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Abstract—Tactile predictive models can be useful across several
robotic manipulation tasks, e.g. robotic pushing, robotic grasping,
slip avoidance, and in-hand manipulation. However, available
tactile prediction models are mostly studied for image-based
tactile sensors and there is no comparison study indicating
the best performing models. In this paper, we presented two
novel data-driven action-conditioned models for predicting tactile
signals during real-world physical robot interaction tasks (1)
action condition tactile prediction and (2) action conditioned
tactile-video prediction models. We use a magnetic-based tactile
sensor that is challenging to analyse and test state-of-the-art
predictive models and the only existing bespoke tactile prediction
model. We compare the performance of these models with those
of our proposed models. We perform the comparison study using
our novel tactile enabled dataset containing 51,000 tactile frames
of a real-world robotic manipulation task with 11 flat-surfaced
household objects. Our experimental results demonstrate the
superiority of our proposed tactile prediction models in terms
of qualitative, quantitative and slip prediction scores.

I. INTRODUCTION

Humans use tactile sensation to understand physical prop-
erties, helping to develop a cause-effect understanding of the
scene and use it to plan interactive actions. Tactile sensation is
essential for building physical interaction perception [13, 19].
Within the robotics community, tactile sensation has been
used for slip detection [5]. These reactive systems use high-
frequency tactile sensors to adjust grip force, preventing object
slippage [32]. However, reactive tactile systems are a limited
use of this sensor modality. Human tactile cognition [20]
helps with a series of interactive tasks, e.g. robust grasping
and manipulating an object, in-hand manipulation, tactile
exploration, pushing, compliant tasks like wiping a board or
writing. Humans use predictive cognition [23, 25] to perform
such complex manipulation tasks. We present tactile predictive
models (TPM) that can be helpful across different interactive
tasks via predictive control.

Related works are very application focused and typically
use vision based tactile sensors. For instance, Zhang et al.
[38] used a long-short term memory (LSTM) based recur-
rent neural network (RNN) within a larger slip prediction
model. Tian et al. [24] used a video prediction based TPM
that enabled a very simple manipulation task (using model
predictive control) of single objects through tactile sensation.
The existing works perform no exploration of TPMs perfor-

Fig. 1: (A) Teleoperated kinesthetic data collection with tactile finger
tipped robot (B) Xela uSkin tactile sensor (C) Single taxel value
during pick and move trial and ACTP tactile signal prediction. Letters
and vertical bars indicating correct peak and trough predictions ahead
of time.

mance. To address this, we tested and compared data-driven
models performance in predicting tactile signals. Moreover,
we propose two novel action-conditioned TPMs outperforming
the existing approaches. We demonstrate the superiority of our
proposed methods across several real robot household objects
manipulation tasks using tactile sensors with sparse point-wise
force measurements. The primary contributions of this paper
are:

a) A novel dataset: containing highly dynamic and non-
linear kinesthetic robot motions. Each trial contains a grasp
and move motion, with a tactile enabled robot. The tactile
sensors are low cost, low resolution (4x4 sensing elements of
three forces) magnetic based sensors attached to both fingers
of the robots pincer gripper1. We also track object position

1The uSkin sensor by xelarobotics.com



Fig. 2: (A) Teleoperated data collection set-up. The left robot is the ‘follower’, grasping the object with tactile sensing fingers. The right
robot is the ‘leader’ and is teleoperated by human control (B) Eleven household box shaped objects used for training and testing, including
tissue box, toothpaste box, and chopped tomatoes. Object set has variance in size, weight, centre of mass, material, stiffness and contact
properties. Markers can be seen on the top and side of the objects, these are used to localise the object between the robot fingers, which is
used for slip classification (C) Dataset example of a full trial.

and orientation with respect to the gripper for slip labelling.
The dataset contains 51,000 frames with 11 household objects,
with 10.5% of the data containing slippage cases. The dataset
is publicly available here2

b) action-conditioned RNN: We develop two models –
one linear and one convolutional – and show that they predict
future fingertip tactile readings of a robot grasping different
objects while moving through highly non-linear trajectories.
We show that the models are capable of generalisation to
unseen objects.

c) Comparison study: We compare these models to state-
of-the-art action-conditioned prediction models Convolutional
Dynamic Neural Advection [8] (CDNA) used in [24], Stochas-
tic Video Predictor [1] (SV2P) and Stochastic Video Gener-
ator [7] (SVG), as well as the non-action conditioned tactile
prediction model PixelMotionNet [38] (PMN) and two basic
multilayer perceptron (MLP) benchmark neural networks.

The comparisons show that our proposed models outperform
state-of-the-art approaches. We show this with (i) Quantitative
analysis of test set prediction Mean absolute error (MAE),
structural similarity (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) values, extended time horizon predictions and object
generalisation, (ii) visual qualitative analysis of tactile predic-
tion plots and (iii) predicted slip classification. Nunes et al.
[21] showed that analysis of time series prediction models
should be done with respect to their use cases, so we selected
slip prediction as a relevant use case for our predictive models.

II. RELATED WORKS

A large variety of tactile sensors have been developed in
industry and literature, typically trading between resolution,
affordability and sensitivity, image-based3 [24] and magnetic-
based [39] sensors. Video prediction models have been ap-
plied to tactile image prediction using image-based tactile
sensors [24, 38]. Finn et al. [8] introduced CDNA for video
prediction. Tian et al. [24] used the GelSight sensor [33] and

2https://github.com/imanlab/action conditioned tactile prediction
3Such a technology includes a camera capturing deformation of a mem-

brane.

proposed a deep tactile model predictive control system using
CDNA to reach a goal tactile image in a simple task of object
rolling. However, this work [24] used small objects (dice
and marbles) which could be completely contained within
the sensors field of view. This suits the CDNA methodology,
which uses convolutional kernels and object masks to move
pixels about the input image to produce the next prediction.
For larger objects this may not be the best approach as the
system will need to predict force change not force motion and
the object masks will not be able to locate any object. Studies
reported the introduction of adversarial learning and learned
priors, in SAVP [15] and SV2P [1] respectively, improve on
the CDNA architecture.

Denton and Fergus [7] proposed a new SVG model that
combines deterministic video prediction model, with time-
dependent stochastic latent variables. The SVG architecture “is
competitive with other state-of-the-art video prediction models
SAVP and SV2P” [28]. Unlike SAVP and SV2P, the model
is also made up entirely of standard neural network layers
without any special computations like optical flow. Which,
Villegas et al. [28] argue, makes the model more generalisable.

Magnetic-based sensors such as the Xela uSkin provide high
frequency readings at each taxel with tri-axial readings. This
sensor has several magnetic-based cells each measuring non-
calibrated normal and shear forces, i.e. the readings are propor-
tional to a normal and two shear forces. However, they provide
low resolution when compared to vision based tactile sensors
such as GelSight [33], which comes at a cost of frequency and
abstract readings. Image-based tactile sensors benefit from the
methods developed in computer vision [24, 8]. Nonetheless,
we chose to use the Xela uSkin magnetic based tactile sensor
due to its low comparative cost, its high frequency readings
which are essential for control and the extra challenge of
analysing non-calibrated Xela readings (absolute value of the
Xela sensor readings depends on the contact force and contact
geometry). Zhou et al. [39] converted the Xela uSkin tactile
sensor readings to a visual representation that could be applied
to the CDNA architecture. However, there are significant issues
with the proposed representation. First, the resolution of the



image reduces the resolution of the tactile readings; Second,
the taxel objects cross over producing an impossible problem
for the prediction model to interpret. Using this representation,
Zhou et al. [39] proposed a simplified version of the CDNA
model to perform tactile prediction. However, the CDNA
inspired model produced poor test scores for the reasons
outlined. Zapata-Impata et al. [34, 35] presented an image
representation of the BioTac sensor from Syntouch and applied
the ConvLSTM model for direction of slip classification.
However, this model does not utilise robot actions.

Tactile sensations are also used for improved grasping.
Zhang et al. [38] proposed an improved grasping system
through a new video prediction model called PixelMotionNet
applied to the tactile images from FingerVision [37]. However,
these works only focus on grasp success rate by predicting
contact and slip events while we focus on manipulation.
Tactile based deep neural networks are also used for grasp
policy learning [16], slip detection [17], tactile and visual data
fusion for grasping [4], and tactile reinforcement learning for
grasping [30].

We apply our TPM’s to a slip prediction/classification
task. Slip detection methods are reviewed in [5]. Heuristic
approaches such as using a threshold on the rate of shear
force change [14] or friction cone estimation [11] are among
the common methods. However, these methods cannot be
generalized to novel objects or sensor types. Data driven
classifiers such as SVM, Random Forest, CNNs, or RNNs
showed good generalization results in slip detection to novel
objects [27, 18, 6]. We apply Random Forest for slip classifi-
cation in the tactile prediction space.

There are different datasets including tactile sensing. For
instance, Zapata-Impata et al. [36] used a household object
dataset of 51 objects, recording more than 5500 grasps to
test grasp stability using tactile sensation on novel objects.
For slip classification, the authors used a second dataset of
11 objects. To predict and detect contact events with tactile
sensation, Zhang et al. [38] generated a dataset of 11 items
stating an ability to generalise across objects. For manipulation
of a single object through tactile feedback alone, Tian et al.
[24] created 3 datasets of 7400, 3000 and 4500 motions for
three different objects. To perform a robust force estimation
with image-based tactile sensors, Sundaralingam et al. [22]
generated a dataset of 20,000 force samples and a dataset of
100,000 force samples (600 interactions).

Video prediction models using LSTM recurrent layers have
been applied to predict tactile data over time sequences. How-
ever, there is no comparison of such approaches. Model ar-
chitecture, tactile data representation, use of non-conventional
layers like optical flow or stochastic networks using learned
priors have an unknown impact on the tactile prediction prob-
lem. In this work, we present two novel TPMs. We compare
the performances of these models with those of state-of-the-
art tactile prediction networks and sequence predictors via
quantitative and qualitative studies as well as slip classification
benchmark.

III. ROBOT MANIPULATION DATASET

One key real-world manipulation task is grasp and move
motions. As the robot grasps and moves an object about its
workspace, tactile sensations vary, depending on the object and
the trajectory being performed. We collected a dataset with a
range of human teleoperated kinesthetic motions, shown in
Fig. 2-A, enabling a random and diverse dataset. The dataset
consists of: (i) robot proprioception data in joint and task
space, enabling action conditioning (ii) tactile data from both
fingers of the gripper (iii) object position and orientation with
respect to the robot’s wrist. We used a human operator to
intentionally create necessary accelerations in some cases to
cause slippage for our case study in qualitative analysis. These
motions are more complex than linear motions and more dense
in slip cases and diverse tactile sensations than a random
motion based dataset.

To ensure the dataset is realistic to real-world scenes, we
use a set of common flat-surfaced household objects, shown in
Fig. 2-B. We collected two datasets: a train dataset, consisting
of 52 trials (40,000 frames) with 9 objects; and a test dataset,
of 22 trails (11,000 frames) with 3 objects, two of which are
not present in the train dataset. Examples of the dataset trails
are shown in Fig. 2-C. The dataset was collected at 40 frames
per second, the maximum frame rate of the tactile sensors.
The Xela uSkin tactile sensor contains 16 sensing elements
arranged in a square grid, each outputting shear x, shear y
and normal forces (Fig.1-B). The Xela sensors high frequency
enables more aggressive and fast robot motions that can create
the object slippage and larger tactile changes which we require
for our dataset.

The constraint on flat surfaces for grasping produces a more
consistent task across trials for the models to capture when
compared to objects with varied grasp surface topology. The
low resolution (4.7 [mm] distance between two sensing points)
tactile sensor may also struggle to capture more complex
surfaces. This flat-surfaced objects dataset presents a baseline
of objects and movements useful for tactile prediction tasks,
we leave progression to more complex surface typologies as
future work.

To observe the state of the object with respect to the gripper,
and to enable slip classification during the trials we recorded
the objects pose (SE(3) = R3 ⋉ SO(3) where SO(3) is a
group of rotation in 3-D space expressed by Euler angles, i.e.
∈ R3) using a wrist camera and ArUco markers [9] on the
top and one side of each object. Using two markers ensures
at least one marker is in camera field of view providing a
continuous recording of position and orientation of the object.
Inspired by Begalinova et al. [2], we applied Cumulative Sum
anomaly detection Hinkley [10] on the Z component of the
object position in robot wrist frame to classify slip as a binary
signal.

IV. ACTION CONDITIONED TACTILE PREDICTIVE MODELS

One of the major objectives of this work is to use state-of-
the-art data-driven predictive models and adapt/utilise them for
predicting tactile sensation during physical robot interactions.



Fig. 3: Tactile prediction model architectures (left) Action Con-
ditioned Tactile Prediction (ACTP) and (right) Action Conditioned
Tactile-Video Prediction (ACTVP)

We compare and analyse the performance of these models in
predicting tactile signals of a magnetic-based sensor, which
are contact geometry/properties dependent in real-world ma-
nipulation tasks, making calibrating such sensors challenging.
Our main assumptions include (1) models will have access
to the future/planned robot states as well as (2) the previous
tactile readings during the trial. The models should predict for
a future time horizon. These assumptions are useful and in
line with requirements of many control strategies, e.g. model
predictive control.

Our developed models perform conditional predictions
based on a set of c context frames x0, ..., xc−1. These context
frames are previous readings from the interaction. Our target is
to sample from p(xc:T |x0:c−1) where xi denotes the ith tactile
frame in the sequence and T is the sum of the context frame
length and the prediction horizon length.

Our problem of action-conditioned tactile prediction can be
defined as, a model must predict a sequence of future tactile
states xc:T given a sequence of previous robot actions a0:c−1,
previous tactile states x0:c−1 and a sequence of future/planned
robot actions/trajectory ac:T . A robot action, a ∈ R6, is the
end-effector task space position and orientation (Euler angles)
with respect to the robot base, while a tactile sample is x ∈
R16×3.

p(xc:T |x0:c−1, a0:T ) (1)

Factorising this we can define the model as
ΠT

t=cpθ(xt|x0:t−1, a0:t). Learning now involves training
the parameters of the factors θ.

We create two bespoke model for the tactile prediction task
(Fig. 3): (i) Action Conditioned Tactile Prediction network
(ACTP) and (ii) Action Conditioned Tactile Video Prediction
network (ACTVP). The two models define the difference in
potential representation of the tactile date. First, the tactile
data can be flattened from x ∈ R16×3 to x ∈ R48 features,
and used in a linear network. Second the data can be scaled
up to an image of x ∈ R32×32×3 which enables the application
of convolutional layers and convLSTMs. We keep the structure
of the two models the same outside of this, enabling a more
direct comparison to tactile data representation.

The model structure uses tiling to upscale the robot states
to the same shape as the tactile data. The model takes
inspiration from the current state-of-the-art tactile prediction
network ‘PixelMotionNet’ [38], using two LSTMs then two
linear layers. However, we take equal inspiration from the
concatenation process of CDNA [8] which concatenates the
robot state and action data in the middle of the LSTM chain.
We also use skip connections in the same manner. We do
not apply the optical flow approaches shown in PMN [38]
and CDNA. This enables comparison between the optical flow
method PMN and our models.

In time-steps t, our action conditioned models sequence
through {t − c : t}. Once all the context data (i.e. previous
robot and tactile states) have been fed to the model, it then
predicts the future tactile frames x̂ from time-step t+1 to t+T ,
where the predicted tactile frame at time step i becomes the
input to the model for the next time-step i+ 1.

Villegas et al. [28] showed specialised, handcrafted archi-
tectures reduce a model’s generalisation to new applications
and that simple model layers are beneficial for this reason. As
such, we use PMN’s simple architecture as the key motivation.
Likewise, the motivation for the prediction architecture was
also based on the areas left by existing models: (i) the two
models presented have the exact same underlying shape to
enable tactile data representation comparison (ii) optical flow
was explored in PMN and CDNA, in different ways, so we
did not include it in the presented models. (iii) The position of
action data concatenation is in the middle of the LSTM chain
and differs from action-conditioned PMN, which integrates at
the beginning.

V. RESULTS AND DISCUSSION

To evaluate the performances of the proposed predictive
models for tactile signal prediction, we performed three dif-
ferent studies (1) quantitative and (2) qualitative comparisons
of the tactile predictions and (3) a slip prediction benchmark.

We aim to identify the best performing models and key
features for tactile prediction during robot manipulation. Table
I shows each model tested with its key features. To explore
the features of PMN [31], we adjust the original architecture
to create (1) PMN-AC, an action conditioned version of PMN
and (2) PMN-AC-NA, the PMN-AC model without the final
addition stage, this enables us to explore the effect of action
conditioning and optical flow. We also include CDNA [8],
which is a much larger optical flow based model and has been
proven to work for tactile prediction of vision based tactile
sensors in [24]. ACTP and ACTVP have the same structure,
however, ACTP uses the raw tactile values, where as ACTVP
uses an image representation of the tactile data, enabling
exploration of the positives and negatives of converting to
image representations. Moreover, we explore state of the art
video prediction model SVG [7], with 4 LSTM layers for
prediction pipeline and 3 LSTM layers for the prior. This
comparison shows the current state-of-the-art video prediction
performance on this dataset. Furthermore, this helps us to
discuss the use of learned priors and encoder decoder models



TABLE I: Key features of tested models; Action-conditioned (AC),
Optical Flow (OF); stochastic model (St); Image and linear based
tactile data representation (Image & Linear); Encoder-Decoder (ED).

Model AC OF St Image Linear E-D
PMN-AC ✓ ✓ × ✓ × ×

PMN-AC-NA ✓ × × ✓ × ×
PMN × ✓ × ✓ × ×
ACTP ✓ × × × ✓ ×

ACTVP ✓ × × ✓ × ×
MLP × × × × ✓ ×

MLP-AC ✓ × × × ✓ ×
CDNA ✓ ✓ × ✓ × ×
SVG ✓ × ✓ ✓ × ✓

in this setting. Finally, we include two simple baseline MLP
models as simplified benchmarks, MLP and MLP-AC (which
is identical but with action conditioning).

We chose to test the models with a prediction horizon
of 10 time steps (0.25 seconds in real time). Although the
cut off point is arbitrary in our current setting, we chose
this point due to high speed of motion in comparison with
similar video prediction works where prediction can be pushed
to 1 second. Our methods can be easily adapted for longer
prediction horizon.

a) Quantitative Comparison:: Table III shows a compar-
ison of MAE, PSNR and SSIM across the tactile prediction
models. We use these three metrics as MAE gives a basic
quantitative comparison across image and non-image based
models. To make comparison between the video prediction
models we show average standard metrics PSNR [12] and
SSIM [29]. SSIM shows the similarity between two images
and is used for basic comparison, PSNR penalises outlier
values so indicates models that produce these.

Our ACTVP tactile prediction model has the best perfor-
mance across these metrics, outperforming the state of the art
prediction model SVG and CDNA. This suggest that the image
representation of tactile values, which encodes the topology
of the sensor values, has a beneficial impact over the flattened
48 feature vector used by ACTP as the models are identical
outside of this change.

Comparing PMN with PMN-AC, we observe that action
conditioning has a positive response with respect to the
performance metrics. Changes in tactile data are created due
to changes in robot action so this finding was to be expected.

Observing differences between PMN-AC and PMN-AC-NA,
we observe the optical flow approach has a negative impact on
performance with respect to the predicted 48 tactile features,
despite producing better image quality with reduced outlying
errors. This could be due to the approach of optical flow
methods, which calculate changes to the previous image as
supposed to creating the next through the network, which
emphasises the values of the previous image.

SVG and CDNA produce poor prediction results across all
performance metrics. SVG uses an encoder decoder structure
to represent the tactile features, this result indicates that en-
coding the tactile features has a negative impact on prediction
capability in this scene. CDNA generates the worst predic-
tion accuracy, likely due the assumptions made by CDNA

(stated section II) which not applicable in our dataset, SVG
does not make these assumptions and so produces stronger
performance.

The dataset contains seen and unseen objects. This helps
to analyse the generalisation ability of models across the
dataset (see table II). We observe that models are capable
of maintaining prediction accuracy when generalising to new
objects. Table IV also suggest th prediction accuracy over
time is decreasing. ACTVP has the lowest t+10 prediction
error (outside of the poor performance models), suggesting
the model preforms best at time series prediction of the tactile
data during manipulation tasks. Equally, we see that removing
optical flow measures from a prediction model of PMN results
in increased performance over extended time horizons. From
quantitative analysis we conclude that the best performing
model is ACTVP. While we find that action conditioning of
prediction models is beneficial, learned priors and optical flow
techniques have no observable benefit.

b) Qualitative analysis: We can better understand the
performance of tactile prediction models through visual exami-
nation. In this section, we highlight some of the most important
visual differences between the tactile prediction models. We
present tactile predictions on the last context frames time-step,
replicating the setup of a control scenario. One key visual
feature we use to judge model performance is the time step
that a model predicts a peak or trough. Models that show
these changes in tactile force indicate prediction of tactile
sensation, the earlier they’re predicted, the better. First, we
observe across all models an inability to predict during the
initial object grasping phase, this is due to not providing the
robots finger states to the models as well as there being no
prior knowledge about the object being grasped or the position
of grasp on that object.

For comparison with other prediction plots, we show a ’per-
fect’ model’s predictions in Fig. 4. CDNA’s poor performance
metrics correlate with equally poor tactile signal predictions,
Fig. 4, shows the rapid degradation of the tactile predictions
over the prediction horizon. Despite better performance met-
rics than CDNA and SVG, the two MLP benchmark models
produce noisy representations of a naive system, replicating
the last context frame for the entire prediction horizon.

Fig. 5 shows a comparison between SVG and ACTVP. The
SVG predictions are significantly worse with respect to the
ACTVP, this is mirrored by SVG’s poor performance metrics
too. Opposite to this, ACTVP’s predictions attempt to predict
change in taxel values, despite being noisy. Kalman filtering
could be used to reduce this noise, however, it would have
a detrimental effect on reducing the time difference shown
between the predicted changes in tactile data.

Fig. 6 shows PMN and PMN-AC models produce similar
predictions, suggesting low impact from action conditioning
on tactile prediction performance. Fig. 7 indicates that the
inclusion of the optical flow layer in PMN, results in tactile
predictions closer to the true values. Although the optical
flow based PMN-AC appear to produce smoother predictions,
we do not see indication of improved tactile prediction with



TABLE II: Model performance per object and generalisation accuracy
Training Objects MAE × 100 Test Objects MAE × 100 Overall MAE × 100

Model
Tooth
paste

Metal
Cube Lego

Ink
Box

Soup
Box

Toma-
toes

Wood
Block

Tissue
Box

Matt
Box

Wood
block

Power
Unit

Intel
Box Seen Novel Dif

PMN-AC 0.770 0.627 0.561 0.428 0.360 1.127 0.625 0.890 0.719 0.948 0.683 0.715 0.948 0.704 0.244
PMN-AC-NA 0.746 0.584 0.569 0.416 0.348 1.044 0.582 0.786 0.706 0.910 0.594 0.649 0.845 0.629 0.215

PMN 0.919 0.811 0.671 0.511 0.443 1.294 0.704 0.943 0.741 1.060 0.739 0.810 0.987 0.784 0.203
ACTP 1.580 1.816 1.270 0.972 0.897 3.029 1.281 1.664 1.273 2.253 1.866 1.870 2.098 1.861 0.236

ACTVP 0.799 0.596 0.576 0.427 0.353 1.131 0.606 0.905 0.641 0.736 0.579 0.612 0.693 0.598 0.095
MLP 1.548 1.717 1.524 1.184 1.140 2.164 1.432 1.712 1.594 1.767 1.429 1.447 1.767 1.441 0.326

MLP-AC 1.747 1.910 1.736 1.406 1.352 2.342 1.580 1.882 1.767 1.917 1.606 1.656 1.917 1.639 0.278
CDNA 18.988 16.614 17.448 19.414 21.872 17.038 17.610 21.041 17.497 37.88 40.10 41.28 37.88 40.69 -2.809
SVG 3.942 7.328 4.508 2.829 2.986 6.435 4.172 3.430 5.670 4.894 5.385 3.531 4.619 4.458 0.161

TABLE III: Model Performance (entire event horizon) on grasp and
move test dataset. Mean absolute error (MAE), Structural Similarity
(SSIM) and Peak Signal-to-Noise Ratio (PSNR)

Model MAE PSNR SSIM
PMN-AC 0.00782 91.8009 0.9956

PMN-AC-NA 0.00720 91.5760 0.9956
PMN 0.00854 89.5510 0.9910
ACTP 0.01943 - -

ACTVP 0.00631 91.8266 0.9965
MLP 0.01545 - -

MLP-AC 0.01727 - -
CDNA 0.39879 49.0997 0.7219
SVG 0.0455 74.6662 0.8656

Fig. 4: Tactile predictions at prediction time-step (top) examples the
perfect tactile prediction model for reference with Figures 1, 5, 6, 7,
8 and 10. (bottom) CDNA predictions, showing poor performance,
especially at extended time horizons.

Fig. 5: Comparison between SVG and ACTVP, showing the poor
performance of SVG’s t+10 predictions, this level of performance is
also indicated by the performance metric results shown in Table III.

respect to peaks and troughs.

Fig. 6: Comparison between action conditioned and non action
conditioned PixelMotionNet, showing similar performance on their
t+10 predictions. The peaks and troughs of tactile prediction models
are shown prior to the ground-truth tactile signals changes suggesting
ability to predict tactile data.

Fig. 7: Comparison between action conditioned PixelMotionNet with
and without the optical flow addition layer.

Comparing the two novel models, shown in Fig. 8, we can
highlight two shortcomings of relying only on the performance
metrics. The peaks and troughs of the prediction models and
the ground-truth signal are shown in highlighted bars. The
ACTP predictions are worse than ACTVP with respect to the
taxel values (Y-axis), which is indicated in the performance
metrics. However, ACTP’s predictions of changes in taxel
values, indicated by peak and trough points, are shown to be
significantly better than ACTVP. Second we can also observe
a far smoother prediction plot with ACTP. This suggests that
scaled up image representations of the tactile data have a
negative impact on prediction performance. Overall, we find
that performance metrics and even the loss functions used
to train these systems may not fully indicate strong model
performance. We conclude that despite poor performance
metrics, visual assessment indicates that ACTP is the best
performing model overall, followed by ACTVP.

c) Slip Classification: We use Random Forest for slip
classification [3] of the predicted tactile. In a slip prediction
study, [26] shows Random Forest outperforms other classifica-
tion approaches. We trained separate Random Forest classifiers



TABLE IV: Model performance for prediction time steps t+1, t+5, t+10
MAE PSNR SSIM

Model t+1 t+5 t+10 t+1 - t10 t+1 t+5 t+10 t+1 t+5 t+10
PMN-AC 0.00156 0.00732 0.01358 0.0120 106.1998 93.0509 87.6827 0.9991 0.9892 0.9750

PMN-AC-NA 0.00370 0.00609 0.0120 0.008 95.9277 93.7079 89.2150 0.9969 0.9912 0.9780
PMN 0.00449 0.00768 0.01352 0.0090 94.1486 91.0600 86.9993 0.9885 0.9876 0.9736
ACTP 0.01395 0.01878 0.02484 0.0109 - - - - - -

ACTVP 0.00302 0.00543 0.01128 0.0083 96.7655 94.2063 89.0712 0.9983 0.9913 0.9778
MLP 0.01314 0.01345 0.01943 0.0063 - - - - - -

MLP-AC 0.01227 0.01623 0.02089 0.0086 - - - - - -
CDNA 0.12585 0.20829 1.36854 1.24269 64.7118 60.1571 41.5055 0.9032 0.808 0.3964
SVG 0.03419 0.04584 0.05455 0.0204 78.2405 75.0495 73.2830 0.8811 0.8661 0.8494

Fig. 8: Comparison between ACTP and ACTVP, showing ACTP
predictions are ahead of ACTVP’s, however with significant offset
in taxel value.

on each model and a classifier on the raw tactile data as
well. F1 score is metric suitable for comparing classification
performance. Nonetheless, in our slip prediction setting, we
are concerned with how often the prediction system predicts
slip in prediction horizon before it actually occurs. We use two
extra metrics score 1 and score 2 to measure the performance
of classifier.

Score = (C1× f1) + (C2× s1) + (C3× s2) (2)

Where:

f1 = 2 ∗ precision ∗ recall
precision + recall

s1 =
slip predictions

num slip instances
s2 = 0.1 ∗ prediction to detection distance

Where, f1, s1, and s2 account for detection rate, prediction
rate, and prediction horizon, respectively. C1 = 1, C2 = 0.1,
and C3 = 0.2 are coefficients indicating each terms influence
on the score. While f1 is the most important term, s2 is given a
slightly larger coefficient than s1 since the prediction horizon
is considered more important than the prediction frequency.

Performing evaluation with a real world application of
tactile prediction provides a more realistic understanding of
model performance when compared to the previous perfor-
mance metrics. ACTP and PMN AC have the highest pre-
diction scores and PMN and CDNA the lowest ones. Since
the customised score holds both the detection and prediction
of slippage it can be stated that models with higher scores
show overall better detection and prediction behaviour. It can
be observed that action-conditioning PMN improved its slip
prediction performance.

Fig. 9: Slip Prediction score. Upper and lower variance values
correspond to the test objects with highest and lowest scores.

Fig. 10: Slip classification with ACTP model on GT and t+10
prediction signals.

Fig. 10 shows classification result for the ACTP model. The
result shows the classification signal switches from non-slip to
slip mode prior to GT classification as t+10 prediction signals
capture the dynamic tactile changes 10 time steps ahead of
the original signal. The classification signal in Fig. 10 and the
classification scores in Fig. 9 suggests the ACTP model yields
the best slip prediction performance despite its poor MAE
scores. While convolutional layers help ACTVP to achieve
improved tactile prediction by spatio-temporal analysis, they
increase the latent space dimensionality and it is possible that
robot data fusion with tactile data happens less efficiently
in ACTVP relative to its linear counterpart ACTP which
has a smaller latent vector; Thus, better slip prediction in
ACTP. The large variance of the slip score indicates SVG slip
detection performance varies across different experimentation.
According to slip score, PMN has the poorest performance.

The inference time for the best performing model (ACTP),
using an AMD ‘Rhyzen threadripper 2950x’ 16 core processor,
for tactile prediction and slip classification during robot motion



(10 context and 10 prediction frames) was 14ms. This enables
tactile predictions and predicted slip classification at 71Hz,
higher than our control loop of 40Hz, we believe this is fast
enough to react to predicted slip.

VI. DISCUSSION AND CONCLUSION

We presented two novel data-driven predictive models for
tactile signals during real-world physical robot interaction
tasks. We use a magnetic-based tactile sensor, the Xela uSkin,
known for being difficult to analyse due to it’s calibration
challenges. We created a dataset of kinesthetically driven,
teleoperated, pick and move tasks of flat-surfaced household
objects and recorded the tactile sensation, proprioception robot
data and the pose of the object relative to the robot’s wrist.
The data from different sources is synchronised.

We propose two novel data-driven predictive models trained
on the dataset: (1) Action conditioned tactile prediction
(ACTP) and (2) Action conditioned video tactile prediction
(ACTVP). ACTP and ACTVP use different representations
of the tactile data. We compare these models to state of
the art video prediction model SVG [7], video prediction
model CDNA [8] which has previously been applied to tactile
prediction and the only existing bespoke tactile prediction
model, PixelMotionNet [38]. We adjust PixelMotionNet to
include action conditioning and remove the optical flow layer
to enable insight into the effect of these two features. We show
that our presented model ACTVP had the best performance
metrics. However, qualitative analysis and the slip prediction
task show that ACTP is the best performing model. We
find that optical flow and encoder/decoder methods result in
reduced prediction performance. CDNA’s specific method of
optical flow, where a network generates masks and applies
kernels to these masks, results in poor performance despite
previous success in video and video-based tactile prediction
with physical robot interaction tasks. Qualitative analysis and
the application task show quantitative metrics like MAE do not
provide insight into practical model performance for specific
application domains. For instance, a model that performs best
for slip prediction may perform poorly for pushing tasks or
vice versa.

Due to the low resolution of the magnetic tactile sen-
sor, it is unlikely the discussed pipeline will be capable of
accurate prediction with more complex surfaces. However,
higher resolution vision based tactile sensors may provide
prediction models with a more accurate sense of touch, reduc-
ing uncertainty in the prediction models. With vision based
sensors and more complex surfaces, ACTVP’s convolutional
architecture may produce more accurate results in comparison
to ACTP. Likewise, the use of optical flow techniques may
have increased benefit, especially CDNA, as the assumption
made with respect to object masks may be more applicable
in this setting. The inclusion of complex surface topologies
with magnetic-based tactile sensors will increase the number
of latent variables due to the tactile resolution. Learned priors,
which attempt to estimate realistic values for these may have
a positive impact.

We use these models and combine them with a slip classi-
fication method to perform action-conditioned slip prediction.
In contrast to the existing slip prediction methods (that train
a single model for predicting slip only for a fixed horizon),
our novel approach yields a more robust and reliable slip
prediction framework in real-world manipulation tasks. In
particular, our approach allows us to readily change the slip
prediction horizon on the fly without retraining. We see space
for the continued development of tactile prediction networks
by introducing vision based tactile sensors for non-flat surfaces
and integrating a multi-modal approach using visual features
of the object to provide better context to the prediction models.
Our future works also include integrating the developed tactile
prediction/slip prediction methods in two different application
domains (1) controlling a manipulator to avoid predicted slip
and (2) robotic pushing.
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