ms window with only using real-time exterocep-
tive sensor data, which is more than 20,000 times and 20
times faster than Complete and Approximate that use accu-
rately constructed environment models (Fig 5.C), respectively.
Complete especially entailed very high computation costs.
Thus, it was not suitable for applications that require lots
of command samples to be simulated in real-time, such as
our proposed algorithm. Approximate, which simplifies the
kinematic and dynamic model, could be a solution to alleviate
the computation cost. However, such a method showed a large
coordinate prediction error as the horizon became longer due
to error accumulation (Fig 5.B). Our ablation study between
FDM and Approximate will further explain the importance
of prediction accuracy of forward simulation for the overall
navigation performance.

In the following experiments, we will show how the effect of
slight errors in FDM can be mitigated by its low computational
cost and other elements in the proposed framework for safe
navigation. When using FDM for safe navigation, we added
a padding step. If FDM predicted the first collision in h step,
the subsequent predicted outputs from h step were set constant
as xt+h = xt+h+1..= xt+H , yt+h = yt+h+1..= yt+H , and pt+h =
pt+h+1..= pt+H (1 ≤ h ≤ H).

B. Point-Goal Navigation

In point-goal navigation task, the robot should safely track
the path, planned from the global planner, to navigate from
the start location to the goal location. We compared the
proposed method with a waypoint-based method that generates
command using a PD controller, which will be referred to as

Fig. 4: Model architecture to train ITS. Gray scaled part is ITS used for generating command trajectory samples in real-time
navigation. The neural network architecture of ITS was inspired by the ones used by Ichter et al. [24] and Lee et al. [34].
MLP in the figure indicates fully connected layers.

Fig. 5: FDM evaluation results. (A) shows the overall prediction accuracy of FDM. (B) and (C) show the comparison between
the baseline models in terms of coordinate prediction error and computation time.

PD hereinafter. The detailed mechanism is explained in section
II. The desired orientation, used in PD, was computed for the
robot to be aligned with the planned path.

Three evaluation metrics were used to compare the perfor-
mance: Success Rate (SR), Traversal Time, and Dynamic Time
Warping (DTW). Success here means that the robot reached
the location within 0.6 m from the goal without any collision
with obstacles. DTW was computed between the globally
planned path and the robot COM’s traversal path. We use
DTW per step to make the metric invariant to the path length.

We evaluated the performance in 60 different randomly
generated open field environments with densely placed ob-
stacles and 8 goal positions. As the proposed method relies
on a random command sampler, we repeated the experiments
with three different random seeds and the mean values of
the evaluation metrics are reported in Table II. The standard
deviations were small enough to be ignored.

Our method showed a higher success rate compared to
PD with similar traversal time and DTW. PD suffered from
collisions in complex and narrow environments (i.e. environ-
ments with high obstacle density) due to unaccounted safety

during the local planning. Performance of ITS will be further
analyzed in section IV-D.

Because the proposed model-predictive control module iter-
atively replans a long horizon command trajectory to improve
both path similarity and safety, our local planner resulted in
a smoother command trajectory on the robot than PD (Fig.
6.A-C). Furthermore, it could handle unexpected obstacles on
the globally planned path and avoid them without a new plan
from the global planner (Fig. 6.D).

To check the generalizability and robustness of our method,
we generated two different environments with various geomet-
ric complexity as shown in Fig. 7. Visualized traversal paths of
the robot in each environment indicate that our method could
safely navigate over a long distance.

C. Semi-autonomous task

FDM and model-predictive control module with a ran-
dom sampler are not limited to fully-autonomous tasks like
point-goal navigation and can also be applied to semi-
autonomous tasks. We evaluated our proposed method on a
semi-autonomous task named safety remote control. In safety

Obstacle density [1/m] 0.43 0.33 0.25 0.2
SR Time DTW SR Time DTW SR Time DTW SR Time DTW

Ours 83.2 48.0 0.43 95.9 33.5 0.34 96.9 31.6 0.34 98.2 30.9 0.34
PD 45.2 32.9 0.30 84.5 32.7 0.28 91.7 32.5 0.27 94.6 32.4 0.26
Approximate (ABL) 76.5 43.8 0.44 93.4 33.2 0.36 95.9 31.9 0.35 98.3 31.4 0.35
only Random (ABL) 73.6 51.7 0.45 89.5 34.2 0.35 96.6 31.8 0.34 98.6 31.0 0.34
only ITS (ABL) 63.2 39.3 0.38 90.3 33.0 0.35 91.5 31.6 0.36 91.9 31.1 0.37

TABLE II: Point-Goal Navigation results in open fields with densely placed obstacles. Success rate (SR) [%], traversal time
[s], and DTW [m] are reported. The results are the mean values after running the evaluation with three different random seeds.
Obstacle density represents the number of obstacles per meter and is computed as 1

obstacle grid size . Candidates with a ABL flag
were evaluated for the ablation study.

Fig. 6: (A-C) shows the velocity command trajectory executed
on the robot to reach the goal. (A), (B), (C) each corresponds
to forward velocity, lateral velocity, yaw rate command. (D)
shows the reactiveness of our method to avoid unexpected
obstacles (green) located on the globally planned path.

Fig. 7: Map and the robot’s traversal path in novel environ-
ments

remote control task, the robot should decide whether the
given remote command from the user is safe and project the
command onto the safe command set if it is not. (Fig. 8).

We used Rsa f ety and the proposed model-predictive control
algorithm for the task with an additional simple logic. If FDM
predicted the given user command to collide with obstacles
within a fixed period (3s), it executes the optimized command.

Fig. 8: Visualization of Safety Remote Control task. The
blue dotted line is the generated trajectory by the optimized
command. The yellow and red dotted line is a generated
trajectory by the given command. The red dots indicate that
FDM predicts collision along the trajectory.

Obstacle density [1/m] 0.4 0.33 0.25 0.2
Collision safe [%] 81.0 85.8 88.4 88.4
No collision safe [%] 98.2 98.8 99.8 99.8

TABLE III: Safety Remote Control result in open fields with
densely placed obstacles. Success rate (SR) [%] is reported.
Obstacle density represents the number of obstacles per meter
and is computed as 1

obstacle grid size . “Collision safe” and “No
collision safe” each represent the success case when directly
executing the given command results in a collision or not.
To be specific, “Collision safe” corresponds to “(number of
collision-free trajectories among the trajectories when directly
executing the given command results in a collision) / (number
of trajectories when directly executing the given command
results in a collision)”. “No collision safe” corresponds to
“(number of collision-free trajectories among the trajectories
when directly executing the given command does not result in
a collision) / (number of trajectories when directly executing
the given command does not result in a collision)”

On the other hand, if the given command was predicted as safe,
it executes the given command. We sampled the commands for
optimization in a multivariate normal distribution with given
user command as mean values to search solutions close to the
user’s intended command.

We evaluated the performance in open field environments

Fig. 9: Visualization of trajectories sampled using ITS (Right)
and the output trajectory from the optimizer using these
samples (Left). The robot is placed at the origin. The yellow
dotted line is the global path to track. The yellow dotted line
between two light-blue cylinders is the waypoint trajectory
considered when generating the visualized samples. As ITS
samples command sequences, outputs of learned FDM is used
to visualize the trajectories.

with densely placed obstacles. In each environment, 300
randomly sampled commands were given to the robot and
recorded as a success if the robot did not make a contact
with the environment other than on the feet, which is the
same rule applied for point-goal navigation. Results shown
in Table III indicate that our method with FDM can predict
collision and project the command onto the safe command set,
if needed, with a high accuracy. Furthermore, it shows that
our proposed method can be used for both fully-autonomous
and semi-autonomous tasks by just changing the command
sampling distribution and reward functions.

D. Ablation study

In the ablation study, we aim at showing the importance of
the following contributions for the overall performance in safe
navigation:

• Learned FDM that outputs the future coordinates and the
collision probabilities

• Usage of both random sampler and learned ITS for
command sampling

For evaluation, we used the same evaluation metrics and
procedure explained in section IV-B.

First, we used Approximate described in section IV-A,
instead of FDM, for the proposed navigation framework and
evaluated the performance (Table II). Complete was not used
because of the heavy computation for real-time usage. Ours
using FDM showed higher success rate than ones with Ap-
proximate. This was due to the large coordinate prediction
error shown in Approximate (Fig 5.B). It caused the predicted
trajectory to deviate a lot from the actual trajectory and thus
returned an inaccurate reward signal for the optimization.
Furthermore, compared to the physics simulator that outputs
discrete collision state, FDM outputs continuous collision
probability which enabled distinct safety reward signal for
each sample.

To check the importance of the command sampler, ours
were compared with two methods, each using only the random
sampler or ITS. Results in Table II indicate the complemen-
tary relationship between random sampler and ITS for safe

navigation. The random sampler generates diverse command
sequences and enables the optimizer to find an approximate
solution. However, it fails to find the precise solution which is
critical in complex and narrow environments. On the other
hand, ITS can guide the optimizer to find a more precise
solution by generating biased command sequences (Fig. 9).
However, it fails to generate diverse samples, compared to the
random sampler, to handle a local optimum and thus showed
relatively low performance when used alone.

V. CONCLUSION

We proposed a learning-based fully autonomous navigation
framework composed of three innovative elements: a learned
forward dynamics model (FDM), an online sampling-based
model-predictive control module, and an informed trajectory
sampler (ITS). We demonstrated how the dynamics of a
quadruped robot and its surroundings can be learned accurately
using deep neural networks (FDM) and be used for vari-
ous downstream tasks, including safe point-goal navigation,
with the sampling-based model-predictive control module.
To handle the curse of dimensionality in sampling-based
motion planning, we further suggested the informed sampler,
composed of deep neural networks, and its training method.
Extensive evaluation in the physics simulator [22] showed the
superiority of the performance of the proposed method for
autonomous navigation in complex environments compared to
the widely used baseline method. The ablation studies further
demonstrated how the elements of our framework worked
in a complementary manner resulting in a high-performance
navigation system.

Promising directions for future work include expanding our
method to different robot platforms (e.g. drone, wheeled robot,
biped robot) using different exteroceptive sensors (e.g. RGB/D
camera, 3D lidar sensor) and transferring it to the real world.

ACKNOWLEDGMENT

This work was supported by Samsung Research Funding
& Incubation Center of Samsung Electronics under Project
Number SRFC-IT2002-02.

REFERENCES

[1] C Dario Bellicoso, Fabian Jenelten, Christian Gehring,
and Marco Hutter. Dynamic locomotion through online
nonlinear motion optimization for quadrupedal robots.
IEEE Robotics and Automation Letters, 3(3):2261–2268,
2018.

[2] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian
Scherer. Learning heuristic search via imitation. In
Conference on Robot Learning, pages 271–280. PMLR,
2017.

[3] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz.
Accurate and diverse sampling of sequences based on
a “best of many” sample objective. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8485–8493, 2018.

[4] Annett Chilian and Heiko Hirschmüller. Stereo camera
based navigation of mobile robots on rough terrain. In
2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4571–4576. IEEE, 2009.

[5] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations us-
ing RNN encoder–decoder for statistical machine trans-
lation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar, oct 2014. Association for
Computational Linguistics. doi: 10.3115/v1/D14-1179.
URL https://aclanthology.org/D14-1179.

[6] Thomas Dudzik, Matthew Chignoli, Gerardo Bledt,
Bryan Lim, Adam Miller, Donghyun Kim, and Sangbae
Kim. Robust autonomous navigation of a small-scale
quadruped robot in real-world environments. In 2020
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3664–3671. IEEE, 2020.

[7] Péter Fankhauser, Michael Bloesch, and Marco Hutter.
Probabilistic terrain mapping for mobile robots with
uncertain localization. IEEE Robotics and Automation
Letters (RA-L), 3(4):3019–3026, 2018. doi: 10.1109/
LRA.2018.2849506.

[8] Chelsea Finn and Sergey Levine. Deep visual foresight
for planning robot motion. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
2786–2793. IEEE, 2017.

[9] Jonathan D Gammell, Siddhartha S Srinivasa, and Tim-
othy D Barfoot. Informed rrt*: Optimal sampling-based
path planning focused via direct sampling of an admissi-
ble ellipsoidal heuristic. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2997–3004. IEEE, 2014.

[10] Jonathan D Gammell, Siddhartha S Srinivasa, and Tim-
othy D Barfoot. Batch informed trees (bit*): Sampling-
based optimal planning via the heuristically guided
search of implicit random geometric graphs. In 2015
IEEE international conference on robotics and automa-
tion (ICRA), pages 3067–3074. IEEE, 2015.

[11] Scott Gilroy, Derek Lau, Lizhi Yang, Ed Izaguirre,
Kristen Biermayer, Anxing Xiao, Mengti Sun, Ayush
Agrawal, Jun Zeng, Zhongyu Li, et al. Autonomous
navigation for quadrupedal robots with optimized jump-
ing through constrained obstacles. In 2021 IEEE 17th
International Conference on Automation Science and
Engineering (CASE), pages 2132–2139. IEEE, 2021.

[12] Toni Giorgino. Computing and visualizing dynamic time
warping alignments in r: the dtw package. Journal of
statistical Software, 31:1–24, 2009.

[13] Yukai Gong, Ross Hartley, Xingye Da, Ayonga Hereid,
Omar Harib, Jiunn-Kai Huang, and Jessy Grizzle. Feed-
back control of a cassie bipedal robot: Walking, standing,
and riding a segway. In 2019 American Control Confer-
ence (ACC), pages 4559–4566. IEEE, 2019.

[14] Jérôme Guzzi, R Omar Chavez-Garcia, Mirko Nava,

Luca Maria Gambardella, and Alessandro Giusti. Path
planning with local motion estimations. IEEE Robotics
and Automation Letters, 5(2):2586–2593, 2020.

[15] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan,
George Tucker, and Sergey Levine. Learning to walk
via deep reinforcement learning. In Proceedings of
Robotics: Science and Systems, FreiburgimBreisgau, Ger-
many, June 2019. doi: 10.15607/RSS.2019.XV.011.

[16] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A
formal basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[17] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel
Andor. Real-time loop closure in 2d lidar slam. In
2016 IEEE international conference on robotics and
automation (ICRA), pages 1271–1278. IEEE, 2016.

[18] Arne-Christoph Hildebrandt, Moritz Klischat, Daniel
Wahrmann, Robert Wittmann, Felix Sygulla, Philipp
Seiwald, Daniel Rixen, and Thomas Buschmann. Real-
time path planning in unknown environments for bipedal
robots. IEEE Robotics and Automation Letters, 2(4):
1856–1863, 2017.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[20] David Hoeller, Lorenz Wellhausen, Farbod Farshidian,
and Marco Hutter. Learning a state representation and
navigation in cluttered and dynamic environments. IEEE
Robotics and Automation Letters, 6(3):5081–5088, 2021.

[21] Marco Hutter, Christian Gehring, Dominic Jud, Andreas
Lauber, C Dario Bellicoso, Vassilios Tsounis, Jemin
Hwangbo, Karen Bodie, Peter Fankhauser, Michael
Bloesch, et al. Anymal-a highly mobile and dynamic
quadrupedal robot. In 2016 IEEE/RSJ international
conference on intelligent robots and systems (IROS),
pages 38–44. IEEE, 2016.

[22] Jemin Hwangbo, Joonho Lee, and Marco Hutter. Per-
contact iteration method for solving contact dynamics.
IEEE Robotics and Automation Letters, 3(2):895–902,
2018.

[23] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26), 2019.

[24] Brian Ichter, James Harrison, and Marco Pavone. Learn-
ing sampling distributions for robot motion planning. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 7087–7094. IEEE, 2018.

[25] Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie,
and Jason Baldridge. General evaluation for instruction
conditioned navigation using dynamic time warping.
NeurIPS Visually Grounded Interaction and Language
Workshop, 2019.

[26] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter
Abbeel, and Sergey Levine. Self-supervised deep rein-
forcement learning with generalized computation graphs

https://aclanthology.org/D14-1179

for robot navigation. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 5129–
5136. IEEE, 2018.

[27] Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr:
An autonomous self-supervised learning-based naviga-
tion system. IEEE Robotics and Automation Letters, 6
(2):1312–1319, 2021.

[28] Sertac Karaman and Emilio Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The international
journal of robotics research, 30(7):846–894, 2011.

[29] Oussama Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. In Autonomous robot
vehicles, pages 396–404. Springer, 1986.

[30] Donghyun Kim, D Carballo, Jared Di Carlo, Benjamin
Katz, Gerardo Bledt, Bryan Lim, and Sangbae Kim.
Vision aided dynamic exploration of unstructured terrain
with a small-scale quadruped robot. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 2464–2470. IEEE, 2020.

[31] Lydia E Kavraki Jean-Claude Latombe. Probabilistic
roadmaps for robot path planning. Pratical motion
planning in robotics: current aproaches and future chal-
lenges, pages 33–53, 1998.

[32] Steven M LaValle et al. Rapidly-exploring random trees:
A new tool for path planning. 1998.

[33] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Science robotics, 5
(47), 2020.

[34] Namhoon Lee, Wongun Choi, Paul Vernaza, Christo-
pher B Choy, Philip HS Torr, and Manmohan Chan-
draker. Desire: Distant future prediction in dynamic
scenes with interacting agents. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 336–345, 2017.

[35] Zhongyu Li, Jun Zeng, Shuxiao Chen, and Koushil
Sreenath. Vision-aided autonomous navigation of un-
deractuated bipedal robots in height-constrained environ-
ments. arXiv preprint arXiv:2109.05714, 2021.

[36] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade,
Emanuel Todorov, and Igor Mordatch. Plan Online,
Learn Offline: Efficient Learning and Exploration via
Model-Based Control. In International Conference on
Learning Representations (ICLR), 2019.

[37] Matias Mattamala, Nived Chebrolu, and Maurice Fallon.
An efficient locally reactive controller for safe navigation
in visual teach and repeat missions. IEEE Robotics and
Automation Letters, 2022.

[38] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz
Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
robust perceptive locomotion for quadrupedal robots in
the wild. Science Robotics, 7(62):eabk2822, 2022.

[39] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and
Vikash Kumar. Deep dynamics models for learning dex-
terous manipulation. In Conference on Robot Learning,
pages 1101–1112. PMLR, 2020.

[40] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland
Siegwart, and Cesar Cadena. From perception to de-
cision: A data-driven approach to end-to-end motion
planning for autonomous ground robots. In 2017 ieee
international conference on robotics and automation
(icra), pages 1527–1533. IEEE, 2017.

[41] Ahmed H Qureshi and Michael C Yip. Deeply informed
neural sampling for robot motion planning. In 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6582–6588. IEEE, 2018.

[42] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency,
and Michael C Yip. Motion planning networks. In 2019
International Conference on Robotics and Automation
(ICRA), pages 2118–2124. IEEE, 2019.

[43] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional
generative models. Advances in neural information
processing systems, 28:3483–3491, 2015.

[44] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The
Open Motion Planning Library. IEEE Robotics & Au-
tomation Magazine, 19(4):72–82, December 2012. doi:
10.1109/MRA.2012.2205651. https://ompl.kavrakilab.
org.

[45] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112, 2014.

[46] Lei Tai, Shaohua Li, and Ming Liu. A deep-network
solution towards model-less obstacle avoidance. In 2016
IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 2759–2764. IEEE, 2016.

[47] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-
real deep reinforcement learning: Continuous control of
mobile robots for mapless navigation. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 31–36. IEEE, 2017.

[48] Martin Wermelinger, Péter Fankhauser, Remo Diethelm,
Philipp Krüsi, Roland Siegwart, and Marco Hutter. Nav-
igation planning for legged robots in challenging ter-
rain. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1184–1189.
IEEE, 2016.

[49] Grady Williams, Andrew Aldrich, and Evangelos
Theodorou. Model predictive path integral control using
covariance variable importance sampling. arXiv preprint
arXiv:1509.01149, 2015.

[50] David Wooden, Matthew Malchano, Kevin Blankespoor,
Andrew Howardy, Alfred A Rizzi, and Marc Raibert.
Autonomous navigation for bigdog. In 2010 IEEE
international conference on robotics and automation,
pages 4736–4741. Ieee, 2010.

[51] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan
Hurst, and Michiel van de Panne. Feedback control
for cassie with deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1241–1246. IEEE, 2018.

https://ompl.kavrakilab.org
https://ompl.kavrakilab.org

[52] Bowen Yang, Lorenz Wellhausen, Takahiro Miki, Ming
Liu, and Marco Hutter. Real-time optimal navigation
planning using learned motion costs. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA
2021), page 699, 2021.

[53] Clark Zhang, Jinwook Huh, and Daniel D Lee. Learning
implicit sampling distributions for motion planning. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3654–3661. IEEE,
2018.

	Introduction
	Related work
	Method
	Forward dynamics model
	Online sampling-based model-predictive control
	Implementation for path tracking
	Informed trajectory sampler
	Summary

	Experiment
	FDM evaluation
	Point-Goal Navigation
	Semi-autonomous task
	Ablation study

	Conclusion

