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Fig. 1: DIAL consists of three steps: (1) Contrastive fine-tuning of a vision-language model (VLM) such as CLIP [39] on a
small dataset of robot manipulation trajectories with crowd-sourced natural language annotation, (2) labeling a larger dataset of
trajectories using the fine-tuned VLM (in dashed outline), and (3) training a language-conditioned policy using behavior cloning
on the original and relabeled dataset. We evaluate the trained policy on unseen instructions. See Section III for more details.

Abstract—Robotic manipulation policies that follow natural
language instructions are typically trained from corpora of
robot-language data that were either collected with specific
tasks in mind or expensively relabeled by humans with varied
language descriptions in hindsight. Recently, large-scale pre-
trained vision-language models (VLMs) have been applied to
robotics for learning representations and scene descriptors. Can
these pretrained models serve as automatic labelers for robot
data, effectively importing Internet-scale knowledge into existing
datasets with limited ground truth annotations? For example, if
the original annotations contained templated task descriptions
such as “pick apple”, a pretrained VLM-based labeler could
significantly expand the number of semantic concepts available
in the data and introduce spatial concepts such as “the apple
on the right side of the table” or alternative phrasings such
as “the red colored fruit”. To accomplish this, we introduce
Data-driven Instruction Augmentation for Language-conditioned

∗ Equal contribution

control (DIAL): we utilize semi-supervised language labels to
propagate CLIP’s semantic knowledge onto large datasets of un-
labeled demonstration data, from which we then train language-
conditioned policies. This method enables cheaper acquisition of
useful language descriptions compared to expensive human labels,
allowing for more efficient label coverage of large-scale datasets.
We apply DIAL to a challenging real-world robotic manipulation
domain where only 3.5% of the 80,000 demonstrations contain
crowd-sourced language annotations. Through a large-scale study
of over 1,300 real world evaluations, we find that DIAL enables
imitation learning policies to acquire new capabilities and gener-
alize to 60 novel instructions unseen in the original dataset.

I. INTRODUCTION

Advances in deep learning architectures have made it possi-
ble to train end-to-end robotic control policies for following a
wide range of textual instructions, often by integrating state-
of-the-art language embeddings and pretrained encoders with
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imitation learning on top of large, manually collected datasets
of robotic demonstrations annotated with text commands [24].
However the performance of such methods is critically de-
pendent on the quantity and breadth of instruction-labeled
demonstration data that is available [32], and producing expert
demonstrations of robot motion often requires expertise and
time [33]. Can we squeeze more generalization capacity out
of a given set of demonstrations, with minimal additional
human effort? The key observation we make is that a given
demonstration might illustrate more than one behavior – e.g., a
motion that picks up the leftmost can in Figure 1 is an example
of how to pick up a coke can, the left can in a row of three, a
first step toward clearing the table, and more. Can we leverage
this observation to relabel a given demonstration dataset to
enable a robot to master a broader range of semantic behaviors,
and can we do this in a largely automated and scalable way?

One possibility is to leverage large-scale pretrained lan-
guage models (LLMs) [9, 15] and vision-language models
(VLMs) [2, 39], which can be pretrained on Internet-scale data
and then be applied to downstream domains. In robotics, they
have been used as representations for perception [37, 42], as
task representation for language [24, 30], or as planners [1, 22].
In contrast, we seek to apply pretrained VLMs to the datasets
themselves: can we use VLMs for instruction augmentation,
where we relabel existing offline trajectory datasets with
additional language instructions?

In this work, we introduce Data-driven Instruction
Augmentation for Language-conditioned Control (DIAL), a
method that performs instruction augmentation with pretrained
VLMs to weakly relabel offline control datasets. We implement
an instantiation of our method with CLIP [39] on a challenging
real-world robotic manipulation setting with 80,000 teleop-
erated demonstrations, which include 2,800 demonstrations
that are labeled by crowd-sourced language annotators. By
performing a large quantitative evaluation of over 1,300 real
world robot evaluations, we compare our method with baselines
and instruction augmentation methods that are not visually
grounded. We find that DIAL enables policies to acquire
understanding of new concepts not contained in the original
task labels and improving performance on 60 novel evaluation
instructions by over 41%. Sample emergent capabilities of our
method are shown in Figure 5.

II. RELATED WORK

a) Language instruction following in robotics: Language-
instruction following agents have been extensively explored
with engineered symbolic representations [17, 45], with rein-
forcement learning (RL) [5, 20, 29], and with imitation learning
[3, 6, 24, 30]. Recent advances in deep learning with large
amounts of data have led to advances in methods for learning
instruction-conditioned policies [1, 28, 34, 43, 44]. Latent
Motor Policies (LMP) [31] learns hierarchical goal-conditioned
policies. Subsequent Language from Play (LfP) [30] uses
language goals provided by large dataset of hindsight human
labels on robotic play data. Similarly, Interactive Language [32]
uses crowd-sourced hindsight labels on diverse demonstration

data for table-top object rearrangements. In contrast, our method
does not rely on crowd-sourced language labels at scale, but
instead leverages a modest number of language labels by using
a learned model to provide weak hindsight labeling for the
rest of the data.

b) Pretrained VLMs and LLMs for language-conditioned
control: Prior works have leveraged pretrained VLMs and
LLMs for language-conditioned control, as part of reward
modeling [18, 36], as part of the agent architecture [37, 42],
or as planners for long-horizon tasks [1, 22, 23]. MineCLIP
[18] fine-tunes CLIP [39] encoders using a contrastive loss
on a large offline dataset of Minecraft videos and optimizes
a language-conditioned control policy on top of the finetuned
CLIP representations through online RL. LOReL [36] learns
a reward function from offline robot datasets with crowd
sourced annotations using a neural network trained from scratch
combined with a pretraind DistilBERT sentence embedding
[41] using a binary cross entropy loss. CLIPort [42] uses a
frozen CLIP vision and text encoders in combination with
Transporter networks [47] for imitation learning. R3M [37]
uses representations pretrained constrastively on Ego4D [21]
human video datasets for robotic policy learning via imitation
learning. For long-horizon language instructions, LLMs have
been used as planners both in simulated [22] and real-world
robotics settings [1]. Our approach fine-tunes CLIP on our real
robot offline dataset and is used for instruction augmentation
for a behavior cloning agent, instead of directly using the CLIP
model as a reward model and optimizing an RL agent.

c) Hindsight relabeling for goal-conditioned reinforce-
ment learning: The relabeling approach for goal-conditioned
reinforcement learning [38] is used in tabular [26] and contin-
uous [4] settings, where the desired goals are relabeled with
achieved goals to generate positive examples in sparse reward
environments. This method has been applied to environments
with goals represented as images [12], task IDs [27], and lan-
guage instructions [11, 13, 25]. Previous works with language
goals used environment simulators [11, 25] or learned models
[13, 40] to provide hindsight labels. Our work introduces the
novel contribution of visual grounding by leveraging VLMs to
generate unstructured natural language relabeling instructions,
enabling scaling to complex real robot environments.

III. DATA-DRIVEN INSTRUCTION AUGMENTATION FOR
LANGUAGE-CONDITIONED CONTROL

In this section, we describe our method, DIAL, which
consists of three stages: (1) fine-tuning a VLM’s vision
and language representations on a small offline dataset of
trajectories with crowd-sourced episode-level natural language
descriptions, (2) generating alternative instructions for a larger
offline dataset of trajectories with the VLM, and (3) learning
a language-conditioned policy via behavioral cloning on this
instruction-augmented dataset.

A. Fine-tuning Vision-Language Model Representations

We first collect a dataset of robot trajectories, from either
human teleoperated demonstrations on a wide variety of tasks



[1], or from unstructured robotic “play” data [31]. We partition
this dataset with uniform sampling into two subsets: a small
subset to be annotated by human annotators, and a much larger
subset to be labeled by the VLM finetuned on the former.
The smaller portion is selected because the process of human
labeling is time-consuming and requires significant effort and
cost.

Let the small dataset of N trajectories be [τ1, . . . , τN ],
τn = ([(sn0 , a

n
0 ), (s

n
1 , a

n
1 ), . . . , (s

n
T )]), where snt and ant denote

the observed state and action, respectively, at time t for
the n-th episode. We then collect a corresponding natural
language annotation ln for the n-th episode describing what
the robot agent did in the episode via crowd-sourcing. When
producing these descriptions, the crowd-sourced evaluators
observe the first frame, s0, and last frame, sT , from the agent’s
first-person view. We refer to these instructions as crowd-
sourced instructions. Together, we denote the first dataset
DA = [(τ1, l

1), . . . , (τN , l
N )] as the paired trajectories and

crowd-sourced labels. Our method then fine-tunes a vision and
language model representation on DA.

Motivated by promising results of CLIP in robotics in
prior works [35, 42], our instantiation of DIAL uses CLIP
[39] for both instruction augmentation and task representa-
tion; nonetheless, other VLMs or captioning models could
also be used to propose instruction augmentations. Given
a batch of B initial state s0, final state sT , and crowd-
sourced instruction l tuple, the model is trained to predict
which of the B2 (initial-final state, crowd-sourced instruc-
tion) pairs co-occurred. We use CLIP’s Transformer-based
text encoder Tenc to embed the crowd-sourced instruction
to a latent space znl = Tenc(l

n)/ ‖Tenc(ln)‖ ∈ Rd and
CLIP’s Vision Transformer-based (ViT) [16] image encoder
Ienc to embed the initial and final state, and further con-
catenate these two embeddings and pass through a fully
connected neural network fθ, producing the vision embedding
zns = fθ([Ienc(s

n
0 ); Ienc(s

n
T )])/ ‖fθ([Ienc(sn0 ); Ienc(snT )])‖ ∈

Rd. B2 similarity logits are formed by applying dot product
across all state-instruction pairs, and a symmetric cross entropy
loss term is calculated by applying softmax normalization with
temperature α across the states and texts:

Lθ = −
B∑
n=1

[
log

(
ez

n
l ·zns /α∑B

k=1 e
zkl ·zns /α

)
+ log

(
ez

n
l ·zns /α∑B

k=1 e
znl ·zks /α

)]
B. Instruction Augmentation

In the larger partition of the original dataset, which we denote
as dataset DB , contains M � N trajectories [τ̂1, . . . , τ̂M ],
where τ̂m = ([(ŝm0 , â

m
0 ), (ŝm1 , â

m
1 ), . . . , (ŝmT )]). In contrast to

DA, we assume that trajectories in DB do not have any
associated natural language labels.

We use the fine-tuned VLM model to propose natural
language instructions l̃m for each trajectory τ̂m to augment
DB . While l̃m could be drawn from any reasonable corpus,
our specific instantiation of DIAL sources these candidate
instructions from DA as well as additional instructions drawing
from GPT-3 [9] proposals of possible tasks, which we denote
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Fig. 3: The construction of datasets: Dataset A (DA) (blue)
consists of the N trajectories {τn}Nn=1 labeled with crowd-
sourced instructions {ln}Nn=1 describing what the robot agent
performed in the episode. Dataset B (DB) (yellow) consists
of a much larger set of trajectories, {τ̂m}Mm=1 without crowd-
sourced instructions. Dataset C (DC) (red, dashed) contains
Dataset B trajectories relabeled with VLM-sourced hindsight
instruction(s) {l̃m1 , . . . , l̃mk }Mm=1.

as DGPT−3 (the details of this procedure will be covered in
Section IV-B). We use the CLIP text encoder to independently
embed these candidate natural language instructions, i.e.
l̃m ∈ L = {l1, . . . , lN} ∼ DA ∪ DGPT−3:

{z1l , . . . , zNl } = {Tenc(l1), . . . , Tenc(lN )}

Similarly, we use the fine-tuned CLIP image encoder and MLP
fusion to embed the initial and final observations from the
second dataset:

{ẑ1s , . . . , ẑMs } = {fθ([Ienc(ŝi0); Ienc(ŝiT )])}Mi=1

With these embeddings pre-computed, we can retrieve
the most likely candidates using k-Nearest Neighbors [19]
with cosine similarity between the vision-language embed-
ding pairs d(znl , ẑ

m
s ) =

znl ·ẑms
‖znl ·ẑms ‖

as the metric. We then
use the cosine similarity to select a subset of candidate
instructions to construct a new relabeled dataset DC =
[(τ̂1, l̃

1
1), . . . , (τ̂1, l̃

1
k), . . . , (τ̂M , l̃

M
1 ), . . . , (τ̂M , l̃

M
k )]. Figure 3

visualizes the three datasets generated. There are several
potential strategies for candidate instruction selection:

a) Top-k selection: For each trajectory, we rank the
candidate instructions in descending order based on their
cosine similarity distances and output the top-k instructions.
The hyperparameter k trades off precision and recall of the
relabeled dataset. A smaller k will return mostly relevant
candidate instructions, while a larger k value can recall a
broader spectrum of potential hindsight descriptions for the
episode at the expense of introducing erroneous instructions.
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Fig. 4: (a) A mobile manipulator robot receives RGB images from an onboard camera and uses a 7 DoF arm with parallel-jaw
grippers. (b) Teleoperators receive instructions drawn from a set of 551 structured commands to perform a total of 80,000
demonstrations. 2,800 of these episodes are sent for crowdsourced language annotations. (c) A sample of scenes in the
demonstration dataset which range across various countertops, drawers, and object arrangements in an office kitchen setting.

b) Min-p selection: Instead of outputting a fixed number
of candidate instructions per trajectory, we dynamically adjust
this number based on a minimum probability p parameter,
representing the minimum confidence for each instruction. We
first convert the cosine similarity between the vision-language
embedding pair to a probability that the m-th episode has
language label ln by taking the softmax over all the candidate
instructions with temperature parameter α from CLIP:

P (l̃m = ln|(ŝm0 , ŝmT )) =
exp(d(znl , ẑ

m
s )/α)∑

n′ exp(d(zn
′

l , ẑ
m
s )/α)

(1)

We truncate the candidate instructions to the set L(p) ⊂ L such
that each instruction has a minimum hurdle probability p > 0:

P (l̃m = l) ≥ p, ∀ l ∈ L(p) (2)

Given p, the maximum number of candidates that can be
output for a trajectory is k = 1/p. The minimum number of
candidates, meanwhile, can be zero, if there are no candidate
instructions satisfying this hurdle probability.

We will investigate in Section V-C the effects of these
candidate instruction selection strategies on relabeled instruc-
tion accuracy, augmented dataset size, and downstream policy
performance.

C. Language Conditioned Policies with Behaviour Cloning

Given a dataset D = [DA,DC ] of robot trajectories and
corresponding augmented language instructions, we can train
a language-conditioned control policy with Behavior Cloning
(BC). While instruction augmented offline datasets can be
used by any downstream language-conditioned policy learning

method such as offline RL or BC, we limit our work to the
conceptually simpler BC in order to focus our analysis on the
importance of instruction augmentation.

IV. EXPERIMENTAL SETUP

We first describe the setup for our experimental validation,
including the environments, the configuration of the robot,
and the datasets that we use in our experiments. Since our
aim is to study the benefits of our proposed instruction
augmentation approach, we describe other alternative methods
for augmenting the dataset for comparison. Finally, we detail
our evaluation protocol, which involves testing the degree
to which policies learned with different types of instruction
augmentation generalize to novel previously unseen instructions.

A. Environment, Robot, and Datasets

We implement DIAL in a challenging real-world robotic ma-
nipulation setting based on the kitchen environments described
by Ahn et al. [1]. We focus on the practically-motivated setting
where a dataset of teleoperated demonstrations is available,
collected for downstream imitation learning [1, 24]. A mobile
manipulator robot with a parallel-jaw gripper, an over-the-
shoulder RGB camera, and a 7 DoF arm is placed in an office
kitchen to interact with common objects using concurrent [46]
continuous closed-loop control from pixels. We collect a large-
scale dataset of over 80,000 robot trajectories via human
teleoperation (DB), where teleoperators receive 551 structured
commands motivated by common manipulation skills and
objects in a kitchen environment, following prior work [1].
Afterwards, we leverage crowd-sourced human annotators to



label 2,800 robot trajectories with two hindsight instructions
each, resulting in a total of 5,600 unique episodes with
crowdsourced captions (DA). Human annotators are shown
the first and last frame of the episode and asked to provide a
free-form text description describing how a robot should be
commanded to go from the start to the end. Visualizations
of the mobile manipulator, dataset collection procedure, and
example scenes are shown in Figure 4 and further detailed in
Appendix B.

B. Instruction Augmentation

We consider various methods of instruction augmentation
which each result in different relabeled datasets that are then
used for downstream policy learning.

a) DIAL implementations: We implement DIAL with
a CLIP model that is fine-tuned on DA with the procedure
described in Section III-A. After fine-tuning CLIP, we source
18,719 candidate instruction labels (L) from the combination
of DA and a corpus of GPT-3 proposals of potential language
instructions. To perform instruction augmentation that relabels
dataset DB of 80,000 robot trajectories that do not contain
crowd-sourced annotations with L, we follow Section III-B
to implement two variations of DIAL: Top-k selection and
Min-p selection.

The version of DIAL with Top-k selection applies a fixed
number k instruction augmentations for every episode in
the source dataset based on cosine similarity distances. By
changing k, we produce three instruction augmented datasets:
80,000 relabeled demonstrations (k = 1), 240,000 relabeled
demonstrations (k = 3), and 800,000 relabeled demonstrations
(k = 10). The version of DIAL with Min-p selection is
more conservative and only performs instruction augmentation
when confidence from CLIP is above some threshold p. By
changing p, we produce three instruction augmented datasets:
128,422 relabeled demonstrations (p = 0.1), 38,516 relabeled
demonstrations (p = 0.2), and 17,013 relabeled demonstrations
(p = 0.3). Additional details can be found in Appendix C.

b) Non-visual instruction augmentation methods: We
consider three instruction augmentation methods that do not
utilize any visual information. First, we implement a “Gaussian
Noise” baseline that adds random noise to existing crowd-
sourced instructions’ language embeddings. Second, we design
a “Word-level Synonyms” baseline that replaces individual
words in existing instructions with sampled synonyms from
a predefined list. Finally, we introduce a “LLM-proposed
Instructions” baseline that replaces entire instructions with
alternative instructions as proposed by GPT-3. Implementation
details for these baselines can be found in Appendix E.

C. Policy Training

Using these various instruction augmented datasets, we train
vision-based language-conditioned behavioral cloning policies
with the RT-1 architecture [7]. One main difference from RT-1
is that instead of utilizing USE [10] as the task representation
for language conditioning, we instead use the language encoder
of the fine-tuned CLIP model that was used for instruction

Category Instruction Samples
Spatial [‘knock down the right soda’,

‘raise the left most can’, ‘raise
bottle which is to the left of
the can’]

Rephrased [‘pick up the apple fruit’,
‘liftt the fruit’ [sic], ‘lift
the yellow rectangle’]

Semantic [‘move the lonely object to the
others’, ‘push blue chip bag
to the left side of the table’,
‘move the green bag away from the
others’]

TABLE I: Samples from the 60 novel evaluation instructions
we consider. 34 Spatial tasks focus on instructions involving
reasoning about spatial relationships, such as specifying an
object’s initial position relative to other objects in the scene.
16 Rephrased tasks are linguistic re-phrasings of the original
551 foresight tasks, such as referring to sodas and chips by
their colors instead of their brand name. 10 Semantic tasks
describe skills not contained in the original dataset, such as
moving objects away from all other objects, since the original
dataset only contains trajectories of moving objects towards
other objects. A full list is provided in Table VII.

augmentation in Section III-B; full details are described further
in Appendix G. Nonetheless, we treat the behavioral cloning
policy as an independent component of our method and focus
on studying instruction augmentation methods; we do not
explore different policy architectures or losses in this work.

D. Evaluation

In contrast to many prior works [3, 6] on instruction
following, we focus our evaluation only on novel instructions
unseen during training. To source these novel instructions, we
crowd-source instructions and prompt GPT-3 for evaluation
task suggestions, and then filter out any instructions already
contained in either the crowd-sourced language instructions in
DA, the original set of 551 structured teleoperator commands
DB , or the instruction augmentated dataset DC ; in total, we
sample 60 novel evaluation instructions. We organize these
evaluation instructions into three categories to allow for more
detailed analysis of qualitative policy performance; examples
are shown in Table I and a full list is provided in Table VII.

V. EXPERIMENTAL RESULTS

In our experiments, we investigate whether DIAL can
improve the policy performance on the unseen tasks described
in Section IV-D when starting from fully or partially labeled
source datasets. We ablate on the types of instruction augmen-
tations described in Section IV-B, and analyze the importance
of accuracy when augmenting instructions with DIAL.

A. Does DIAL improve performance on unseen tasks?

We investigate whether DIAL can enable language-
conditioned behavior cloning policies to successfully perform



Fig. 5: Given the same starting scene, DIAL follows the instructions of (a) pick can which is on the right of
the table, (b) pick the can in the middle, and (c) pick can which is on the left of the table.
Non-DIAL methods do not adjust their behaviors based on language commands, demonstrating a lack of spatial understanding.

novel instructions. For training various control policies, we
consider three training datasets: DA contains 5,600 episodes
which contain crowd-sourced hindsight language instructions,
DB contains 80,000 episodes which contain structured com-
mands given to teleoperators, and DC contains 38,516 episodes
with instructions predicted by DIAL with Min-p = 0.2 starting
from DA and DB . We refer to training on only DA as the
Interactive Language (IL) [32] setting, training on only DB
as the RT-1 [7] setting, and training on both DA and DB as
the RT-1 + IL setting. Then, we refer training on DC (either
with or without DA and DB) as DIAL. This experiment is
practically motivated by the setting where large amounts of
unstructured trajectory data are available but hindsight labels
are expensive to collect, such as robot play data [14, 31, 32].

After policy training, we evaluate on task instructions not
contained in DA, DB , or DC . Table II demonstrates that DIAL
is able to solve over 40% more challenging novel tasks across
the three evaluation categories compared to either RT-1 and/or
IL, which do not use the instruction augmented data DC .

An example is shown in Figure 5, where DIAL successfully
understands the spatial concepts of “left”, “middle”, and “right”.
Such spatial concepts are especially important to identify object
instances in scenes with duplicate objects: while baseline
methods ignore the language instruction and instead repeat
the same motions or randomly select a target object, DIAL is
able to consistently target the correct objects. In addition to
Spatial tasks, DIAL is also able to outperform baseline policies
at Semantic tasks that focus on semantic skills not contained
in the original foresight instructions. We show more examples
of evaluation successes in Figure 8.

Dataset Properties Evaluation on Novel Instructions

Method DA DB DC Spatial Rephrased Semantic Overall

IL [32] X 30.0% 40.0% 7.7% 27.5%

RT-1 [7] X 38.0% 40.0% 15.4% 33.8%

RT-1 + IL X X 46.0% 60.0% 15.4% 42.5%

X X 58.0% 46.7% 15.4% 47.5%

DIAL (ours) X X 50.0% 37.5% 10.0% 36.7%

X X X 68.0% 66.7% 30.8% 60.0%

TABLE II: Comparing the performance of language-
conditioned policies trained on different types of labeled
datasets. DA contains 5,600 episodes with crowd-sourced
language instructions and is representative of the Interactive
Language (IL) [32] setting. DB contains 80,000 episodes with
structured teleoperator commands and is representative of the
RT-1 [7] setting. DIAL additionally creates an augmented DC
with 38,516 relabeled instructions. We find that DIAL is able
to significantly performance on novel evaluation instructions,
especially in the IL setting where DB is not available.

B. How does DIAL compare to other instruction augmentation
methods?

We compare DIAL to non-visual instruction augmen-
tation strategies outlined in Section IV-B. For this com-
parison, we apply the baseline instruction augmentation
methods on both episodes with crowd-sourced annota-
tions (DA) and on episodees with structured teleopera-
tor commands (DB) to produce different instruction aug-



Fig. 6: Comparing the task diversity of structured commands provided to teleoperators and DIAL instruction predictions. The
visualization shows a t-SNE for 30,000 trajectories with their first and last frames embedded via a fine-tuned CLIP model. On
the left, embeddings are colored based on the skill categories of structured teleoperator commands. On the right, embeddings
are colored based on particular keywords that are present in the DIAL predicted instructions. While large clusters of episodes
may all correspond to the same teleoperator command, DIAL predictions may highlight more nuanced semantic concepts.

Evaluation on Novel Instructions

Instruction Augmentation
Spatial
Tasks

Rephrased
Tasks

Semantic
Tasks Overall

None 46.0% 60.0% 15.4% 42.5%

Gaussian Noise 36.0% 40.0% 23.1% 33.8%

Word-level Synonyms 28.0% 46.7% 7.7% 27.5%

LLM-proposed Instructions 28.0% 46.7% 23.1% 30.0%

DIAL (ours) 68.0% 66.7% 30.8% 60.0%

TABLE III: Evaluating language-conditioned BC policies
trained on datasets with different types of instruction augmen-
tation. Each policy performs 80 evaluations over 60 novel task
instructions. DIAL is consistently most performant, especially
on Spatial Tasks requiring visual scene understanding.

mented datasets (DGaussianC ,DSynonymsC ,DLLMC ,DDIALC ). Af-
terwards, we train separate language-conditioned policies
policies: the “None” model trains on {DA,DB}, while the
remaining models train on {DA,DB ,DC′} with DC′ being
each of their respective instruction augmentated datasets.
Table III indicates that DIAL significantly outperforms other
baseline instruction augmentation methods. For both the Spatial
Tasks and Rephrased tasks, we observe that these baseline
instruction augmentation methods without visual grounding
resulted in worse performance compared to the no instruction
augmentation.

C. How sensitive is DIAL to hyperparameters and instruction
prediction accuracy?

We study the trade-off between increasing the amount
of instruction augmentation and potentially relabeling with

Fig. 7: The factual accuracy of the top 20 instruction aug-
mentation predictions of 50 sampled episodes relabeled by
a fine-tuned CLIP model. For k ∈ [1, 20], we measure the
accuracy of the k-th instruction, the cumulative accuracy of
the top k instructions, and CLIP’s confidence score for the
k-th instruction. While top instructions are often accurate, they
become increasingly inaccurate along with CLIP’s confidence.

incorrect or irrelevant instructions. By varying the hyper-
parameters of Top-k prediction and Min-p prediction, the
two instruction prediction variations of DIAL discussed in
Section IV-B, we can indirectly influence the size the potential
label inaccuracy of the relabeled datasets. To measure how
instruction augmentation accuracy changes as we increase k,



DIAL Version Dataset Properties Evaluation on Novel Instructions

Prediction Method
Relabeled
Episodes

Relabeled
Accuracy

Spatial
Tasks

Rephrased
Tasks

Semantic
Tasks Overall

Top-k, k = 1 80, 000 68.0% 62.0% 40.0% 23.1% 50.0%

Top-k, k = 3 240, 000 65.3% 62.0% 40.0% 15.4% 48.8%

Top-k, k = 10 800, 000 57.0% 37.5% 50.0% 20.0% 35.0%

Min-p, p = 0.10 128, 422 61.9% 44.0% 46.7% 23.1% 40.0%

Min-p, p = 0.20 38, 516 68.8% 68.0% 66.7% 30.8% 60.0%

Min-p, p = 0.30 17, 013 76.0% 62.0% 53.3% 46.2% 56.3%

TABLE IV: Comparing DIAL with Top-k prediction against DIAL with Min-p prediction. By increasing k or decreasing p,
augmented datasets become larger but increasingly inaccurate. We provide analysis of the relationship between instruction
accuracy and CLIP confidence in Figure 7 and Section V-C.

we ask human labelers to rate whether proposed instruction
augmentation are factually accurate descriptions of a given
episode. We show an example of the top 10 predicted instruction
augmentations in an episode in Figure 12.

In Figure 7, we sample 50 episodes and ask human labelers
to assess the predicted instruction accuracy as we increase the
number of predictions produced by CLIP. While the initial
predictions are often correct, the later predictions are often
factually inaccurate. The top-20th instruction prediction is only
factually accurate 20.0% of the time.

When applying these different relabeled datasets to down-
stream policy learning, we find in Table IV that Min-p
instruction prediction, a more conservative approach than Top-k
prediction, performs the best across all evaluation instructions.
We also find that finetuning CLIP is quite important for
instruction augmentation, which is detailed in Appendix A2.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we introduced DIAL, a method that uses
VLMs to label offline datasets for language-conditioned policy
learning. Scaling DIAL to a real world robotic manipulation
domain, we perform a large-scale study of over 1,300 evalua-
tions and find that DIAL is able to outperform baselines by
40% on a challenging set of 60 novel evaluation instructions
unseen during training. We compare DIAL against instruction
augmentation methods that do not consider visual context,
and also ablate the source datasets we use for instruction
augmentation. Finally, we study the interplay between larger
augmented datasets and lowered instruction accuracy; we find
that control policies are able to utilize relabeled demonstrations
even when some labels are inaccurate, suggesting that DIAL
is able to provide a cheap and automated option to extract
additional semantic knowledge from offline control datasets.

Limitations and Future Work: Although DIAL seems to
improve policy understanding on many novel concepts not
contained in the original training dataset, it sometimes fails,
especially when evaluating tasks that may require new motor
skills. cIn addition, since both our crowd-source annotators and
VLMs only have access to the first and final states of an episode,

“push the can towards the left” 

“move the right apple to the left of the counter” 

“lift the yellow rectangle” 

“move the lonely object to the others” 

“raise the left most can” 

“grab the white can”

Fig. 8: DIAL successfully completes various novel evaluation
instructions requiring understanding of concepts such as
relative spatial references, colors, and alternative phrasings.
These concepts were not present in the structured teleoperator
commands used for the original training demonstrations.

they do not capture skills involving temporal coherence nor is
aware of how these instructions are accomplished. A natural
next step is to apply DIAL to full video episodes. Another
interesting direction is to view DIAL as goal-conditioning and
attempting visual goals during training or evaluation. Moreover,
on-policy or RL variations of DIAL may be able to effectively
explore the task representation space autonomously.
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APPENDIX

A. Additional Experiments

We present failure examples, study the importance of both
pre-training and fine-tuning, and also explore whether VLMs
used for DIAL could also be utilized as a task representation.

1) Failure Examples: In addition to the successful example
trajectories visualized in Figure 5 and Figure 8, we also show
some examples of failure cases in Figure 9.

“move the right apple to the left of the counter”
Failure reason: picked the wrong object

“use the sponge to clean the apple”
Failure reason: wrong target object

“move the can to the bottom of the table”
Failure reason: moved the can right, not downwards

“move orange near to the chip bag”
Failure reason: flipped the order

Fig. 9: Samples of evaluation failures for DIAL. Errors are
due to a combination of motor control and task confusion.

2) How important is VLM fine-tuning for DIAL?: Whereas
Section V-C studies different prediction mechanisms for a
fine-tuned CLIP model (FT-CLIP), we are also interested in
comparing different CLIP models altogether. The main FT-
CLIP model used in DIAL is initialized from the pretrained
OpenAI CLIP weights and then fine-tuned on DA from
Section III-A, which begs the question: are both a strong
pretrained initialization and subsequent fine-tuning necessary
for strong instruction labeling performance? To answer this
question, we perform instruction augmentation with (1) the
frozen pretrained OpenAI CLIP model and (2) a fine-tuned
CLIP model that starts from a random weight initialization
instead of from the OpenAI pretrained weights.

As we see in Figure 10, predicted instruction accuracy
for both of these models is significantly lower than the
main FT-CLIP model. The poor performance of the frozen
pretrained CLIP model (1) suggests that the particular embodied
captioning task required by DIAL is likely quite out of
distribution for the pre-training used by the OpenAI CLIP
model, so some amount of domain data is required. On the
other hand, the poor performance of training CLIP from scratch
on robot demonstration data (2) suggests that internet-scale

Fig. 10: Estimated top-K cumulative instruction labeling
accuracy using CLIP variants. The fine-tuned CLIP model
from OpenAI checkpoint [39] performed significantly better
than frozen CLIP model and the fine-tuned model from random
initial weights.
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Fig. 11: CLIP architecture for fine-tuning using the contrastive
loss. The image embeddings of the initial and final observation
is concatenated and passed through an MLP to produce an
episode embedding to dot product with the text embedding.

pre-training is required to start from a reasonable prior; there
may not be sufficient robot domain data in the datasets we
consider to fully train CLIP from scratch.

3) Is a VLM good at relabeling also a good task represen-
tation?: We study whether a VLM fine-tuned for instruction
augmentation can also act as a better task representation
for conditioning a policy in the form of a more powerful



language embedding. Across the various groundtruth and
relabeled datasets we focus on, we find that fine-tuned CLIP
(FT-CLIP) is the most effective task representation, as seen in
Table V. FT-CLIP is a good representation not only for freeform
language instructions like those contained in the fine-tuning
dataset DA, but also for structured metadata labels used to
collect the demonstrations in DB . Thus, we utilize FT-CLIP’s
language encoder as the main task representation for language
conditioning in all control policies we train, besides for policies
that explicitly denote otherwise, such as in Table V.

Evaluation on Novel Instructions

Dataset Task Encoder Spatial Rephrased Semantic Overall

DA USE 22.5% 50.0% 0.0% 21.7%

DA FT-CLIP 30.0% 40.0% 7.7% 27.5%

DA, DB CLIP 45.0% 40.0% 10.0% 40.0%

DA, DB FT-CLIP 46.0% 60.0% 15.4% 42.5%

DIAL, k = 1 USE 50.0% 50.0% 20.0% 43.3%

DIAL, k = 1 FT-CLIP 62.0% 40.0% 23.1% 50.0%

TABLE V: Comparing downstream policy performance when
improving the task representation from USE [10] to Pretrained
OpenAI CLIP (CLIP) [39] to fine-tuned CLIP (FT-CLIP),
as described in Section III-A. We find that the FT-CLIP
representation is the best task representation in all dataset
settings: training on crowd-sourced language annotations (DA),
training on structured teleoperator commands along with crowd-
sourced language annotations {DA, DB}, and using DIAL
{DA,DB ,DC} with Top-k with k = 1 (DIAL, k = 1).

B. Dataset Details

Following the procedure in [7], we collect a large dataset
of robot trajectories via teleoperation by uniformly sampling
from one of the structured commands shown in Table VI and
sending those commands to teleoperators that operate a mobilee
manipulator robot in the real world. After teleoperators discard
unsafe or failed demonstrations, we save a dataset of 80,000
successful robot demonstration trajectories (DB). Then, we
send 2,800 of the episodes from DB to be labeled by a pool of
human labelers, who see the first and last frame of the episode
and are tasked with providing a natural language description of
how a robot could be commanded to from the first frame to the
last frame. We request two independent language instruction
annotations for each episode, so we obtain a total of 5,600
episode-instruction pairs, which we save as DA. Finally, we
produce various relabeled datasets via instruction augmentation,
that we detail in Section IV-B for different prediction methods
for DIAL and Section V-B for different non-visual instruction
augmentation baselines.

C. DIAL Implementation Details

We implement DIAL with a CLIP model that is fine-tuned
on 5,600 annotated episodes (DA) with the procedure described
in Section III-A. The architecture of the CLIP model is shown

in Figure 11. The initial and final state observation images are
embedded using the CLIP image encoder Ienc, and the resulting
embeddings are concatenated and passed through a 200 hidden
dimension single-layer MLP to produce the final episode
embedding. We use the CLIP text encoder Tenc to embed
the crowd-sourced annotations to produce the corresponding
text embeddings. To fine-tune, we loaded the CLIP encoder
weights from the ViT-B/32 OpenAI checkpoint. We use a
batch size of 64 and train for 100,000 iterations, but select
the best checkpoint based on text prediction accuracy on a
randomly held-out test set of 10% of the training dataset DA.
We fine-tune both encoders Ienc and Tenc as well as the fusion
MLP.

After fine-tuning CLIP, we source 18,719 candidate instruc-
tion labels (L) from DA and a corpus of GPT-3 proposals
of potential language instructions. The GPT-3 proposals are
generated by using the prompt shown in Listing 1 to iterate over
the 551 instructions used to collect teleoperated demonstrations.
We note that that Listing 1 generates diverse instructions
that may not be accurate for a given episode. Listing 1 is
purposefully tuned to produce “hallucinated” descriptions that
can add semantic properties in the proposed instructions that
may or not be correct (for example, “pick up the orange”
might be augmented into “retrieve the orange from the sink”
or “raise the orange next to the vase”). The motivation behind
this design decision is that GPT-3 predictions can be a lot less
conservative when being used downstream by DIAL, since
the CLIP model will ideally filter out irrelevant instructions.
In contrast, the prompt in Listing 2 is used for producing
Sentence-Level Synonyms, which should ideally always be
factually equivalent to the original instruction.

Next, to relabel 80,000 robot trajectories that do not
contain crowd-sourced annotations (DB) with L, we follow
Section III-B to implement two variations of DIAL: Top-k
selection and Min-p selection. For these two variations, we
use k = {1, 3, 10} and p = {0.1, 0.2, 0.3}.

D. DIAL Hyperparameters

In Section V-C, we examined DIAL’s sensitivity to hyperpa-
rameters, including top-K and min-P sampling, which influence
dataset diversity and instruction accuracy (label noise). Such
tradeoffs are common in data augmentation, where the benefits
of increased augmentation must be balanced with the risks
of too much label noise. These hyperparameter choices are
highly domain-specific, and in our case we optimize this
balance by selecting hyperparameters based on measuring
offline VLM prediction accuracy. Notably, hyperparameter
tuning in DIAL is substantially more cost-effective than manual
full dataset labeling by humans, enabling scalable policy
learning improvement from generated instructions. We plan
to include further discussion on hyperparameter selection and
future work on studying these tradeoffs in more detail.

E. Instruction Augmentation Baselines

a) Gaussian Noise: Given an instruction l, we add
Gaussian noise to the language embedding produced by the



Structured Teleoperator Command Cat-
egories

Count Description Example Instruction

Pick Object 17 picking objects on a counter pick water bottle
Move Object Near Object 342 moving an object near another move pepsi can near rxbar blueberry
Place Object Upright 8 placing an elongated object vertically

upright
place coke can upright

Knock Object Over 8 picking an object and laying it sideways
on the counter

knock redbull can over

Open / Close Drawer 6 opening or closing a counter drawer open the top drawer
Place Object into Receptacle 85 pick an object on the table and put it in

a container or drawer
place brown chip bag into white bowl

Pick Object from Receptacle and
Place on the Counter

85 pick an object out of a container or
drawer and place it on the counter

pick green jalapeno chip bag from paper
bowl and place on counter

Total 551

TABLE VI: Teleoperators receive an instruction sampled from a total of 551 unique structured commands covering 7 different
manipulation skills. The 80,000 episodes in DB each contain exactly one of these structured teleoperator commands.

First Frame Last Frame

Instruction Augmentation Prediction by CLIP p Accurate?

#1: pick up the green can and place it in the bowl which is at the left side of the table
#2: lift green can from table and place it in white cup
#3: pick up the green can which is close to the water bottle and place it in the bowl
#4: place green can into the plastic white bowl
#5: pick the green can from the bottom right of the table and place it into the white bowl
#6: pick up the silver can and place it in the white bowl 
#7: bring the blue can and place it into white paper bowl 
#8: pick up the green can from the bottom left side of the table
#9: pick up the green can from the bottom side of the table and drop it into bowl
#10: pick up the red bull can and drop it in the white bowl

0.2244
0.1408
0.1209
0.0699
0.0664
0.0429
0.0417
0.0388
0.0339
0.0243

✅
✅
❌
✅
✅
❌
❌
❌
✅
❌

Fig. 12: The top 10 proposed instruction augmentations for a single episode with original structured teleoperator command
place green can in white bowl. In some cases, the predicted captions provide additional semantic information such
as describing the location of the can or the material of the bowl. As seen in Figure 7, the probability CLIP assigns to each the
candidates quickly drops off past a few top predictions. Setting Min-p = 0.2 would only take the first instruction augmentation
prediction, while setting k = 3 would take the top three predictions, including an incorrect prediction (#3).

CLIP text encoder Tenc, directly obtaining the augmentation
in the latent space z̃l:

z̃l = Tenc(l) + ε, ε ∼ N (0, σ) ∈ Rd (3)

In our implementation, we choose σ = 0.05 and perform the
Gaussian noise augmentation dynamically to the 512-dimension
CLIP Tenc embedding resulting from passing in the original
language instruction to the CLIP text encoder.

b) Word-level Synonyms: We replace individual words in
existing instructions with sampled synonyms from a predefined
list. The mapping between words present in the original

structured 551 instructions and possible synonyms is shown in
Listing 3.

c) Sentence-level Synonyms: We replace entire instruc-
tions with alternative instructions as proposed by GPT-3. We
pre-compute valid sentence-level synonyms by using the prompt
shown in Listing 1 to iterate over the 551 instructions used to
collect teleoperated demonstrations.

F. Augmented Dataset Details
As noted in Section IV-B, DIAL uses CLIP to score

predictions from 18,719 candidate text labels L, which are
a union of 9,393 crowd-sourced instructions (LCC) from the



original DA dataset as well as 9,336 instruction candidates
(LGPT3) from GPT-3 curated with the prompt in Listing 1.
During the instruction augmentation process, we find that CLIP
selects 3,675 unique instructions from these 18,719 candidates
L. Additionally, 86.3% of selected instructions were from LCC
and 13.7% from LGPT3. These characteristics show that CLIP
generally prefers human-like instructions while sometimes
incorporating GPT-3 variations. We note that these prediction
characteristics may result from the fact that our relabeling
model CLIP was finetuned solely on crowd-sourced labels, and
that the desired output distribution is unclear (is it a positive
or negative property to prefer crowd-sourced annotations?).
Furthermore, it’s possible that the true distribution of accurate
and desireable language descriptions was already well-covered
by the human annotations; so if GPT-3 proposed an instruction
already contained in the human-sourced LCC , we would
deduplicate that candidate from L and consider the instruction
to be human-sourced. To enhance diversity, future work could
leverage improved VLMs and fine-tune on more diverse labels,
including LLM-generated captions.

G. Language-Conditioned Policy Training

The policies used in this work are trained using the RT-1 [7]
architecture on a large dataset of human-provided demonstra-
tions. The policies receive natural language descriptions in
the form of a 512-dimensional VLM embedding and a short
history of images and outputs discrete action tokens which
are then transformed to continuous action outputs. Apart from
the experiments explicitly denoted as using USE [10] and
frozen CLIP [39] language embeddings in Table V, all policies
trained in this work utilize fine-tuned CLIP (FT-CLIP) language
embeddings as described in Section III-A.

Note that the exact policy architecture is not the main focus
of this work, so we utilize the exact same policy training
procedure across each experiment and only vary the instruction
augmented datasets that the policies are trained on.

H. Evaluation Instructions

We utilize an evaluation setup focusing solely on novel
instructions unseen during training. To source these novel
instructions, we 1) crowd-source instructions from a different
set of humans than the original dataset labelers and 2) prompt
GPT-3 with Listing 2 to produce reasonable tasks that might
be asked of a home robot manipulating various objects on
a kitchen counter. Then, we normalize all instructions by
removing punctuation, removing non-alphanumeric symbols,
converting all instructions to lower case, and removing leading
and ending spaces. Afterwards, we filter out any instructions
already contained in either the instruction augmentation process
in Section III-B or in the original set of 551 foresight tasks in
Table VI. Finally, as seen in Table VII, we organize them into
various semantic categories to allow for more detailed analysis
of quantitative policy performance.

Listing 1: GPT-3 Prompt for Proposing Candidate Tasks.
For the following tasks for a helpful home robot, rephrase
them to imagine different variations of the task. These
variations include different types of objects, different
locations, different obstacles, and different strategies
for how the task should be accomplished.

3 rephrases for: pick mountain dew
Answer: lift the mountain dew on the left side of the desk,
grab the mountain dew soda next to the water, pick the
farthest green soda can

4 rephrases for: move your arm to the right side of the desk
Answer: bring your arm to the right of the counter, move
right slightly, go far to the rightmost part of the table,
reorient your gripper to point right

10 rephrases for: bring me the yogurt
Answer: retrieve the yogurt, bring the white snack, pick up
the yogurt cup from the far right, lift the yogurt snack
from the left, bring back the yogurt near the chip bag, lift
the yogurt from the top of the counter, bring the yogurt
closest to the apple, grab the yogurt, lift the close left
yogurt on the bottom left, retrieve the yogurt on the
bottom of the table

10 rephrases for: <INSTRUCTION_TO_AUGMENT>
Answer:

Listing 2: GPT-3 Prompt for “Sentence-level Synonyms”.
You are a helpful home robot in an office kitchen. You are
able to manipulate household objects in a safe and efficient
manner. Here are some tasks you are able to accomplish in
various environments:

5 tasks in a sink with a sponge, brush, plate, and a cup:
move sponge near the cup, fill up the cup with water, clean
the plate with the brush, pick up the plate, put the cup
on the plate

3 tasks in a storage room with a box, a ladder, and a
hammer: lift the hammer, push the ladder, put the hammer
in the box

10 tasks on a table with an apple, a coke can, a sponge, and
an orange: pick up the apple, pick up the coke can, use the
sponge to clean the apple, use the sponge to clean the coke
can, put the apple down, put the coke can down, pick up the
orange, peel the orange, eat the orange, throw away the peel

10 tasks on a table with <OBJECT_1>, <OBJECT_2>, and
<OBJECT_3>:



Listing 3: Synonym Mapping for “Word-level Synonyms”.
SYNONYM_MAP = {

’rxbar blueberry’: [
’rxbar blueberry’, ’blueberry rxbar’,
’the blueberry rxbar’, ’the rxbar blueberry’

],
’rxbar chocolate’: [

’rxbar chocolate’, ’chocolate rxbar’,
’the chocolate rxbar’, ’the rxbar chocolate’

],
’pick’: [’pick’, ’pick up’, ’raise’, ’lift’],
’move’: [

’move’, ’push’, ’move’, ’displace’, ’guide’,
’manipulate’, ’bring’

],
’knock’: [’knock’, ’push over’, ’flick’, ’knockdown’],
’place’: [’place’, ’put’, ’gently place’, ’gently put’],
’open’: [’open’, ’widen’, ’pull’, ’widely open’],
’close’: [’close’, ’push close’, ’completely close’],
’coke’: [

’coke’, ’coca cola’, ’coke’, ’coca cola’,
’the coke’, ’a coke’, ’a coca cola’, ’the coca cola’

],
’green’: [

’green’, ’bright green’, ’grass colored’, ’lime’,
’a green’, ’the green’, ’a lime’, ’the lime’,
’the bright green’, ’a bright green’

],
’blue ’: [’blue ’, ’dark blue ’, ’the blue ’, ’a blue ’],
’pepsi’: [’pepsi’, ’blue pepsi’, ’pepsi’, ’a pepsi’,

’the pepsi’],
’7up’: [’7up’, ’white 7up’, ’7up’, ’7-up’, ’7up’,

’a 7up’, ’the 7up’],
’redbull’: [

’redbull’, ’red bull’, ’energy drink’,
’redbull energy’, ’redbull soda’,
’the redbull’, ’a redbull’, ’a red bull’,
’the red bull’

],
’blueberry’: [’blueberry’, ’blue berry’],
’chocolate’: [’chocolate’, ’brown chocolate’],
’brown’: [’brown’, ’coffee colored’,

’the brown’, ’a brown’],
’jalapeno’: [’jalapeno’, ’spicy’, ’hot’, ’fiery’],
’rice’: [’rice’],
’chip’: [’chip’, ’snack’, ’chips’],
’plastic’: [’plastic’],
’water’: [’water’, ’water’, ’agua’],
’bowl’: [’bowl’, ’half dome’, ’chalice’],
’togo’: [’togo’, ’to-go’, ’to go’],
’box’: [’box’, ’container’, ’paper box’],
’upright’: [’upright’, ’right side up’, ’correctly’],
’near’: [’near’, ’close to’, ’nearby’,

’very near’, ’very close to’],
’can’: [’can’, ’soda can’, ’aluminum can’],
’rxbar’: [’rxbar’, ’snack bar’, ’granola bar’,

’health bar’, ’granola’],
’apple’: [

’apple’, ’red apple’, ’the apple’, ’the red apple’,
’an apple’, ’a red apple’, ’small apple’,
’the small apple’

],
’orange’: [

’orange’, ’the orange’, ’orange fruit’, ’an orange’,
’a small orange’, ’a large orange’

],
’sponge’: [

’sponge’, ’yellow sponge’, ’the yellow sponge’,
’a yellow sponge’, ’a sponge’, ’the sponge’

],
’bottle’: [’bottle’, ’plastic bottle’,

’recycleable’, ’clear’],
}



Category Instruction Samples
Spatial [‘grab the bottle on the left of the table’, ‘grab the can which is on the

right side of the table’, ‘grab the chip on the left’, ‘grab the chip on
the right’, ‘grab the right most apple’, ‘knock down the right soda’, ‘lift
the apple which is on the left side of the table’, ‘lift the apple which is
on the right side of the table’, ‘lift the chips on the left side’, ‘lift
the chips on the right side’, ‘lift the left can’, ‘move the left soda to
the can on the right side of the table’, ‘move the soda can which is on the
right toward the chip bag’, ‘pick can which is on the left of the table’,
‘pick can which is on the right of the table’, ‘pick chip bag on the left’,
‘pick chip bag on the right’, ‘pick the can in the middle’, ‘pick the left
coke can’, ‘pick the left fruit’, ‘pick the leftmost chip bag’, ‘pick the
object on the right side of the table’, ‘pick the right coke can’, ‘pick
the right object’, ‘pick the rightmost chip bag’, ‘pick up the left apple’,
‘pick up the left object’, ‘pick up the right can’, ‘pick up the right
object’, ‘push the left side apple to the brown chips’, ‘raise bottle which
is to the left of the can’, ‘raise the blue tin’, ‘raise the left most can’,
‘raise the thing which is on the left of the counter’]

Rephrased [‘grab and lift up the green bag’, ‘grab the blue pepsi’, ‘grab the white
can’, ‘knock over the water’, ‘lift the orange soda’, ‘lift the yellow
rectangle’, ‘liftt the fruit’, ‘move green packet near the red apple’, ‘move
orange near to the chip bag’, ‘pick up the apple fruit’, ‘push green chips
close to the coke’, ‘upright the lime green can’, ‘put the apple next to the
candy bar’, ‘retrieve the can from the left side of the coffee table’, ‘set
the apple down next to the chocolate bar’, ‘take the can from the left side
of the counter’]

Semantic [‘move the can to the bottom of the table’, ‘move the green bag away from
the others’, ‘move the lonely object to the others’, ‘move the right apple
to the left of the counter’, ‘push blue chip bag to the left side of the
table’, ‘push the can towards the left’, ‘push the can towards the right’,
‘push the left apple to the right side’, ‘use the sponge to clean the coke
can’, ‘use the sponge to clean the apple’]

TABLE VII: Novel evaluation instructions sourced from humans or GPT-3, grouped by category. Spatial tasks focus on tasks
involving Spatial relationships, Rephrased tasks contain tasks that directly map to a foresight skill, and Semantic tasks describe
semantic concepts not contained in the relabeled or original datasets. In total, there are 60 instructions across the three categories.
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