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Abstract—Humans perceive the world by interacting with
objects, which often happens in a dynamic way. For example,
a human would shake a bottle to guess its content. However, it
remains a challenge for robots to understand many dynamic
signals during contact well. This paper investigates dynamic
tactile sensing by tackling the task of estimating liquid properties.
We propose a new way of thinking about dynamic tactile sensing:
by building a light-weighted data-driven model based on the
simplified physical principle. The liquid in a bottle will oscillate
after a perturbation. We propose a simple physics-inspired model
to explain this oscillation and use a high-resolution tactile sensor
GelSight to sense it. Specifically, the viscosity and the height
of the liquid determine the decay rate and frequency of the
oscillation. We then train a Gaussian Process Regression model on
a small amount of the real data to estimate the liquid properties.
Experiments show that our model can classify three different
liquids with 100% accuracy. The model can estimate volume with
high precision and even estimate the concentration of sugar-water
solution. It is data-efficient and can easily generalize to other
liquids and bottles. Our work posed a physically-inspired under-
standing of the correlation between dynamic tactile signals and
the dynamic performance of the liquid. Our approach creates a
good balance between simplicity, accuracy, and generality. It will
help robots to better perceive liquids in different environments
such as kitchens, food factories, and pharmaceutical factories.

I. INTRODUCTION

Perceiving and understanding the physical world is a core
capability of intelligent robots. Among the various sensing
modalities, tactile sensing is typically used to understand
physical interactions. For example, humans learn about an
object’s hardness by pressing it [17] and a liquid’s viscosity by
shaking its container. They achieve these tasks using dynamic
tactile sensing, which focuses more on changes of the signal
across time. Dynamic tactile sensing is in contrast to static
tactile sensing, which focuses on understanding the signal
(force distribution, contact surface deformation) at one shot
(e.g., localizing contact). Despite the importance of dynamic
tactile sensing, its use for robots is not as well studied as it is
for humans.

Among the common perceptual tasks requiring contacts,
we study robot dynamic tactile sensing by tackling the task
of noninvasively estimating the properties of liquid inside
a container. Liquid properties are often closely related to
their dynamics. For example, liquid viscosity refers to the
restraining force when liquid flows, which requires us to
focus on the temporal dimension of the dynamic tactile
signal. Further, liquid property estimation has a wide robotics

Fig. 1: (a) The fluid in a bottle oscillates after a lateral
perturbation. (b) We build a robot setup to shake containers.
(c) Tactile signal from finger-tip GelSight sensors after the
perturbation. (d) The principal motion of the GelSight markers
after a perturbation on the bottle.

application. For example, monitoring viscosity online provides
immediate feedback for operations in the food processing
industry [2]. However, it remains a challenge for robots to
reliably estimate liquid properties without using specialized
tools like viscometers.

There are a number of works on content property estima-
tion [1] [4] [13] [14]. Inspired by humans, most approaches
choose to shake the container and apply data-driven models
to the received dynamic tactile signal. They show results on
classifying 5 to 12 solids or fluids in a container with 90%
to 95% accuracy using a variety of sensors. These works
are limited to classifying objects with very different physical
properties (e.g., water and glycerine). Physics-based approach
with sophisticated fluid dynamics analysis [13] achieved 98%
accuracy but only work on cylinder-shaped containers with
precisely-measured size. Both data-driven and physics-based
approaches require that content weight and volume are either
fixed [6] [14] or pre-estimated by other methods [13]. They
also cannot generalize to different-shaped containers.

In this work, in addition to this content classification
task, we tackle a much more challenging task: estimating
the viscosity and liquid volume given a bottle of sugar-



water solution. It requires distinguishing sugar-water solutions
with different concentrations based on slight differences in
viscosity, agnostic to the volume of liquid in the container.

We interpret the liquid-property-relevant tactile signal with a
physics-inspired approach, which complements physics-based
with data-driven modeling to leverage the strengths of both.
By understanding how dynamic tactile signal is generated,
we construct a model using simple physics. In addition, the
complex, unmodeled effects of fluid dynamics in irregularly
shaped containers are modeled by a data-driven method. Our
method starts by approximating our liquid-container system
as a second-order system based on our observation that the
movement of the liquid surface after perturbation is a damped
oscillation. Based on physics, We show that the oscillation
frequency and decay rate of the damped oscillation are directly
correlated with the liquid’s height and viscosity. Therefore,
the robot in our method first lifts, perturbs, and holds still the
liquid container, and then collects the dynamic tactile signal
that reflects the damped oscillation movement of the liquid.
With our high-precision, vision-based touch sensor GelSight
[19], this damped oscillation movement is precisely detected
after filtering, as shown in Fig. 1d. We then learn a data-
efficient model which takes the decay rate and the oscillation
frequency of the dynamic tactile signal, and infers the liquid
viscosity and volume (quantified as height) with very high
precision.

Contributions: Our main contribution is solving a dynamic
tactile sensing task using an approach that maintains a good
balance between physics-based and data-driven modeling. We
also contribute to estimating liquid properties with higher pre-
cision and greater generalizability. Our model achieves 100%
classification accuracy on water, oil, and detergent. More
importantly, our approach can estimate sugar concentration
(ranging from 0 to 160 wt%) with 15.3 wt% error and liquid
height with 0.56 mm error, using only tactile sensors. Note
that 15.3 wt% sugar-water solution is less viscous than whole
milk. Our height estimation is, in fact, so precise that the error
may come from measuring the ground truth by rulers. Our
method is data-efficient (≤ 60 training datapoints), agnostic
to liquid volume, and can be easily generalized to different
containers with similar shapes (15 fine-tuning datapoints). We
believe approaches balancing physics-based and data-driven
modeling can also be applied to other dynamic tactile sensing
tasks (e.g., rubbing a surface to estimate its texture) since they
often involve complex dynamics that cannot be purely modeled
by physics or learned with limited real-world data.

II. RELATED WORK

A. Dynamic Tactile Sensing

Dynamic tactile sensing is important in various robotics
tasks related to perception, manipulation, locomotion, etc. [3]
[7] [11]. For example, Sinapov et al. [15] used a three-axis
accelerometer to detect 20 different surfaces by performing 5
different exploratory scratching behaviors. They can recognize
the surfaces with 80% accuracy based on spectro-temporal
features. Taunyazov et al. [18] used dynamic tactile sensing to

achieve grasp stability prediction during object handover and
accurate food identification through tools. They also showed
the ability to accurately localize taps on an acrylic rod based
on vibrations caused by the tapping. Giguere and Dudek [5]
used a tactile probe which is passively dragged along a surface
for surface identification. They designed multiple features in
4-s time windows of dynamic tactile data and classified 10
different types of terrains.

B. Content Estimation

Content estimation, or estimation of the object inside a
given container, can be thought of as a specific type of object
recognition. However, unlike other object recognition tasks,
content estimation does not involve direct visual or physical
access to the object, making the task much more challenging.

There are multiple previous works utilizing different modal-
ities to solve this task. For example, Chen et al. [1] used
accelerometers and contact microphones to classify the me-
chanical parts in the container by shaking it. Güler et al.
[6] combined visual and tactile data to identify five types
of contents. They used static deformation information of the
paper container and achieved a 95% classification accuracy.
Saal et al. [14] used tactile data recorded during shaking to
estimate the viscosity of different liquids with the same weight.
Matl et al. [13] used the force-torque sensor to estimate liquid
mass, volume, and viscosity. They achieved 98% accuracy in
classifying water, oil, and honey. Jonetzko et al. [9] integrated
tactile and auditory data generated by shaking to classify
8 types of pills in 4 weight groups, achieving an average
accuracy of 91%. Eppe et al. [4] elicited auditory information
by shaking to classify content types and predict the weight.
Jin et al. [8] used auditory information generated by rotation
to classify 20 kinds of particles in the container.

In previous works, researchers mainly focused on solid
contents, which are easier to recognize. For example, [1]
used different mechanical parts such as bearings and nuts;
[16] used glass, rice, beans, and screws. Some works target
liquids, but only study very different liquids, such as yogurt
and water [6], or water and glycerine [14]. In this work, in
addition to classifying different liquids, we also target a much
more challenging task: precise regression on liquid height and
viscosity.

In addition, most works adopted a purely data-driven ap-
proach and the learned model is specific to a certain group
of weight and container. The only counter case we found is
[13], where the authors used an analytical model of liquid
sloshing dynamics to estimate the properties of liquid in
cylinder containers. However, the model requires the exact
geometry of the container. In contrast, our physics-inspired
model, combined with machine learning, is able to generalize
to different liquids and containers and is agnostic to the
amount of liquid. Besides, our approach is data-efficient and
achieves better volume estimation and classification results
on many shapes of containers without knowing their exact
dimension.



III. DYNAMIC MODEL OF LIQUID AND TACTILE SIGNAL

A. Overview

We aim to estimate the viscosity and volume of the liquid
in a bottle using only tactile sensors. Typically, solving this
problem involves two steps: initiating the dynamics of the
liquid-container by an activation motion, and estimating the
liquid properties using the collected dynamic tactile signal.
Our method studies, models, and parameterizes the interacting
tactile force between the sensor and liquid-container. The
correlation between the parameterized forces and the targeted
liquid properties is further learned in a data-driven way.

Another key component of our approach is the way we
activate the system. While shaking the liquid-container is the
most popular activation motion, it causes complex, nonlinear
dynamics like turbulence. Inspired by the importance of step
response to system characterization, we command the robot
to perform a “unit step input”: laterally perturbing the liquid-
container and then holding it still. The key is to collect
dynamic tactile signals only in the “hold still” stage, where
the system dynamics is much simpler and the signal is cleaner
(Fig. 1d). In the rest of this section, we explain and model
the simple physics principles governing the received dynamic
tactile signal collected this way.

B. Linear Model for Liquid Oscillation

After perturbation, the liquid will oscillate in the container.
The viscous force of the liquid, which dissipates energy
from the system, causes the oscillation to decay. To model
the oscillation, we consider a simplified system with liquid
oscillating in the container in a simple mode, as shown in Fig.
2. The length of the container is L, the height of the liquid
is h, and the mass of the liquid is m. The entire container
is actively held still in the air by a gripper with GelSight
sensors attached. The origin of the system coordinate is set at
the center of mass of the liquid body before oscillation. With
the small offset ϵ(t) on the surface level from the steady-state,
the center of mass of the liquid body is at (−ϵL/6h, ϵ2/6h)
and its velocity is ≈ −ϵ̇L/6h. Assume the liquid’s internal
viscous force can be treated as an imaginary viscous force
Fγ(t) applied on the center of mass of the liquid body. We
can write the principle of work and energy as:

d

dt

(1
2
m(

−ϵ̇L
6h

)2 +mg
ϵ2

6h

)
= Fγ · (−ϵ̇L

6h
), (1)

The first and second terms are the kinetic and potential energy
of the system, and the sum is the total energy. The RHS of Eq.
1 is the energy dissipation rate caused by the viscous force.
When the system perturbation ϵ(t) is small, the viscous force
is approximately linear to the velocity [10] of the center of
mass and to the mass m: Fγ = −γm(−ϵ̇L

6h ). The constant
factor γ is determined by the liquid viscosity. For example,
compared to water, oil has a stronger viscous force and larger
γ, so the system energy dissipates faster. By replacing Fγ in
Eq. 1 with −γm(−ϵ̇L

6h ), we get a linear second-order system:

ϵ̈(t) + γϵ̇(t) +
12gh

L2
ϵ(t) = 0. (2)

Fig. 2: Side view of liquid oscillating in a container. The center
of mass of the liquid body is at ct in this perturbed state and
c0 in the steady-state.

When the liquid is not too viscous (γ is not too large), the
solution of Eq. 2 is a linear damped oscillation signal:

ϵ(t) = Ae−λt cos(ωt+ ϕ), (3)

where the decay rate λ = γ
2 and the oscillating frequency

ω =
√

12gh
L2 − γ2

4 . The initial condition (the perturbation
motion) determines the magnitude A and the phase ϕ. The
solution matches our observation that after lateral perturbation,
the liquid surface oscillates but gradually damps away.

As the center of mass of the liquid body oscillates, the robot
gripper applies a lateral force Fx on the side of the container
to keep the container’s position. The reaction force of Fx is
applied on the GelSight sensors, which record the force. The
center of mass of the liquid body follows Newton’s second
law in the x direction:

Fx = max = m(−ϵ̈L/6h). (4)

Taking the double derivative of the damped oscillation signal
in Eq. 3, we have ϵ̈ in Eq. 4 being a similar signal with
the same decay rate and oscillation frequency but a different
magnitude and phase. Therefore, the dynamic tactile signal is:

Fx = Be−λt cos(ωt+ ψ), (5)

which oscillates in the same pattern as the liquid surface ϵ in
Eq. 3 with a different magnitude B and phase ψ. Eq. 5 is our
physics-inspired model and it explains the damped oscillating
form of the dynamic tactile signal in Fig. 1d.

Based on our model, the dynamic tactile signal has decay
rate λ = γ

2 , which directly relates to the liquid viscosity, and

oscillation frequency ω =
√

12gh
L2 − γ2

4 , which directly relates
to the height of the liquid and liquid viscosity. It matches our
observation that a more viscous liquid causes faster oscillation
decay, and liquid with more volume oscillates at a higher
frequency. In practice, our model, like many other physics
models, is a simplification of the real world. For example, the
decay rate λ is non-linearly influenced by the shape of the
container. We leave all the complex, unmodeled dynamics to
be learned from the data-driven part of our approach (Section
IV-C).



C. Non-linear Energy Analysis

Our approach estimates liquid viscosity and height using
λ and ω extracted from the dynamic tactile signal. However,
extracting λ and ω by fitting the signal using Eq. 5 is not
precise, because Eq. 5 does not fit the signal well along the
entire time range. As shown in Fig. 1d, the signal decays faster
at the beginning, not at the same rate throughout as modeled by
Eq. 5. This is because the assumption that the viscous damping
force Fγ(t) is linear to the velocity of the center of mass does
not hold when the system energy is high. In the linear case
that Fγ = −γm(−ϵ̇L

6h ), the energy dissipation rate γm(−ϵ̇L
6h )2

is proportional to the system energy on average, so the system
energy decays exponentially. When the system energy is high,
the viscous damping force has higher order terms such as
Fγ = −γm(−ϵ̇L

6h ) − κm(−ϵ̇L
6h )3, and the energy dissipates

faster than linear decay. Therefore, the system energy will
decay faster than the exponential decay at the beginning,
but behave approximately as an exponential decay once the
system energy is lower. We take this affect into account when
extracting λ and ω from the dynamic tactile signal.

IV. METHOD

In this section, we introduce our liquid properties estimation
approach based on the physics-inspired liquid-container model
presented in Section III. Our approach first retrieves and de-
noises the dynamic tactile signal that represents the lateral
force Fx from the GelSight images, and then extracts λ and
ω from Eq. 5. After that, we calculate the height of liquid
h, liquid viscosity ν, and other related physical properties of
interest from the damping model with a data-driven model.
The pipeline is shown in Fig. 3.

A. Tactile Data Collection and Processing

We use two GelSight sensors on a two-fingered gripper,
one on each finger, to collect the dynamic tactile signal due to
its high resolution. GelSight sensor is an vision-based tactile
sensor consisting of a soft elastomer with printed markers,
a lighting system, and an embedded camera. On contact
with objects, the camera captures micron-level deformation
of the sensing surface, which is an elastomer with markers
[19]. It can estimate shear force distribution by tracking the
markers’ lateral motions in the image sequence collected by
the embedded camera. When the liquid-container is held still
after a lateral perturbation, we collect a sequence of GelSight
images as the liquid oscillation motion subsides.

We extract marker contours in GelSight images by color
segmentation and track their motion at sub-pixel accuracy.
Since we are interested in signals in the low-frequency range,
a 3Hz low pass filter is applied on the marker motions for
noise reduction. Marker motions are then ranked by their
magnitude and only the top 16 markers that are supposed to
be in the center of contact are preserved. We concatenate the
x, y motion of each marker to get a 32-dimensional vector
at each time step, and apply PCA to find the 32-dimensional
principal oscillating direction. In our case, the percentage of
variance explained by the first principal component is above

90%. We project the 32 dimensional vector at each time
step to our principal oscillating direction and get our 1D de-
noised dynamic tactile signal u(t) that summarizes the damped
oscillation motion of the top 16 markers. This dynamic tactile
signal u is proportional to the shear force applied on GelSight,
which is denoted by Fx in Eq. 5.

B. Fitting Linear Physics-Inspired Model

Although the de-noised dynamic tactile signal u should be in
the form of linear damped oscillation (Eq. 5) in the ideal case,
in practice, our signal u is the sum of three main components:
a linear damped oscillation f , a fast decay damped oscillation
g, and a time-dependent offset l. As discussed in Section
III-C, the dynamic tactile signal u can be modeled as a linear
damped oscillation f as in Eq. 5, if we leave out the first few
seconds where the system energy is high. However, the system
starts with high energy, where the non-linear terms dominate
the damping force and the signal decays faster. Therefore,
we approximate u with an additional term: a linear damped
oscillation g with a faster decay rate that only plays a part
when the system energy is high. We also add an offset l that is
caused by in-hand slippage. l is approximated as a quadratic
function of time. In summary, we want to fit our dynamic
tactile signal u(t) with a parameterized function ûθ(t):

ûθ(t) = Be−λt cos(ωt+ ψ)︸ ︷︷ ︸
f

+B′e−λ′t cos(ω′t+ ψ′)︸ ︷︷ ︸
g

+ c2(t)
2 + c1(t) + c0,︸ ︷︷ ︸

l

(6)

where θ = {B, λ, ω, ψ,B′, λ′, ω′, ψ′, c2, c1, c0}. Since g by
definition decays faster than f , the model is constrained by
λ′ > λ. To find θ, we minimize a loss function L(θ) that
defines an error metric between ûθ(t) and u(t). While θ in
Eq. 6 consists of 11 unknown parameters, only λ and ω will
be used to estimate the liquid properties. In order to better
extract λ and ω, we care more about fitting the latter section
of the signal well, where f dominates the signal. Therefore,
we choose a loss function that weighs the latter section of the
signal more:

L(θ) =
∑
t

(u(t)− ûθ(t))
2

u(t)2 + δ
, (7)

where δ is a small value for numerical stability. We perform
optimization to minimize the loss function L(θ) to get θ.

C. Regression on Liquid Properties

Based on our physics-inspired model, the fitted parameters
λ and ω in θ are directly related to liquid physical properties:
viscosity and height. We learn a model to approximate the
complex dynamics that relates λ and ω to the physical prop-
erties. Using λ and ω as features, we propose a parameterized
quadratic regression model and a non-parameterized Gaussian
Process Regression (GPR) model to estimate liquid height h
and viscosity ν. Although one might consider estimating liquid



Fig. 3: Pipeline of our method to estimate the viscosity and height of the liquid. We collect the tactile data during the free
oscillation period after a lateral movement. We first track the marker motions from the GelSight [19] attached to both fingers.
Then the top 16 markers with the largest motions are selected and a principal motion signal is calculated by taking PCA of
their motions. We fit the principal motion to Eq. 6 and extract the oscillation frequency ω and decay rate λ as the features.
Then we fit a Gaussian Process Regression model taken ω and λ as input to estimate the liquid height and viscosity.

height by measuring its weight using force-torque sensors, this
approach requires a known liquid density, which can vary in
a wide range (from 1 g/cm3 to 1.3 g/cm3 for sugar-water
solutions used in our experiments).

Our analysis in Section III-B suggests that λ = γ
2 and ω =√

12gh
L2 − γ2

4 , which means h = L2

12g (ω
2+λ2). This motivates

us to use quadratic models of λ and ω to estimate both h and
µ = log10(ν). Here, liquid viscosity ν is transformed to log10
space as in [13] and [14]. In practice, the irregular shape of
the container and other unmodeled dynamics can cause some
complex effects that cannot be fully captured by the quadratic
model. We therefore propose to fit a GPR on λ and ω to
estimate both h and µ, which can capture those higher-order
effects. In our experiments, we use GPR with a mixture of
RBF kernel and white kernel. Thanks to the low-dimensional
physics-inspired feature space (λ, ω), both the quadratic and
GPR models predict liquid properties well without the need
to use a more sophisticated model such as neural networks. In
addition, our quadratic model has only 6 parameters and our
GPR model also requires very little data.

D. Generalizing to Containers with Similar Shapes

A major advantage of using our physics-inspired features
(λ, ω) is that we can generalize the property prediction models
trained on one container to another container of similar shape,
with only a few fine-tuning datapoints. Our experiments show
that h(λ, ω) and µ(λ, ω), as functions of λ and ω in our
trained model, have similar surface landscapes when trained
with containers of similar shapes (as an example, compare
Fig. 10b and Fig. 12b). To gain an intuitive understanding of
this similarity, we can visit the relation h = L2

12g (ω
2 + λ2) in

our physics-inspired model. When the size of the container L
changes, h(λ, ω) is simply scaled. We extend this observation

to the estimation of viscosity µ and verify it in the experiments.
Assume we have container A and container B with similar

shapes but different sizes. Given the trained model µA(λ, ω)
for container A, we parameterize the model in container B to
have a similar landscape to µA(λ, ω):

µB(λ, ω) = µA(α1λ+ α2, β1ω + β2) (8)

where (α1, α2, β1, β2) are the shifting and scaling parameters.
Instead of fitting a model for container B from scratch, we only
need to fit the four parameters (α1, α2, β1, β2), which require
only a small amount of data.

V. EXPERIMENTS

In the experiment section, we want to answer the following
questions: (1) How well does our approach differentiate liquid
contents that are similar to ones used in the related work [13]
[14]? (2) How beneficial is it to use GelSight? (3) How well
does our approach perform in the challenging liquid property
regression task? (4) Can our approach generalize to other
liquids or other containers?

The experimental setup is shown in Fig. 4a. We use a 6 DOF
robot arm (UR5e by Universal Robotics) attached with a 2-
fingered gripper (WSG50 by Weiss Robotics) to perform the
activation motion. The dynamic tactile signal is captured by
two Fingertip GelSight devices [12] mounted on both fingers
of the gripper. The elastomer on GelSight has markers printed
in a 20mm×20mm region with an average distance of 1.8mm
from each other. The camera in the sensor streams videos with
640 × 480 pixels resolution at 30Hz. We use a ubiquitous,
grooved cuboid container (Fig. 4b) as the liquid container.
For each trial, we manually place the container horizontally
in the gripper. To prevent slippage, we place the container in
the gripper at around the center of mass and cover the grasping
region with tape to increase friction. We set the grasping force



Fig. 4: (a) A 2-fingered gripper with two GelSights is used
to grasp the bottle. (b) The grooved cuboid container. (c) The
cylinder container. (d) The cuboid container. (e) The glass
container.

to be the largest force the gripper can apply, which is around
25N. After grasping, the robot arm lifts and activates the
liquid-container with a short lateral movement. We then hold
the system still and record the GelSight videos for another 13
seconds.

A. Liquid Classification

In this first experiment, we demonstrate our approach on a
simple classification task. Our task is to classify three types of
liquid with different viscosities: water (1.1 cSt), olive oil (64
cSt), and detergent (440 cSt). Ground-truth liquid viscosity is
measured by a viscometer (NDJ-5S by JIAWANSHUN). In
this task, liquid volume can vary anywhere from 1/3 to 2/3
full. We collect a training dataset of 24 datapoints (8 different
volumes for each liquid type, uniformly spanned in the range)
and a testing dataset of 210 datapoints (70 different volumes
for each liquid type, randomly sampled in the range).

Fig. 5 shows examples of dynamic tactile signals u received
with the three types of liquids. The dynamic tactile signal is
recorded only in the “hold still” stage after perturbation and
is derived from GelSight marker motions. The signal decays
fastest in detergent and slowest in water. Using the training
dataset, we train an SVM classifier with an RBF kernel
that takes λ and ω as input. The distribution of the testing
dataset and the decision boundaries of the trained classifier
are shown in Fig. 6a. Our classifier successfully classifies the
testing dataset with an 100% accuracy, which outperforms the
98%± 10% accuracy reported in [13]. The data in Fig. 6a is
well divided into 3 bands corresponding to the three types of
liquid. Within each band, we note that datapoints with lower
ω are associated with a lower height h (Fig. 6b).

B. Comparison with Force-Torque Sensor Measurement

Since we take the lateral reaction force applied on GelSight
as the input tactile signal, it comes naturally that one can use
force-torque sensors to directly measure the force as in [13].
We mount a 6-axis force-torque sensor (HEX-E by OnRobot)
on the wrist of the robot arm to measure the dynamic tactile
signal. Fig. 7 shows the filtered lateral force in 3 repeated
trials. While using a sensor with a similar specification sheet
as in [13], our force-torque sensor measurement has a much

Fig. 5: Dynamic tactile signal u when the container is half-
filled with water, olive oil, and detergent, respectively.

(a) (b)

Fig. 6: (a) Classification of water, olive oil, and detergent on
the testing dataset. Colored regions represent the classification
regions determined by the trained SVM. (b) Ocsillation fre-
quency ω vs. liquid height h for different liquid types.

lower signal-to-noise ratio (SNR) and only achieves a clas-
sification accuracy of 34.3% using the method presented in
[13]. This difference might come from that our container being
smaller with a less regular shape than [13] or the different
way we perturb the system. In contrast, the GelSight signals
have a much higher SNR and achieve 100% accuracy. This
experiment underlines the benefit of using GelSight.

C. Estimating Sugar Concentration and Liquid Height

We show the capability of our approach by demonstrating on
a challenging experiment for liquid properties regression. We
task our robot to estimate the concentration c, log10 of viscos-
ity µ, and volume (quantified as liquid height h) of sugar-water
solutions. The concentration vary from 0 to 160 wt%, making
the viscosity vary from 1.1 to 62.6 cSt. We estimate viscosity
in log10 scale as in [13] and [14] because liquid viscosity is
an exponential function of sugar concentration. Fig. 8c shows
the relation between concentration and log10 of viscosity. In
this experiment, the height of the liquid varies from 16 mm
(25% full) to 40 mm (75% full). Out of this range, the liquid
oscillation is too weak for perception. We make sugar-water
solutions of 9 different concentration levels equally spanned
from 0 to 160 wt% (Fig. 8a). For each concentration level, we



Fig. 7: Filtered lateral force measurement using a 6-axis force-
torque sensor on the robot wrist after a perturbation. Data is
collected with the same setup as in Fig. 5. We achieve 34.3%
classification accuracy using this signal, which is only slightly
better than the 33.3% accuracy when guessing randomly.

(a)

(b) (c)

Fig. 8: (a) Sugar-water solutions in the training dataset,
concentration from 0 wt% (left) to 160 wt% (right) (b) Sugar-
water solutions in the testing dataset, concentration from 10
wt% (left) to 150 wt% (right) (c) The relationship of log10 of
viscosity and concentration of the sugar-water solutions.

collect data with 12 different height levels equally spanned
from 16 to 40 mm. Together, it forms the training dataset of
size 108.

The testing dataset is made of another set of sugar-water
solution of 8 different concentration levels equally spanned
from 10 to 150 wt% (Fig. 8b). For each solution, we setup the
liquid-container system on the 12 discretized liquid heights,
same as the training dataset. We thus have 96 testing setups.
For each testing setup, we perform three independent tests.
We then take the average λ and ω of the 3 signals from the
same setup to reduce variance. We use this testing method for
the following experiments as well.

Fig. 9a shows examples of dynamic tactile signals when
activating solutions of different concentration levels. Higher
concentration levels result in faster signal decay. We also show
the tactile signal for liquid at different heights in Fig. 9b. The
signal oscillates faster when there is more liquid is in the
container. For quantitative measurement of the volume and
viscosity, we train three GPR models taking λ and ω as input
to predict h, c, and µ, as introduced in Section IV-C. The fitting
errors on the training and testing datasets are shown in Table
I. The prediction result on the testing dataset is shown in Fig.
10. We omit the prediction result of µ from Fig. 10 because
µ is almost linear to c and their results have almost the same
shape. The result shows that the testing data is close to the

(a)

(b)

Fig. 9: (a) Dynamic tactile signal of half-filled containers with
sugar-water solutions of different concentration. (b) Dynamic
tactile signal of containers with 70 wt% sugar-water solution
at different liquid heights.

fitted GPR plane, and this model can estimate h, c, and µ with
MAE of 0.56 mm, 15.3 wt%, and 0.16. Note that the ground
truth of the liquid height has a measurement error of roughly
1.0 mm. Results using GPR models also outperform results
using parameterized quadratic models shown in the Appendix.
In the rest of the paper, all results will refer to results on the
testing dataset.

h (mm) c (wt%) µ

GPR Model MAE (training dataset) 0.81 15.7 0.16
GPR Model MAE (testing dataset) 0.56 15.3 0.16

TABLE I: Prediction error of liquid height h, sugar concen-
tration c, and log10 of viscosity µ using the GPR models.

D. Generalization to Other Liquids

Our models for predicting viscosity and liquid height trained
on the sugar-water solutions can directly generalize to other
liquids without re-training or fine-tuning. Using the GPR
models trained in Section V-C, we show results of estimating
µ and h of olive oil (µ = 1.81), corn oil (µ = 1.72), and mirin
(µ = 1.34). The testing dataset consists of 36 setup in total:
the liquid-container system on the 12 discretized liquid height
for the three types of liquid.

The prediction result is shown in Fig. 11 and Table II. The
prediction error of µ in mirin is much more than that of the
oils. We suspect that mirin might be a non-Newtonian fluid
and its thickness can’t be explained only by viscosity. Saal



(a) (b)

(c) (d)

Fig. 10: Prediction of liquid height and sugar concentration
on the testing dataset using the GPR model. (a) Relation
between liquid height h and decay rate λ, oscillation frequency
ω (b) Relation between sugar concentration c and decay rate
λ, oscillation frequency ω (c) Prediction of liquid height. (d)
Prediction of sugar concentration.

(a) (b)

Fig. 11: (a) The prediction result of liquid height h on common
liquids. (b) The prediction result of viscosity µ on common
liquids (shown in log10 scale).

et al. [14] reported their mean square error (MSE) of µ being
0.48. To compare, our MSE of µ is 0.02 on olive oil, 0.03 on
corn oil, and 0.18 on mirin.

E. Experiments using Different Containers

We show in this experiment that our approach works on
containers of different sizes, shapes, and materials. Similar
to Section V-C, we collect training and testing datasets of
sugar-water solutions (Fig. 8a, 8b) with different liquid heights
using the three containers: cylinder container (Fig. 4c), cuboid
container (Fig. 4d), and glass container (Fig. 4e). The cylinder

h MAE (mm) µ MAE
Olive Oil (µ = 1.81) 1.50 0.12
Corn Oil (µ = 1.72) 1.46 0.12

Mirin (µ = 1.34) 0.99 0.35

TABLE II: Prediction error of liquid height h and log10 of
viscosity µ on common liquids.

container and cuboid container are made of plastic. To prevent
slippage, we 3D-print a mold that clamps on the cylinder
container and creates a flat contact surface for the gripper.
The details of the datasets are shown in Table III. The cuboid
container and the grooved cuboid container (Fig. 4b) used in
the previous experiments have a similar shape but different
sizes. The glass container is much heavier and is of a different
shape and size than other containers.

Container Type Cylinder Cuboid Glass
Range of Level (mm) 12 to 35 15 to 38 22 to 39
Trainig Dataset Size 117 108 63
Testing Dataset Size 104 96 56

TABLE III: Details of the training and testing datasets col-
lected on the cylinder, cuboid, and glass containers.

The prediction results are shown in Fig. 12 and Table IV. We
can see that the trained GPR model using the grooved cuboid
container (Fig. 10b) has a similar shape with the one of the
cuboid container (Fig. 12b) but different from the one of the
cylinder container (Fig. 12c). This supports our discussion in
Section IV-D. We also observe the GPR model having a very
different landscape when using the glass container. A potential
reason is that the liquid-container dynamics is different when
the container weight is not negligible (the glass container has
a similar weight to the liquid inside on average).

h (mm) c (wt%) µ

MAE (Cylinder Container) 0.84 13.5 0.15
MAE (Cuboid Container) 1.96 20.4 0.23
MAE (Glass Container) 0.91 12.9 0.14

TABLE IV: Prediction error of liquid height h, sugar concen-
tration c, and log10 of viscosity µ using GPR models in the
cylinder, cuboid, and glass containers.

F. Training Data Efficiency
A key advantage of our approach is its data efficiency. We

train GPR models using subsets of the training datasets in
all three containers. The subsets have a size ranging from
10 to 100 data and are uniformly sampled from the original
training datasets in Section V-C and V-E. We only show results
on concentration prediction because it is more challenging
than liquid height prediction. The change of concentration
prediction error when using different amounts of training data
is shown in Fig. 13. For a smooth container like the cylinder
container, we can train our GPR model with as little as 10
data and has good prediction results (MAE ≤ 20 wt%). The
cuboid containers take 60 data to train our GPR model, which
is still much less than what a neural network requires.



(a) (b) (c)

Fig. 12: The sugar concentration c prediction results with different containers. (a) Train and test with the cylinder container.
(b) Train and test with the cuboid container. (c) Train and test with the glass container.

Fig. 13: The prediction error of sugar concentration when
trained with different amount of data.

G. Generalization to Different Containers

Finally, we show that our model can generalize across
similar-shaped containers with very little fine-tuning data.
Given the GPR model trained in the grooved cuboid container
(Fig. 10b), we fine-tune and test on the cuboid container using
the approach in Section IV-D. The fine-tuning datasets have
a size ranging from 10 to 100 data and are the same as the
training datasets of the cuboid container used in Section V-F.
We compared our results with the baseline model, which is
a GPR model directly trained from the fine-tuning data. The
concentration prediction MAE when using different amounts
of fine-tuning data is shown in Fig. 14. It takes 15 datapoints
to fine-tune our model. In fact, with more than 10 fine-tuning
datapoints, our fine-tuned model always has better or similar
performance than the baseline model.

VI. FUTURE WORK

We believe our work is just the beginning of a sequence
of super-human perception research based on dynamic tactile
signals. One avenue to improve our approach on liquid prop-
erties estimation is making use of the dynamic tactile signals
collected in the activation stage as well as the free-oscillation
stage. In the future, we will survey models for signals in the
activation stage and explore other ways to activate the system,
such as perturbing in different directions. Other extensions of
our approach include modeling the damped oscillation signal

Fig. 14: The prediction error of sugar concentration on the
cuboid container. Red is the model directly trained on the
fine-tuning dataset. Blue is the model first trained on grooved
cuboid container then fine-tuned on the fine-tuning dataset.

with more features and learning a more complex model than
GPR models. We will also explore how the physics-inspired
models can be applied to other dynamic tactile sensing tasks,
such as estimating solid content properties.

VII. CONCLUSION

In this paper, we present an approach to precisely estimate
the liquid viscosity and volume in the container using dynamic
tactile sensing. We introduce a physics-inspired model to
interpret the damped oscillation signal after perturbation and
relate the signal to the liquid properties. We then learn a
GPR model to estimate liquid properties. In the experiment,
our approach achieves 100% classification accuracy among
water, oil, and detergent. For the challenging sugar-water
properties regression task, we can predict the height of the
liquid with 0.56 mm error and the sugar concentration with
15.3 wt% error. Our approach is also data-efficient, agnostic to
volume, and can easily generalize to different types of liquid
and containers. Our work elevates dynamic tactile sensing to
a much higher precision level in this task and explains its
principal mechanisms. We believe this lightweight learning
approach based on simple physics can be applied to other
dynamic tactile sensing tasks.
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APPENDIX

A. Experiment Results of Quadratic Regression Models

In addition to estimating sugar-water concentration and
liquid height using GPR models as shown in Section V-C, we
also train parameterized quadratic regression models to make
the predictions as introduced in Section IV-C. The prediction
result on the testing dataset is shown in Fig. 15 and the training
and testing errors are shown in Table V. Quadratic models
can estimate h, c, and µ with MAE of 0.84 mm, 20.0 wt%,
and 0.23. The testing result using quadratic models is slightly
worse than the non-parametric GPR models.

(a) (b)

(c) (d)

Fig. 15: Prediction of liquid height and sugar concentration on
the testing dataset using the quadratic regression model. (a)
Relation between liquid height h and decay rate λ, oscillation
frequency ω. (b) Relation between sugar concentration c and
decay rate λ, oscillation frequency ω. (c) Prediction of liquid
height. (d) Prediction of sugar concentration.

h (mm) c (wt%) µ

Quadratic Model MAE (training dataset) 1.13 21.1 0.23
Quadratic Model MAE (testing dataset) 0.84 20.0 0.23

TABLE V: Prediction error of liquid height h, sugar concen-
tration c, and log10 of viscosity µ using quadratic regression
models.
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