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Abstract—With the rapid growth of computing powers and
recent advances in deep learning, we have witnessed impressive
demonstrations of novel robot capabilities in research settings.
Nonetheless, these learning systems exhibit brittle generalization
and require excessive training data for practical tasks. To harness
the capabilities of state-of-the-art robot learning models while
embracing their imperfections, we present Sirius, a principled
framework for humans and robots to collaborate through a
division of work. In this framework, partially autonomous robots
are tasked with handling a major portion of decision-making
where they work reliably; meanwhile, human operators monitor
the process and intervene in challenging situations. Such a
human-robot team ensures safe deployments in complex tasks.
Further, we introduce a new learning algorithm to improve
the policy’s performance on the data collected from the task
executions. The core idea is re-weighing training samples with
approximated human trust and optimizing the policies with
weighted behavioral cloning. We evaluate Sirius in simulation and
on real hardware, showing that Sirius consistently outperforms
baselines over a collection of contact-rich manipulation tasks,
achieving an 8% boost in simulation and 27% on real hardware
than the state-of-the-art methods in policy success rate, with twice
faster convergence and 85% memory size reduction. Videos and
more details are available at https://ut-austin-rpl.github.io/sirius/

I. INTRODUCTION

Recent years have witnessed great strides in deep learning
techniques for robotics. In contrast to the traditional form of
robot automation, which heavily relies on human engineering,
these data-driven approaches show great promise in building
robot autonomy that is difficult to design manually. While
learning-powered robotics systems have achieved impressive
demonstrations in research settings [2, 24, 31], the state-of-
the-art robot learning algorithms still fall short of generaliza-
tion and robustness for widespread deployment in real-world
tasks. The dichotomy between rapid research progress and
the absence of real-world application stems from the lack of
performance guarantees in today’s learning systems, especially
when using black-box neural networks. It remains opaque to
the potential practitioners of these learning systems: how often
they fail, in what circumstances the failures occur, and how
they can be continually enhanced to address them.

To harness the power of modern robot learning algorithms
while embracing their imperfections, a burgeoning body of
research has investigated new mechanisms to enable effective
human-robot collaborations. Specifically, shared autonomy
methods [23, 45] aim at combining human input and semi-
autonomous robot control to achieve a common task goal.
These methods typically use a pre-built robot controller rather
than seeking to improve robot autonomy over time. Mean-
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Fig. 1: Overview of Sirius, our human-in-the-loop learning and de-
ployment framework. Sirius enables a human and a robot to collaborate
on manipulation tasks through shared control. The human monitors the
robot’s autonomous execution and intervenes to provide corrections through
teleoperation. Data from deployments will be used by our algorithm to
improve the robot’s policy in consecutive rounds of policy learning.

while, recent advances in interactive imitation learning [6, 25,
37, 46] have aimed to learn policies from human feedback
in the learning loop. Although these learning algorithms can
improve the overall efficacy of autonomous policies, these
policies still fail to meet the performance requirements for
real-world deployment.

This work aims at developing a human-in-the-loop learning
framework for human-robot collaboration and continual policy
learning in deployed environments. We expect our framework
to satisfy two key requirements: 1) it ensures task execution
to be consistently successful through human-robot teaming,
and 2) it allows the learning models to improve continu-
ally, such that human workload is reduced as the level of
robot autonomy increases. To build such a framework, This
idea of robot learning on the job resembles the Continuous
Integration, Continuous Deployment (CI/CD) principles in
software engineering [48]. Realizing this idea for learning-
based manipulation invites fundamental challenges.

The foremost challenge is developing the infrastructure for
human-robot collaborative manipulation. We develop a system
that allows a human operator to monitor and intervene the
robot’s policy execution (see Fig. 1). The human can take over
control when necessary and handle challenging situations to
ensure safe and reliable task execution. Meanwhile, human
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interventions implicitly reveal the task structure and the level
of human trust in the robot. As recent work [22, 25, 37]
indicates, human interventions inform when the human lacks
trust in the robot, where the risk-sensitive task states are, and
how to traverse these states. We can thus take advantage of
the occurrences of human interventions during deployments as
informative signals for policy learning.

The subsequent challenge is updating policies on an ever-
growing dataset of shifting distributions. As our framework
runs over time, the policy would adapt its behaviors through
learning, and the human would adjust their intervention pat-
terns accordingly. Deployment data from human-robot teams
can be multimodal and suboptimal. Learning from such de-
ployment data requires us to selectively use them for policy
updates. We want the robot to learn from good behaviors to
reinforce them and also to recover from mistakes and deal
with novel situations. At the same time, we want to prevent
the robot from copying bad actions that would lead to failure.
Our key insight is that we can assess the importance of varying
training data based on human interventions for policy learning.

To this end, we develop a simple yet effective learning
algorithm that uses the occurrences of human intervention to
re-weigh training data. We consider the robot rollouts right
before an intervention as “low-quality” (as the human believes
the robot is about to fail) and both human demonstrations and
interventions as “high-quality” for policy training. We label
training samples with different weights and train policies on
these samples using weighted behavioral cloning, the state-of-
the-art algorithm for imitation learning [47, 56, 63] and offline
reinforcement learning [28, 42, 54]. This supervised learning
algorithm lends itself to the efficiency and stability of policy
optimization on our large-scale and growing dataset.

Furthermore, deploying our system in long-term missions
leads to two practical considerations: 1) it incurs a heavy
burden of memory storage to store all past experiences over
a long duration, and 2) a large number of similar experiences
may inundate the small subset of truly valuable data for policy
training. We thus examine different memory management
strategies, aiming at adaptively adding and removing data
samples from the memory storage of fixed size. Our results
show that even with 15% of the full memory size, we can
retain the same level of performance or achieve even better
performance than keeping all data, and moreover enables three
times faster convergence for rapid model updates between
consecutive rounds.

We name our framework Sirius, the star symbolizing our
human-robot team with its binary star system. We evaluate
Sirius in two simulated and two real-world tasks requiring
contact-rich manipulation with precise motor skills. Com-
pared to the state-of-the-art methods of learning from offline
data [28, 39, 42] and interactive imitation learning [37],
Sirius achieves higher policy performance and reduced human
workload. Sirius reports an 8% boost in policy performance in
simulation and 27% on real hardware over the state-of-the-art
methods.

II. RELATED WORK

Human-in-the-loop Learning. A human-in-the-loop learn-
ing agent utilizes interactive human feedback signals to im-
prove its performance [9, 10, 59]. Human feedback can serve
as a rich source of supervision, as humans often have a priori
domain information and can interactively guide the agent with
respect to its learning progress. Many forms of human feed-
back exist, such as interventions [25, 37, 50], preferences [3,
8, 32, 53], rankings [4], scalar-valued feedback [35, 55], and
human gaze [60]. These feedback forms can be integrated into
the learning loop through learning techniques such as policy
shaping [19, 27] and reward modeling [11, 33], enabling model
updates from asynchronous policy iteration loops [7].

Within the context of robot manipulation, one approach
is to incorporate human interventions in imitation learning
algorithms [25, 37, 50]. Another approach is to employ deep
reinforcement learning algorithms with learned rewards, either
from preferences [32, 53] or reward sketching [5]. While these
methods have demonstrated higher performance compared to
those without humans in the loop, they require a large amount
of supervision from humans and also fail to incorporate human
control feedback in deployment into the learning loop again
to improve model performance. In contrast, we specifically
consider the above scenarios which are critical to real-world
robotic systems.

Shared Autonomy. Human-robot collaborative control is
often necessary for real-world tasks when we do not have
full robot autonomy while full human teleoperation control
is burdensome. In shared autonomy [13, 18, 23, 45], the
control of a system is shared by a human and a robot to
accomplish a common goal [52]. The existing literature on
shared autonomy focuses on efficient collaborative control
from human intent prediction [12, 41, 43]. However, they do
not attempt to learn from human intervention feedback, so
there is no policy improvement. We examine a context similar
to that of shared autonomy where human is involved during the
actual deployment of the robot system; however, we also put
human control in the feedback loop and use them to improve
the learning itself.

Learning from Offline Data. An alternative to the human-
in-the-loop paradigm is to learn from fixed robot datasets via
imitation learning [14, 36, 44, 61] or offline reinforcement
learning (offline RL) [16, 26, 28, 30, 34, 38, 57, 58]. Of-
fline RL algorithms, particularly, have demonstrated promise
when trained on large diverse datasets with suboptimal be-
haviors [1, 29, 49]. Among a number of different methods,
advantage-weighed regression methods [28, 42, 54] have re-
cently emerged as a popular approach to offline RL. These
methods use a weighted behavior cloning objective to learn
the policy, using learned advantage estimates as the weight. In
this work, we also use weighted behavior cloning; however,
we explicitly leverage human intervention signals from our
online human-in-the-loop setting to obtain weights rather than
using task rewards to learn advantage-based weights. We
show that this leads to superior empirical performance for our
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Fig. 2: Illustration of the workflow in Sirius. Robot deployment and policy
update co-occur in two parallel threads. Deployment data are passed to policy
training, while a newly trained policy is deployed to the target environment
for task execution.

manipulation tasks.

III. BACKGROUND AND OVERVIEW

A. Problem Formulation

We formulate a robot manipulation task as a Markov De-
cision Process M = (S,A,R,P, p0, γ) representing the state
space, action space, reward function, transition probability,
initial state distribution, and discount factor. In this work, we
adopt an intervention-based learning framework in which the
human can choose to intervene and take control of the robot.
Given the current state st ∈ S, the robot action aRt ∈ A is
drawn from the policy πR (· | st), and the human can override
this action with a human action aHt ∈ A. The policy π for the
human-robot team can thus be formulated as:

π(· | st) = IH(st)πH(· | st) + (1− IH(st))πR(· | st),

where IH is a binary indicator function of human interventions
and πH is the implicit human policy. Our learning objective is
two-fold: 1) we want to improve the level of robot autonomy
by finding the autonomous policy πR that maximizes the
cumulative rewards EπR

[
∑∞

t=0 γ
tr (st, at, st+1)], and 2) we

want to minimize the human’s workload in the system, i.e.,
the expectation of interventions Eπ[IH(st)] under the state
distribution induced by the team policy π.

B. Weighted Behavioral Cloning Methods

We aim to learn a robot policy πR with the deployment
data to enhance robot autonomy and reduce human costs
in human-robot collaboration. Weighted Behavioral Cloning
(BC) has recently become one promising approach to learning
policies from multimodal and suboptimal data. In standard BC
methods, we train a model to mimic the action for each state in
the dataset. The objective is to learn a policy πR parameterized
by θ that maximizes the log-likelihood of actions a conditioned
on the states s:

θ∗ = argmax
θ

E
(s,a)∼D

[log πθ(a | s)] , (1)

where (s, a) are samples from the dataset D. For weighted
BC, the log-likelihood term of each (s, a) pair is scaled by

a weight function w(s, a), which assigns different importance
scores to different samples:

θ∗ = argmax
θ

E
(s,a)∼D

[w(s, a) log πθ(a | s)] . (2)

The weighted BC framework lays the foundation of sev-
eral state-of-the-art methods for offline reinforcement learning
(RL) [28, 42, 54]. Different weight assignments differenti-
ate high-quality samples from low-quality ones, such that
the algorithm prioritizes high-quality samples for learning.
In particular, advantage-based offline RL algorithms calcu-
late weights as w(s, a) = f(Qπ(s, a)), where f(·) is a
non-negative scalar function related to the learned advan-
tage estimates Aπ(s, a). High-advantage samples indicate that
their actions likely contribute to higher future returns and,
therefore, should be weighted more. Through the sample-
weighting scheme, these methods filter out low-advantage
samples and focus on learning from the higher-quality ones in
the dataset. Nonetheless, effectively learning value estimates
can be challenging in practice, especially when the dataset
does not cover a sufficiently wide distribution of states and
actions—a challenge highlighted by prior work [15, 20]. In
the deployment setting, the data only constitute successful
trajectories that complete the task eventually. Empirically, we
find in Section V that the nature of our deployment data makes
today’s offline RL methods struggle to learn values.

In contrast to the value learning framework, some prior
works [7, 17, 37] have developed weighted BC approaches
that are specialized for the human-in-the-loop setting. In par-
ticular, Mandlekar et al. [37] proposes Intervention-weighted
Regression (IWR) which designs weights based on whether a
sample is a human intervention. Inspired by these prior works,
we introduce a simple yet practical weighting scheme that
harnesses the unique properties of deployment data to learn
performant agents. We elaborate on our weighting scheme in
the following section.

IV. SIRIUS: HUMAN-IN-THE-LOOP LEARNING AND
DEPLOYMENT

We present Sirius, our human-in-the-loop framework that
learns and deploys continually improving policies from human
and robot deployment data. First, we define the human-in-the-
loop deployment setting and give an overview of our system
design. Next, we describe our weighting scheme, which can
learn effective policies from mixed, multi-modal data through-
out deployment. Finally, we introduce memory management
strategies that reduce the computational complexities of policy
learning and improve the efficiency of the system.

A. Human-in-the-loop Deployment Framework

Our human-in-the-loop system aims to constantly learn from
the deployment experience and human corrective feedback
so as to obtain a high-performing robot policy and reduce
human workload over time. It consists of two components
that happen simultaneously: Robot Deployment and Policy
Update. In Robot Deployment (top thread in Fig. 2), the robot
performs task executions with human monitoring; in Policy



Update (bottom thread), the system improves the policy with
the deployment data for the next round of task execution.

The system starts with an initial policy in the warm-up
phase, where we bootstrap a robot policy π1 trained on a
small number of human demonstrations. Initially, the memory
buffer comprises a set of human demonstration trajectories
D0 = {τj}, where each trajectory τj = {st, at, rt, ct =
demo} consists of the states, actions, task rewards, and the
data class type flag ct indicating that these trajectories are
human demonstrations.

Upon training the initial policy π1, we deploy the robot
to perform the task, and in the process, we collect a set of
trajectories to improve the policy. A human operator who
continuously monitors the robot’s execution will intervene
based on whether the robot has performed or will perform
suboptimal behaviors. Note that we adapt human-gated con-
trol [25] rather than robot-gated control [22] to guarantee task
execution success and trustworthiness of the system for real-
world deployment. Through this process, we obtain a new
dataset D′ of trajectories τj = {st, at, rt, ct}, where ct either
indicates the transition is a robot action (ct = robot) or a
human intervention (ct = intv). We append this data to the
existing memory buffer collected so far D1 ← D0 ∪ D′, and
train a new policy π2 on this new dataset.

In subsequent rounds, we deploy the robot to collect new
data while simultaneously updating the policy. We define
“Round” as the interval for policy update and deployment:
It consists of the completion of training for one policy, and at
the same time, the collection of one set of deployment data.
In Round i, we train for policy πi using all previous data.
Meanwhile, the robot is continuously being deployed using
the current best policy πi−1, and gathered deployment data
D′. At the end of round i we append this data to the existing
memory buffer collected so far Di ← Di−1 ∪ D′ and train a
new policy πi+1 on this aggregated dataset.

Our system aggregates data from deployment environments
over long-term deployments. This presents a unique set of
challenges: first, the generated data comes from mixed dis-
tributions consisting of robot policy actions, human interven-
tions, and human demonstrations; also, the system produces
data that is constantly growing in size, imposing memory
burden and computational inefficiency for learning algorithms.
We address these challenges in the following sections.

B. Human-in-the-loop Policy Learning

We present a simple yet effective learning method that
takes advantage of the unique characteristics of deployment
data to learn effective policies. We have a critical insight that
human interventions provide informative signals of human
trust and human judgement of the robot executions, which
we will use to guide the design of our algorithm. The core
idea of our approach is to harness the structure of the human
correction feedback to re-weigh training samples based on an
approximate quality score. With these weighted samples, we
train the policy with the weighted behavioral cloning method
to learn the policy on mixed-quality data. Our approach is
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Fig. 3: Overview of our human-in-the-loop learning model. We maintain an
ever-growing database of diverse experiences spanning four categories: human
demonstrations, autonomous robot data, human interventions, and transitions
preceding interventions which we call pre-interventions. We set weights
according to these four categories, with a high weight given to interventions
over other categories. We use these weighted samples to continually learn
vision-based manipulation policies during deployment.

motivated by two insights on how the human intervention
structure could be used.

Our first intuition is that human intervention samples are
highly important samples and should be prioritized in learning.
Human-operated samples are expensive to obtain and should
be optimized in general, but human intervention occurs in
situations where the robot is unable to complete the task and
requires help. These are risk-sensitive task states, so data in
these regions are highly valuable. Therefore, these state-action
pairs should be ranked high by the weighting function, and
we should upweight the human intervention samples such that
these samples will positively influence learning more.

Moreover, we should not only make use of what human
samples to use, but also when the human samples take place.
We make the critical observation that when the robot operates
autonomously, it usually performs reasonable behaviors. But
when it demands interventions, it is when the robot has made
mistakes or has performed suboptimal behaviors. Therefore,
human interventions implicitly signify human value judgment
of the robot behavior—the samples before human interventions
are less desirable and of lower quality. We aim to minimize
their impact on learning.

With these insights, we devise a weighting scheme accord-
ing to intervention-guided data class types. Recall that each
sample (s, a, r, c) in our dataset contains a data class type c,
indicating whether the sample denotes a human demonstration
action, robot action, or human intervention action. To incor-
porate the timing of human interventions, we distinguish and
penalize the samples taken prior to each human intervention.
We define the segment preceding each human intervention as a



Algorithm 1 Human-in-the-loop Learning at Deployment

Notations
L: memory buffer maximum fixed size
X: maximum deployment rounds
M : number of initial human demonstration trajectories
K: number of rollout episodes in each deployment round
b: batch size
n: number of gradient steps in each learning round
α: policy learning rate

� warmstart phase
Collect M human demonstrations τ1, . . . , τM
D0 ← {τ1, . . . , τM}
Initialize BC policy πθ

1 :
θ∗ = argmaxθ E(s,a)∼D0

[
log πθ

1(a | s)
]

� initial deployment data
D1 ← DEPLOYMENT(πθ

1 , D0)

� deployment-learning loop
for i← 1 to X do

Run in parallel:
Di+1 ←DEPLOYMENT(πθ

i , Di)
πθ
i+1 ←LEARNING(Di)

� deployment thread
function DEPLOYMENT(πθ, D)

Collect rollout episodes τ1, . . . , τK ∼ pπθ
(τ)

D+ ← D ∪ {τ1, . . . , τK}
if |D+| > L then

Discard trajectories in D+ s.t. |D+| ≤ L
with a memory management strategy (in IV-C)

return D+

� learning thread
function LEARNING(D)

Initialize πθ

for each class c do
Dc ← {(s, a, c′) ∈ D | c′ = c}
P (c)← |Dc|/|D|
Obtain P ∗(c) (see IV-D)

for n gradient steps do
Sample mini-batch

(
si, ai, ci

)b
i=1
∼ D

Compute w(si, ai, ci)← P∗(ci)
P (ci) for the mini-batch

Lπ(θ) = − 1
b

∑
i

[
w(si, ai, ci) · log πθ(a

i | si)
]

θ ← θ − α∇θLπ(θ)
return πθ

separate class, pre-intervention (preintv) (see Fig. 3). This
classification is based on the implicit human evaluation from
the human partner, thresholding the robot samples into either
normal robot samples or suboptimal preintv samples.
Overall, this yields four class types c ∈ {demo, intv,
robot, preintv}.

We derive the weight for each individual sample according
to its corresponding class type c. Suppose the dataset D has
total number of samples N , and nc is the number of samples
that is class c. We use Dc to represent the collection of samples
of class c in D. The original class distribution is P (c) =
nc/N for class c, and the unweighted BC objective under this
distribution is:

argmax
θ

E
(s,a)∼D

[log πθ(a | s)]

= argmax
θ

E
P (c)

E
(s,a)∼Dc

[log πθ(a | s)] .
(3)

In a long-term deployment setting, most data will be robot
actions, and human interventions usually constitute a small
ratio of the dataset samples, since interventions only happen
at critical regions in a trajectory; the pre-intervention samples
constitute a small but non-negligible proportion which can
have detrimental effects (see Fig. 3, left pie chart). We will
now change the class distribution to a new distribution P ∗(c),
in which we increase the ratio of human intervention samples
and decrease the ratio of the pre-intervention samples (see Fig.
3, right pie chart). Under this new distribution, the weight

w(s, a, c) of the training samples in each individual class c
can be equivalently set as w(s, a, c) = P ∗(c)/P (c) by the
rule of importance sampling. We outline the details of our
specific distribution P ∗(c) in Sec. IV-D. This way, we obtain
the sample weights for weighted BC, leveraging the inherent
structure of human-robot team data.

C. Memory Management

As the deployment continues and the dataset increases, large
data slows down training convergence and takes up excessive
memory space. We hypothesize that forgetting (routinely dis-
carding samples from memory) helps prioritize important and
useful experiences for learning, speeding up convergence and
even further improving policy. Moreover, the right kind of
forgetting matters, since we want to preserve the data that
is most beneficial to learning. Therefore, we would like to
investigate the following question—with limited data storage
and a never-ending deployment data flow, how do we absorb
the most useful data and preserve more valuable information
for learning?

We assume that we have a fixed-size memory buffer that re-
places existing samples with new ones when full. We consider
five strategies for managing the memory buffer of deployment
data. Each strategy tests out a different hypothesis listed below:

1) LFI (Least-Frequently-Intervened): first reject samples
from trajectories with the least interventions.
(Preserving the most human intervened trajectories
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Fig. 4: Policy Architecture. Our vision-based policy uses BC-RNN as our
policy backbone. Our inputs are workspace camera image and eye-in-hand
camera image, as well as robot proprioceptive states.

keeps the most valuable human and critical state ex-
amples, which helps learning the most.)

2) MFI (Most-Frequently-Intervened): first reject samples
from trajectories with the most interventions.
(Successful, unintervened robot trajectories yield higher
quality data for learning compared to those that require
intervention.)

3) FIFO (First-In-First-Out): reject samples in the order
that they were added to the buffer.
(More recent data from a higher performing policy are
higher quality data for learning.)

4) FILO (First-In-Last-Out): reject the most recently added
samples first.
(Initial data from a worse performing policy have
greater state coverage and data diversity for learning.)

5) Uniform: reject samples uniformly at random.
(Uniformly selecting trajectories can yield a balanced
mix of diverse samples, aiding in the learning process.)

With the intervention-guided weighting scheme for policy
update and memory management strategies, we present the
overall workflow of human-in-the-loop learning in deployment
in Algorithm 1.

D. Implementation Details

For the robot policy (see Fig. 4), we adopt BC-RNN [39],
the state-of-the-art behavioral cloning algorithm, as our model
backbone. We use ResNet-18 encoders [21] to encode third
person and eye-in-hand images [36, 39]. We concatenate
image features with robot proprioceptive state as input to
the policy. The network outputs a Gaussian Mixture Model
(GMM) distribution over actions.

For our intervention-guided weighting scheme, we set
P ∗(intv) = 1

2 . The 50% ratio is adapted from prior work
[37] that increases the weight of intervention to a reason-
able level. We conduct an ablation study in Section V how
changing P ∗(intv) affects the policy performance. We set
P ∗(preintv) = 0, essentially nullifying the impact of pre-
intervention samples. The demo weight maintains the true
ratio of demonstration samples in the dataset: P ∗(demo) =
P (demo). Finally, P ∗(robot) adjusts itself accordingly. Un-
der this new distribution, we implicitly decrease the propor-
tion of the robot class (see Fig. 3) due to increasing the
proportion of the intv class. Note that the ratio of the

demonstration remains unchanged as they are still important
and useful samples to learn from, especially during initial
rounds of updates when the robot generates lower-quality
data. This is in contrast to IWR by Mandlekar et al. [37],
which treats all non-intervention samples as a single class,
thus lowering the contribution of demonstrations from their
unweighted ratio. The weight for each individual sample is
w(s, a, c) = P ∗(c)/P (c), as discussed in Section IV-B.

We set a segment of length ℓ before each human intervention
as the class preintv. The optimal choice on the hyperparam-
eter ℓ depends on the human reaction time, which quantifies
how fast the human operator reacted to the robot’s undesired
behavior. Prior works [50, 51] indicate that a response delay
exists between the time the robot starts to perform mistakes
and the time human actually perform corrective interventions.
Our empirical observation based on our human operator shows
an average reaction time of 2 seconds, roughly corresponding
to the time of 15 robot actions. We thus set ℓ = 15.

V. EXPERIMENTS

In our experiments, we seek to answer the following re-
search questions: 1) How effective is Sirius in improving
autonomous robot policy performance over time? 2) Can this
system reduce human workload over time? 3) How do the
individual design choices in our learning algorithm affect
overall performance? and 4) Which memory management
strategy is most effective for learning with constrained memory
storage?

A. Tasks

We design a set of simulated and real-world tasks that
resemble common industrial tasks in manufacturing and lo-
gistics. We consider long-horizon tasks that require precise
contact-rich manipulation, necessitating human guidance. For
all tasks, we use a Franka Emika Panda robot arm equipped
with a parallel jaw gripper. Both the agent and human control
the robot in task space. We use a SpaceMouse as the human
interface device to intervene.

We systematically evaluate the performance of our method
and baselines in the robosuite simulator [62]. We choose the
two most challenging contact-rich manipulation tasks in the
robomimic benchmark [39]:

Nut Assembly. The robot picks up a square nut from the
table and inserts the nut into a column.

Tool Hang. The robot picks up a hook piece and inserts
it into a very small hole, then hangs a wrench on the hook.
As noted in robomimic [39], this is a difficult task requiring
precise and dexterous control.

In the real world, we design two tasks representative of
industrial assembly and food packaging applications:

Gear Insertion. The robot picks up two gears on the NIST
board and inserts each of them onto the gear shafts.

Coffee Pod Packing. The robot opens a drawer, places a
coffee pod into the pod holder, and closes the drawer.



Fig. 5: Quantitative evaluations. We compare our method with human-in-the-loop learning, imitation learning, and offline reinforcement learning baselines.
Our results in simulated and real-world tasks show steady performance improvements of the autonomous policies over rounds. Our model reports the highest
performance in all four tasks after three rounds of deployments and policy updates. Solid line: human-in-the-loop; dashed line: offline learning on data from
our method.

Fig. 6: (Left) Ablation on intervention ratio weight. We show how policy
performance first increase then decrease as P ∗(intv) increases, pearking at
P ∗(intv) = 0.5. (Right) Ablation on weight function design. Our results
show that removing each class label hurts model performance.

B. Baselines and Evaluation Protocol

We compare our method with the state-of-the-art human-in-
the-loop learning method for robot manipulation, Intervention
Weighted Regression (IWR) [37]. Furthermore, to ablate the
impacts of algorithms versus data distributions, we compare
the state-of-the-art imitation learning algorithm BC-RNN [39]
and offline RL algorithm Implicit Q-Learning (IQL) [28]. We
run these two latter baselines on the deployment data generated
by our method for a fair comparison.

To mimic the intervention-guided weights for IQL, we
use the following rewards after hyperparameter optimization:
r = 1.0 upon task success, r = 0.25 for intervention states,
r = −0.25 for pre-intervention states, and r = 0 for all other
states. We also run IQL in a sparse reward setting but find
it underperformed. Note that in contrast to our method, IQL
requires additional information on task rewards, which may
be expensive to obtain in real-world settings.

To provide a fair comparison with existing human-in-the-
loop methods, we follow the round update protocol established
by prior work [25, 37]: three rounds of policy learning and
deployment, where each round deployment runs until the

number of intervention samples reaches one third of the initial
human demonstration samples.

We benchmark human-in-the-loop deployment systems in
two aspects: 1) Policy Performance. Our human-robot team
achieves a reliable task success of 100%. Here we evaluate
the success rate of the autonomous policy after each round of
model update; and 2) Human Workload. We measure human
workload as the percentage of intervention in the trajectories
in each round. We perform rigorous evaluations of policy
performance as follows:

• Simulation experiments: We evaluate the success rate
of each method across 3 seeds. For each seed, we
evaluate the success rate at a set of regularly spaced
training checkpoints and record the average over the top
three performing checkpoints to avoid outliers. For each
checkpoint, we evaluate whether the agent successfully
completed the task over 100 trials.

• Real-world experiments: We evaluate each method for
one seed due to the high time cost for real robot evalua-
tion. Since real robot evaluations are subject to noise and
variation across checkpoints, we first perform an initial
evaluation of different checkpoints (5 checkpoints) for
each method, evaluating each of them for a small number
of trials (5 trials). For the checkpoint that gives the best
initial quantitative behavior, we perform 32 trials and
report the success rate over them.

C. Experiment Results

Quantitative Results. We show in Fig. 5 that our method
significantly outperforms the baselines on our evaluation tasks.
Our method consistently outperforms IWR over the rounds.
We attribute this difference to our fine-grained weighting
scheme, enabling the method to better differentiate high-
quality and suboptimal samples. This advantage over IWR
cascades across the rounds, as we obtain a better policy, which
in turn yields better deployment data.

We also show that our method significantly outperforms the
BC-RNN and IQL baselines under the same dataset distribu-
tion. This highlights the importance of our weighting scheme



Fig. 7: Ablation on memory management strategies. We study the five
different strategies introduced in Section IV-C. LFI (discarding least frequently
intervened trajectories) matches and even yields better performance over
keeping all data samples (Base) while taking much less memory storage.

— BC-RNN performs poorly due to copying the suboptimal
behaviors in the dataset, while IQL fails to learn values as
weights that yield effective policy performance.

Ablation Studies. We perform an ablation study to examine
the contribution of each component in our weighting scheme in
Fig. 6 (Right). We study how removing each class, i.e., treating
each class as the robot action class (and thus removing the
special weight for that class), affects the policy performance:

• remove demo class: not preserving the true ratio of
demo class, which lowers its contribution (see IV-D).

• remove intv class: not upweighting the intv class,
which is equivalent to (min) in Fig. 6 (Left).

• remove preintv class: not downweighting the preintv
class but treating it as robot class.

We run each ablated version of our method on Round 1 data
for the simulation tasks. We choose Round 1 data for this study
because they are generated from the initial BC-RNN policy
rather than biased toward data generated from our method.
As shown in Fig. 6 (Right), removing any class weight hurts
the policy performance. This shows the effectiveness of our
fine-grained weighting scheme, where each class contributes
differently to the learning of the deployment data.

We also conduct an in-depth study on the influence of
human intervention reweighting ratio P ∗(intv). In the un-
weighted distribution, the human intervention samples take
up a small proportion of the dataset size, which we denote
as the minimum ratio; the maximum ratio it can take is
to nullify the proportion of robot samples altogether (so
that the dataset only constitutes human demonstrations and
human interventions). We run our method with a different ratio
ranging from minimum to maximum using Round 1 data on
both simulation tasks. The specific range for Nut Assembly
and Tool Hang can be found in Fig. 6 (Left). The overall trend
is that the policy performance peaks at P ∗(intv) = 0.5, and
is worse when P ∗(intv) gets larger or smaller. Our intuition
is that if the intervention ratio is too small, we are not making
the best use of the intervention samples; if it is too large,
it will limit the diversity of training data. Either way has an
adversarial effect.

Analysis on Memory Management. We compare the effec-
tiveness of Memory Management strategies in Section IV-C at

Fig. 8: Human Intervention Sample Ratio. We evaluate the human in-
tervention sample ratio for the four tasks. The human intervention sample
ratio decreases over deployment round updates. Our methods have a larger
reduction in human intervention ratio as compared with IWR.

deployment. Fig. 7 shows the result of memory size reduction
on the two simulation tasks in Round 3, where the Nut
Assembly accumulated 3000+ trajectories and the Tool Hang
task 1600+ trajectories. By capping our memory buffer size
at 500 trajectories, we manage to reduce memory size to a
much small proportion of the original dataset size (15% for
Nut Assembly and 30% for Tool Hang).

Among all of the strategies, LFI (discarding least frequently
intervened trajectories) is the only strategy that matches and
even yields better performance over keeping all data samples
(Base). In addition to minimizing storage requirements, LFI
also improves learning efficiency. Under LFI, the policy con-
verged twice as fast as Base for both tasks (where we define
convergence as the number of epochs to reach 90% success
rate). The faster convergence speed, in turn, yields faster model
iterations in real-world deployments.

There are a number of potential explanations for the superior
performance of LFI. First, note that among all of the strate-
gies, LFI preserves the largest number of human intervention
samples. This suggests that human interventions have high
intrinsic value to our learning algorithm, as they help to
ensure robust policy execution under suboptimal scenarios.
Another perspective is that LFI preserves the more frequently
intervened trajectories, which exhibit wider state coverage and
a diverse array of events. This facilitates the trained policies
to operate effectively under rare and unexpected scenarios.
MFI (discarding most intervened trajectories) has the opposite
effect, favoring trajectories that require less human supervi-
sion and often exhibit less diverse behaviors. The results on
FIFO and FILO suggest that managing samples according to
deployment time is not the most effective strategy, as valuable
training data can be collected all throughout the deployment of
the system. Finally, the naı̈ve Uniform strategy is ineffective
as it does not incorporate any distinguishing characteristics of
samples to manage the memory.

Human Workload Reduction. Lastly, we highlight the ef-
fectiveness of our method in reducing human workload. In Fig.
8, we plot the human intervention sample ratio for every round,
i.e., the percentage of intervention samples in all samples per
round. We compare the results for the HITL methods, Ours
and IWR. We see that the human intervention ratio decreases
over rounds for both methods, as policy performance increases
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Fig. 9: Human Intervention Distribution. The two color bars represent
the time duration over 10 consecutive trajectories and whether each step is
autonomous robot action (yellow) or human intervention (green). In Round
1, much human intervention is needed to handle difficult situations. In Round
3, the policy needs very little human intervention, and the robot can run
autonomously most of the time.

over time. Furthermore, we see that this reduction in human
workload is greater for our method compared to IWR.

Qualitatively, we visualize how the division of work of the
human-robot team evolves in Figure 9. For the Gear Insertion
task, we do 10 trials of task execution in sequence for our
method in Round 0 and Round 3, respectively, and record
the time duration for human intervention needed during the
deployment. Comparing Round 0 and Round 3, the policy
in Round 3 needs very little human intervention, and the
intervention duration is also much shorter. This confirms the
effectiveness of our framework in human workload reduction.

Limitations. Our human-in-the-loop experiment of each
task is only conducted with a single human operator. The
results can be biased toward the individual’s skills, famil-
iarity with the system, and level of risk tolerance. A more
extensive human study would enhance our understanding of
how human’s trust and subjectivity are manifested in time,
criteria, and duration of interventions. Furthermore, to ensure
trustworthy execution, our current system still requires the
human to constantly monitor the robot. Incorporating auto-
mated runtime monitoring and error detection strategies [22,
40] would further reduce the human’s mental burden. Lastly,
for the study of human workload reduction, we employed a
simplistic way of measuring human workload based on the
percentage of intervention. Conducting in-depth human studies
to measure human mental workload would provide deeper
insights.

VI. CONCLUSION

We introduce Sirius, a framework for human-in-the-loop
robot manipulation and learning at deployment that both guar-
antees reliable task execution and also improves autonomous
policy performance over time. We utilize the properties and
assumptions of human-robot collaboration to develop an
intervention-based weighted behavioral cloning method for
effectively using deployment data. We also design a practical
system that trains and deploys new models continuously under
memory constraints. For future work, we would like to im-
prove the flexibility and adaptability of the human-robot shared
autonomy, including more intuitive control interfaces and
faster policy learning from human feedback. Another direction

for future research is alleviating the human cognitive burdens
of monitoring and teleoperating the system. Deployment mon-
itoring would be an exciting research direction, allowing the
system to automatically detect robot errors without constant
human supervision.
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VII. APPENDIX

A. Task Details

We elaborate on the four tasks in this section, providing
more details of the task setups, the bottleneck regions, and how
they are challenging. The two simulation tasks, Nut Assembly
and Tool Hang, are from the robomimic codebase [39] for
better benchmarking.

Nut Assembly. The robot picks up a square rod from the
table and inserts the rod into a column. The bottleneck lies
in grasping the square rod with the correct orientation and
turning it such that it aims at the column correctly.

Tool Hang. The robot picks up a hook piece, inserts it into
a tiny hole, and then hangs a wrench on the hook. As noted in
robomimic [39], this task requires very precise and dexterous
control. There are multiple bottleneck regions: picking up the
hook piece with the correct orientation, inserting the hook
piece with high precision in both position and orientation,
picking out the wrench, and carefully aiming the tiny hole
at the hook.

Gear Insertion. We design the task scene setup adapting
from the common NIST board benchmark1 Task Board 1,
which is designed for standard industrial tasks like peg in-
sertion and electrical connector insertions. Initially, one blue
gear and one red gear are placed at a randomized region on the
board. The robot picks up two gears in sequence and inserts
each onto the gear shafts respectively. The gears’ holes are
very small, requiring precise insertion on the gear shafts.

Coffee Pod Packing. We design this task for a food
manufacturing setting where the robot packs real coffee pods2

into a coffee pod holder3. The robot first opens the coffee
pod holder drawer, grasps a coffee pod placed on a random
initial position on the table, places the coffee pod into the
pod holder, and closes the drawer. The pod holder contains
holes that fit precisely to the coffee pods’ side, so it requires
precise insertion of the coffee pods into the holes. The
common bottlenecks are exactly grasping the coffee pod, exact
insertion, and releasing the drawer whenever the opening and
closing actions are done without getting stuck.

The objects in all tasks are initialized randomly within
an x-y position range and with a rotation on the z-axis.
The configurations of the simulation tasks follow that in
robomimic. We present the reset initialization configuration
in Table I for reference.

B. Human-Robot Teaming

We illustrate the actual human-robot teaming process dur-
ing human-in-the-loop deployment in Figure 10. The robot
executes a task (e.g., gear insertion) by default while a human
supervises the execution. In this gear insertion scenario, the
expected robot behavior is to pick up the gear and insert it
down the gear shaft. When the human detects undesirable

1https://www.nist.gov/el/intelligent-systems-division-73500/robotic-
grasping-and-manipulation-assembly/assembly

2https://www.amazon.com/gp/product/B00I5FWWPI
3https://www.amazon.com/gp/product/B07D7M93ZW

Fig. 10: Human Robot Teaming. Left: The robot executes the task by default
while a human supervises the execution. Right: When the human detects
undesirable robot behavior, the human intervenes.

robot behavior (e.g., gear getting stuck), the human intervenes
by taking over control of the robot. The human directly passes
in action commands to perform the desired behavior. When the
human judges that the robot can continue the task, the human
passes control back to the robot.

To enable effective shared human control of the robot,
we seek a teleoperation interface that (1) enables humans to
control the robot effectively and intuitively and (2) switches
between robot and human control immediately once the human
decides to intervene or pass the control back to the robot.
To this end, we employ SpaceMouse4 control. The human
operator controls a 6-DoF SpaceMouse and passes the position
and orientation of the SpaceMouse as action commands. The
user can pause when monitoring the computer screen by
pressing a button, exert control until the robot is back to an
acceptable state, and pass the control back to the robot by
stopping the motion on the SpaceMouse.

C. Observation and Action Space

The observational space of all our tasks consists of the
workspace camera image, the eye-in-hand camera image, and
low-dimensional proprioceptive information. For simulation
tasks, we use the operational space controller (OSC) that has
a 7D action space; for real-world tasks, we use OSC yaw
controller that has a 5D action space.

The minor differences for the Tool Hang task from
robomimic [39] default image observation: We use an image
size of 128×128 instead of the default 224×224 for training
efficiency. Due to the task’s need for high-resolution image
inputs, we adjust the workspace camera angle to give more
details on the objects. This compensates for the need for large
image size and boosts policy performance.

Details on low-dimensional proprioceptive information: For
simulation tasks, we have the end effector position (3D) and
orientation (4D), as well as the distance of the gripper (2D).
We have joint positions (7D) and gripper width (1D) for real-
world tasks.

The action space of simulation tasks is 7 dimensions in
total: x-y-z position (3D), yaw-pitch-roll orientation (3D), and
the gripper open-close command {1.,−1.} (1D). The action
space of real-world tasks is 5 dimensions in total: x-y-z
position (3D), yaw orientation (1d), and the gripper open-close
command {1.,−1.} (1D).

4https://3dconnexion.com/us/spacemouse/



D. Method Implementations

We describe the policy architecture details initally intro-
duced in Section IV-D. Our codebase is based on robomimic
[39], a recent open-source project that benchmarks a range
of learning algorithms on offline data. We standardize all
methods with the same state-of-the-art policy architectures and
hyperparameters from robomimic. The architectural design in-
cludes ResNet-18 image encoders, random cropping for image
augmentation, GMM head, and the same training procedures.
The list of hyperparameter choices is presented in Table II. For
all BC-related methods, including Ours, IWR, and BC-RNN,
we use the same BC-RNN architecture specified in Table III.

For all tasks except for Tool Hang, we use the same
hyperparameters with image size 84×84. We use 128×128 for
Tool Hang due to its need for high-precision details. We use
a few demonstrations for each task to warm-start the policy;
the number ranges from 30 to 80 so that the initial policy can
all have some level of reasonable behavior regardless of task
difficulty. See Table V for all task-dependent hyperparameters.

For IQL [28], we reimplemented the method in our
robomimic-based codebase to keep the policy backbone and
common architecture the same across all methods. Our imple-
mentation is based on the publicly available PyTorch imple-
mentation of IQL5.

We follow the paper’s original design with some slight
modifications. In particular, the original IQL uses the sparse
reward setting where the reward is based on task success. We
add a denser reward for IQL to incorporate information on
human intervention. To mimic the intervention-guided weights
for IQL, we use the following rewards: r = 1.0 upon task
success, r = 0.25 for intervention states, r = −0.25 for pre-
intervention states, and r = 0 for all other states. We found
that this version of IQL outperforms the default sparse reward
setting. We list the hyperparameters for IQL baseline in Table
IV.

E. HITL System Policy Updates

We elaborate on our design choice for HITL system policy
update rules discussed in Section V-B of the main paper.

In a practical human-in-the-loop deployment system, there
can be many possible design choices for the condition and fre-
quency of policy updates. A few straightforward ones among
various designs are: update every specific amount of elapsed
time, update after the robot completes a certain number of
tasks, or update after human interventions reach a certain
number. Our experiments aim to provide a fair comparison
between various human-in-the-loop methods and benchmark
our method against prior baselines. For consistent evaluation,
we follow round updates rules by prior work [25, 37]: 3 rounds
of update when the number of intervention samples reaches
1/3 of the human demonstration samples. The motivation is
to evaluate prior baselines in their original setting to ensure
fair comparison; moreover, we want to ensure all methods get
the same amount of human samples per round. Since they are

5https://github.com/rail-berkeley/rlkit/tree/master/examples/iql

Fig. 11: More Intervention Behavior Metrics (Nut Assembly). We present
two more metrics to measure human workload over time: average intervention
frequency (Left) and average intervention length (Right). We show that our
method results in a larger reduction of both metrics over round updates,
developing better human trust and human-robot partnership.

human-in-the-loop methods, the amount of human samples is
important to their utilization. How policies are updated could
be a dimension of human-in-the-loop system design on its own
right and could be further explored in future work.

F. Human Workload Reduction

We present more results on the effectiveness of our method
in reducing human workload as discussed in the main paper.
We note that there are different metrics to evaluate human
workload, such as the number of control switches and lengths
of interventions, as introduced in prior work [22]. We include
two additional human workload metrics:

Average intervention frequency: the number of interven-
tion occurrences divided by the number of rollouts. This
reflects the number of context switches, i.e., shifts of control
between the human and the robot. A higher number of context
switches imposes higher concentration and exhaustion on the
human.

Average intervention length: length of each intervention
in terms of the number of timesteps. This reflects the ease
of every intervention - longer intervention occurrence means
a higher mental workload to the human for taking control of
the robot.

We note that these metrics also reflect the human trust
level for the robot. The human makes a decision during robot
control: should I intervene at this point? Furthermore, during
human control: is the robot in a state where I can safely return
control to the robot? Lower intervention frequency and shorter
intervention length reflect that human trusts the robot more so
that they can intervene at fewer places and return control to
the robot faster.

We present the results in Figure 11 using Nut Assembly
as an example. We can see that, like the human intervention
ratio, the average intervention frequency, and the intervention
length decrease. Our method also has a faster reduction of
both metrics over round updates. This shows that our human-
in-the-loop system fosters good human trust in the robot and
develops better human-robot partnerships.



TABLE I: Task objects configuration

Tasks and Objects Position (x-y) Orientation (z)

Nut Assembly
square nut 0.5cm ×11.5cm 2π

ToolHang
hook 2cm × 2cm π/9

wrench 2cm × 2cm π/9

Gear Insertion (Real)
blue gear 12cm × 12cm 2π
red gear 12cm × 12cm 2π

Coffee Pod Packing (Real)
coffee pod 16cm × 16cm 2π

TABLE II: Common hyperparameters

Hyperparameter Value

GMM number of modes 5
Image encoder ResNet-18

Random crop ratio 90% of image height

Optimizer Adam
Batch size 16

# Training steps per epoch 500
# Total training epochs 1000

Evaluation checkpoint interval (in epoch) 50

TABLE III: BC backbone hyperparameters

Hyperparameter Value

RNN hidden dim 1000
RNN sequence length 10

# of LSTM layers 2
Learning rate 1e−4

TABLE IV: IQL hyperparameters

Hyperparameter Value

Reward scale 1.0
Termination false

Discount factor r 0.99
Beta β 1.0

Adv filter exponential
V function quantile 0.75

Actor lr 1e−4
Actor lr decay factor 0.1

Actor mlp layers [1024, 1024]

Critic lr 1e−4
Critic lr decay factor 0.1

Critic mlp layers [1024, 1024]



TABLE V: Task hyperparameters

Hyperparameter Nut Assembly ToolHang Gear Insertion (Real) Coffee Pod Packing (Real)

Image size (h× w) 84× 84 128× 128 84× 84 84× 84
Initial # of human demonstrations 50 80 30 30

Evaluation rollout length 400 700 1000 1000
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