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Abstract—Modular robots hold the promise of changing
their shape and even dimension to adapt to various tasks
and environments. To realize this superiority, it is essential
to find the appropriate morphology and its corresponding
behavior simultaneously to ensure optimality of the reconfigura-
tion. However, achieving co-optimization is challenging because
robotic configuration and motion are interactive and coupled
with each other, as well as their optimization processes. To
this end, we proposed a co-optimization framework based on
hierarchical Deep Reinforcement Learning (DRL), consisting of
a configuration model and a motion model based on the Twin
Delayed Deep Deterministic policy gradient algorithm (TD3).
The two network models update asynchronously with a shared
reward to ensure co-optimality. We conduct simulations and
experiments with the Webots platform to validate the proposed
framework, and the preliminary results show that it yields high
quality optimization schemes and thus allows modular robots
to be more adaptive to dynamic and multi-task scenarios.

I. INTRODUCTION

Modular robots are a collection of autonomous machines
composed of homogeneous or heterogeneous modules that
can reconfigure their shape to perform various tasks and adapt
to different environments. This superiority is achieved by op-
timizing the reconfiguration process to yield the appropriate
morphology and corresponding behavior. As observed from
the evolutionary biology, living creature’s behavior results
from a synergy of the body and brain to their interact
with the environment. A concurrent optimization of robot
configuration and motion could ensure a global optimum of
reconfiguration schemes by enlarging the candidate space,
thereby achieving a higher level of adaptability to various sur-
roundings. However, co-optimization is challenging because
robotic motion is generally dependent on the morphology,
and their optimization processes are coupled with each other.
As a result, early research mostly focused solely on optimiz-
ing the configuration or motion of modular robots separately,
and we first investigated the aspects of configuration design
and motion control as follows.
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Recent developments in system design and hardware
implementation facilitated increasingly versatile modular
robotic systems, along with improved configuration design
methods contingent to them [1]–[7]. An ROS2Learn frame-
work based on reinforcement learning was proposed to
optimize configuration of the Modular Articulated Robotic
Arm (MARA) established in the work [8]. A DQN-best-first
algorithm was suggested as a search heuristic to add desired
parts to the robotic arm. However, the robotic configuration
is generally optimized in terms of reachability, dexterity and
other kinematic metrics, while the efficiency-related indicies
such as time-saving and energy metrics characterized by
system dynamics and motion are just as significant to the
task-oriented scenarios.

The other aspect to enhance adaptability of modular robots
is optimized motion control in various tasks. Early work
on this issue focused on designing rule library attributed to
expertise using specified grammas in separate tasks such as
docking and overcoming obstacles [9]–[13]. To ensure the
continuity of motion implementation in more long-term tasks,
logics of conditional judgment (if-then) and for-loops were
utilized in path planning and locomotion tasks [14]–[17]. In
more complex tasks such as navigation and finding a target,
the mapping of segmented task goals to action sequences
become much less obvious. A modular robotic system named
SMORES-EP equipped with an RGB-D camera can pre-
process visual information into high level features and anno-
tations, and further map them to motion commands. However,
this correspondence is still based on expertise and cannot
guarantee optimality of the motion control and planning in
modular robots.

To avoid sub-optimality and limitations brought by empir-
ical design, there are a growing number of evolutionary and
learning-based methods to optimize motion of modular robots
[18], [19]. Genetic algorithm (GA) was utilized to search and
optimize locomotion gaits of modular robotic systems of the
M-Tran, iMobot and UBot robots in various environments
[20]–[22]. Motion control models based on Central Pattern
Generator (CPG) was employed to yield cyclical motion of
the actuators [23], [24], and GA and reinforcement learning
were applied to optimize the network parameters of CPG
[25], [26]. The TRPO and DDPG algorithms were used to
train simple rowing and crawling motions of Snapbot with
a fixed configuration [27]. In the above study, researchers



optimize the motion control strategy of modular robots in a
variety of ways, but often limited to a fixed morphology and
ignore the interaction between motion and the robotic body.

With the development of more advanced representation
and optimization techniques, research on the co-optimization
issue has been facilitated over the past decades. Evolutionary
algorithms(EA) are used for the co-design of morphology
and control of soft tensegrity modular robots [28]. The
parameters of morphology and motion were encoded to
genomes, and Multi-Objective Genetic Algorithm (MOGA)
was proposed to optimize the performance of modular robots
for a steering task [29]. Experimental results verified that
the co-evolution can yield better reconfiguration schemes
compared with optimizing motion on a fixed morphology.
However, the verification scenario is relatively simple without
fully considering the performance of modular robots in multi-
task scenarios.

In this work we present a DRL-based framework with a
hierarchical structure to optimize configuration and motion
concurrently in multiple tasks including climbing stairs,
avoiding obstacles, and finding a target. To cope with the
scenario complexity, we integrate an RGB-D camera into
the robotic system for higher-level online perception and
scene understanding. The hierarchical framework contains
a configuration model and a motion model based on TD3
that update asynchronously with a shared reward, and finally
yields co-optimized schemes of configuration and motion.

In summary, the main contributions of our work are as
follows:

1) We propose a hierarchical DRL-based framework that
concurrently optimizes morphology and motion of
modular robots with depth images as input, enhancing
their adaptability to complex environments.

2) We propose a motion generation module based on TD3
that can adapt to various scenes by incorporating mo-
tion modes and optimizing separate groups of motion
parameters, and its effectiveness is demonstrated in
multi-task scenarios.

3) We conduct simulations and experiments with the We-
bots platform, and demonstrate that the proposed algo-
rithm can yield high-quality reconfiguration schemes
for modular robots in randomized and multi-task envi-
ronments.

II. METHODOLOGY

A. Problem Formulation

To achieve the co-optimization, we first concurrently de-
scribe the robotic morphology and behavior as a tuple
H = {C,M}, where C denotes the robotic configuration
and M represents its motion strategy. The configuration
of a modular robot can be modeled as C = {Ca,Cs},
where Ca(10×10 matrix) describes the connection relation-
ship among modules in the global structure, and Cs(10×5
matrix) describes the connected ports of local modules, see
Fig.1 as an example of a chain-type modular robot. Ca is

represented by a binary 0-1 matrix, where Ca(i, j) = 1
denotes that module i and module j are connected, and
otherwise not connected. Cs contains five elements to de-
scribe the connectors of a pair of modular individuals, as
(modulei,modulej , facei, facej , connection). Taking four
modules as an example, each row of Cs in Fig.1 shows a
complete description of one connected pair. We can utilize
Cs matrix to store information of every connection in a
robotic configuration. On the other hand, the motion strategy

Fig. 1: Modeling the configuration of a chain-type modular
robot with 4 modules.

M of the modular robot is represented by a multi-layer
neural network, where the measured values of each sensor are
fed and outputs signals as processed motor control commands
that executed by all modules.

The modular robots can change their number of modules
and connections when confronting with different scenes in
a scenario, then the robots will implement various tasks
in correspondence to the scenes. In this work modular
robots are deployed in multi-task scenario, including climb-
ing stairs, avoiding obstacles and finding targets. In this
process, we consider the following three elements for eval-
uation: time consumption T (H) = tuse/tinit, task comple-
tion rate D(H) = dfinish/dinit, and energy consumption
E(H) = Efinal/Einit. Therefore, we pose this problem as a
multi-objective optimization to maximize the comprehensive
task completion rate while minimizing the energy and time
consumed by the modular robots. In summary, we obtain the
objective function as:

F (H) = −ωtT (H)− ωeE(H) + ωdD(H). (1)

where ωt, ωe, ωd are user-set weights that can be used to
adjust the impact of the multiple objective on the results.
We hope to find an optimal solution H∗ = (C∗,M∗) to
maximize the objective function:

H∗ = argmax
H

F (H). (2)

In this work, our goal is to search for this optimal solution
for a chain-type mobile modular robot by co-optimizing the
robotic configuration and motion.



B. Method Overview

We propose a hierarchical DRL-based framework to cope
with the co-optimization problem described by Eq. 2. The
schematic is shown in Fig.2, consisting of a scene classifier
and an optimizer. To enable the robot to change its con-
figuration when facing up with different scenes, we devise
a scene classifier ahead of the optimizer. We pre-trained
the scene classification model based on ResNet18, with the
sensed depth image as input, and the scene identified result
is recorded as Pi, the next result as P

′

i . We then input the
environmental information, including the depth image and the
result of the classifier, and the robotic states to the optimizer
to generate the optimized robotic configuration and motion.

The right side of the schematic illustrates the upper level
of the optimizer, the configuration model, and the lower level
shows the motion model. The sequential selection of robotic
configuration in different scenes in a scenario conforms to
a semi-Markov Decision Process (SMDP). At each scene
switching point when Pi ̸= P

′

i , with a given state st ∈ Sc,
the configuration model chooses an action at ∈ Ac to select a
configuration based on the policy π : Sc → Ac to obtain the
reward rt and the new state st+1 ∈ Sc. This process can be
expressed as a tuple τ1 = (Sc,Ac, p, r) with state transition
probability p (st+1 | (st, at)). Since the time-intervals of state
transitions of the configuration model is flexible, this process
can be described as SMDP.

The lower level motion model generates a motion control
command am ∈ Am at each time step t, based on the
specified configuration, with sm ∈ Sm as input, updating
the motion network parameters by reward r(sm, am) until
multi-task terminated; the evaluation metric is calculated and
used to update the configuration model. This process can
be described as a classical Markov Decision Process (MDP),
expressed as a tuple τ2 = (Sm,Am, p, r). The difference with
the configuration model is whether the time-intervals of the
signal output is fixed or not. The neural network of the two
models is trained simultaneously but updated asynchronously
via a shared reward.

The state space S consists of two parts, the state space Sc
for determining robotic configuration, solely containing envi-
ronmental perception, and the state space Sm for determining
robotic motion, containing environmental information and the
robot state. The action space A also consists of two parts, the
candidate configuration space Ac and the motion space Am

containing continuous motion control commands. The goal
of co-optimization is to find the optimal policy of choosing
the robotic configuration from Ac and motion strategy from
Am, which maximizes Equation (1).

It is noted that the co-optimization process consists of
several iterations of 1+m decision-making steps. In each
iteration, the robot configuration is determined at the first
time step, and the next m time steps execute the action com-
mands output by the motion model. When the scene classifier
judges terrain switching, the optimization will proceed to the
next iteration, and the configuration model transfers to the

next state and choose a new robot configuration. With the
hierarchical framework at two levels, the co-optimization of
robotic configuration and motion for multi-task scenarios can
be realized. We describe details of the two models below.
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Fig. 2: Overview of the proposed DRL-based co-optimization
framework, mainly consisting of two parts: a scene classifier
and an optimizer that includes a configuration model and a
motion model.

Algorithm 1: Configuration model optimization algorithm

1: Initialize :
Replay memory D to capacity N ;
Action-value function Q with random weight θ;
Target action-value function Q̂ with weight θ̂ = θ;

2: for episode = 1, M do
3: Initialize sequence S0 = {O0} and preprocessed
4: sequence ϕ0 = ϕ(S0)
5: for t = 1, T do
6: With probability ϵ select a random action At

7: otherwise select At = argmaxaQ(ϕ(St), a; θ);
8: Execute action At to update the matrices Cs

9: and Ca, observe reward Rt and data observation
10: Ot+1;
11: episode terminate set Dt = 1, else Dt = 0;
12: Set St+1 = {St, At, Ot+1} and preprocess ϕt+1

13: = ϕ(St+1);
14: Store transition (ϕt, At, Rt, Dt, ϕt+1) in D;
15: Sample random mini batch of transitions(ϕi, Ai,
16: Ri, Di, ϕ

′

i);
17: If Di = 0, set Yi = Ri + γmaxa′ Q̂(ϕ

′

i, a
′
; θ̂)

18: else Yi = Ri;
19: Perform a gradient descent step on (Yi - Q(ϕi

20: Ai, θ))2 with respect to the Network parameters
21: θ;
22: Every K steps reset Q̂ = Q
23: end for
24: end for

C. Configuration Model

The configuration model maps from a depth image ob-
served by the robot to a selected configuration, and the goal
is to yield an optimal robotic configuration C∗ based on the
current scene. To achieve this, we design a neural network
for the configuration model containing a Convolution Neural



Networks (CNNs) encoder, as depicted in Fig.3. Both of the
first two convolutional layers have a kernel size of 5*5 with
a padding set at 2, 32 and 64 feature maps, respectively.
Each convolutional layer is followed by a maximum pooling
layer of 2*2. The first fully connected layer has 256 hidden
units and the second outputs a vector represents the Q
value evaluated for each configuration, whose dimension n is
determined by the configuration space of the modular robots.
The scene changing judged by the scene classifier triggers
a new signal output of the configuration model. The trigger
mechanism is designed as: each iteration accounts for several
time steps, the value set as 100 in our simulation, the last 10
observed depth images in the iteration is passed through the
scene classification model which performs classification, if
more than 70% of the results are consistent, then the scene
classifier outputs the final result. The selected C∗ will be
used to update the matrices Cs and Ca to indicate the change
of the robot configuration.

Fig. 3: Network architecture of the configuration model.

Our configuration model inherits some basic components
of the DQN algorithm [30], and the optimization process
is shown in Algorithm 1. The convolutional neural network
generates the target Q-value according to the input state S,
and can evaluate the Q-value of the next state according to
the target Q-value in the current state. Adding the experience
playback mechanism and the target network to the model can
greatly reduce the correlation among data. When entering the
state s, we can get the Q values of all actions. The Q-learning-
based algorithm is updated as below:

Q(St, At)← Q(St, At)+

α

[
Rt + γmax

At+1

Q (St+1, At+1)−Q (St, At)

]
.

(3)

During the training process, the historical data is continuously
collected and stored in an experience buffer, and then some
data is sampled from the buffer to apply the Mini-Batch
gradient descent to update the Q-value. In this way, the
optimal configuration is obtained.

D. Motion Model

To accurately control the modular robot and enhance its
adaptability to various task scenarios, the motion model
should output control commands continuously. In addition,
there may be a large number of boundary actions required
in the process of implementing the task. For example, when
the robot is moving, full speed is often the optimal strategy
with minimal time consumption. In view of the above two
considerations, we propose a motion model (see Algorithm
2) based on the Twin Delayed Deep Deterministic policy

gradient algorithm (TD3) [31], which adds noise to the action
output and crops it to a certain range, leading to continuous
boundary actions for exploration. Fig.4 shows an overview
of the network architecture of the motion model and Fig.5
illustrates the actor network.

Fig. 4: The overview of the network architecture of the
motion model.

Fig. 5: The actor network architecture of the motion model.

Network architecture: Our motion model is based on
the actor-critic network architecture, in which two critic
networks output the state-action values, i.e., Q-values, and
we utilize the smaller value to update the actor network.
We use the target network to output the target Q values
to update the critic network (see Fig.4). The actor network
consists of a Convolution Neural Network (CNN) encoder
and four Fully Connected Layers (FLs). The critic networks
are similar to the actor networks and the target actions are
directly input to the FLs. The encoder architecture is similar
to the configuration model but with a 16-dimension output
in the last layer. A depth image is fed into the encoder
as input, and each pixel of the depth image represents a
specific distance measurement, ranging from 0.01 to 1. The
robot states, composed of a proportion of the remaining
electricity (1-D), current position (3-D) and current speed
(2-D), combined to another vector including depth image
after feature extraction, previous reward rt−1, previous action
at−1 and distance sensor data, are also input to the FLs
successively after data processing (see Fig.5).

Motion mode: Different from conventional mobile robots,
modular robots can adapt to a variety of scenarios, while their
motion control requirements are more complex, with large



Algorithm 2: A TD3-based motion optimization algorithm

1: Initialize :
Critic network Qθ1 , Qθ2 , actor network πϕ with random
parameters θ1, θ2, ϕ;
Target network θ

′

1 ← θ1, θ
′

2 ← θ2, ϕ
′ ← ϕ;

Replay buffer β, learning rate of actor network α1 and
critic network α2;
Update interval d, soft update parameter µ;
Configuration c output by Algorithm 1;

2: for each episode do
3: while not end condition do
4: Obtain motion state sm ∈ Sm;
5: Obtain action with exploration noise and clip to

(-1,1), am ∼ clip(πϕ + ϵ), ϵ ∼ N (0, σ);
6: Execute action am in the specified motion mode;
7: Obtain reward r and new state s

′

m ∈ Sm;
8: Store transition tuple (sm, am, r, s

′

m) in β;
9: Sample mini-batch of Nm transitions

(sm, am, r, s
′

m) from β;
10: Obtain the target action a

′

m ← clip(πϕ′ (s
′

m)+ϵ);
11: Update critics θi by Equation (13);
12: if episode mod d then
13: Update ϕ by Equation (14);
14: Update target networks:
15: ϕ

′ ← µϕ+ (1− µ)ϕ
′
;

16: θ
′

i ← µθi + (1− µ)θ
′

i;
17: end if
18: end while
19: end for

and time-varying controller dimensions. To cope with this,
we integrate some design priori in the form of motion modes
in the devise of motion model, which has the promise of
improving network performance while accelerating network
convergence. We design several motion modes such as stair
terrain mode and flat terrain mode corresponding to multi-
task scenarios discussed in this work, including going up
stairs, avoiding obstacles in random positions, and finding
targets. With different motion modes, the control commands
given by the motion model will be executed by the robot in
different manners.

To design the motion modes, we first analyze the action
space and how the motion control commands are processed.
There are five dimensions in the action space and each output
component of the motion model is between [-1,1]. The first
two dimensions are related to the motion speed of the robot.
The remaining three dimensions are related to the climbing
behavior of the robot.

In all scenarios, the modular robot will process the first
two-dimension of the motion control command according to
the following equation, we record Vstraight as the speed of
the straight motion, Vturning as the turning motion, to obtain
the left and right wheel speed of each module:

V = ω1 ∗ Vstraight ± ω2 ∗ Vturning (4)

However, in motion modes of different scenarios, the weights
ω1, ω2 may be different, depending on the intensity and
frequency of the turning behavior. For example, in the narrow
terrain mode, ω1 decreases and ω2 increases compared to flat
terrain mode.

In rough terrain and stair terrain motion modes, the re-
maining three-dimensional motion control commands will be
processed into motor commands by the modular robot as
follows:

P = ω3 ∗Asin(t+ ω4 ∗B), (5)

where A and B are the amplitude and phase of the signal, re-
spectively. These two parameters are obtained by calculation
of the last three dimension of the motion control command. t
denotes the current time step relative to the initial time of an
episode. Using Equation (5), we calculate the position control
command P of the motor steering gear. These particular
motor commands will only be executed by the modular
robot in the motion mode requiring climbing action. For
example, flat terrain motion mode will only execute the two-
dimensional motion control command. Similarly, in different
motion modes, the weights ω3 and ω4 may be different. In
the simulation, we mainly use the stair terrain and flat terrain
motion modes.

Reward function: The motion model and configuration
model share the reward and update asynchronously. While
the update of the configuration model considers the sum of
the rewards of each terrain, the motion model updates itself
at each time step. Our optimization goal of the motion model
is to obtain a motion strategy that approaches the maximum
of the objective function in Equation (1), which can trade-off
among the multiple optimization goals T (H), E(H), D(H).
Therefore, the reward function of the lower TD3-based
motion model is designed as follows:

R1 = τ1 ·∆D + τ2 · cosβ + τ3 · ru + τ4 · rg (6)

We denote ∆ D as the change of distance from the target
in two adjacent time steps. β represents the angle between
the straight line connecting the robot and goal, and the
robot speed forward. When the robot reaches the undesirable
terminal states given a penalty value ru = −10. These states
include collision with obstacles, the robot overturning and
leaving the area while climbing the stairs. Our goal-reaching
reward rg = 100 is related to the time consumed when the
multi-task is completed, we define τ4 as (1 + αg(tth / tsum).
The two end conditions will break the training episode. In
the simulation, we set τ1 = 100, τ2 = 0.05, τ3 = 1.0, tsum =
3500. And tth represents the time step used by the robot in
a training episode.
In the configuration model of the upper layer, the reward
function is designed as follows:

R2 = σ1 ·R1 + σ2 · rs + σ3 · rc (7)

The first component is the cumulative reward of the lower
level motion. The second component is to impel the robot
climb up higher stairs, the robot obtains different rewards



through stairs of different heights, which we define as
rs = 60. The third component is the energy Ec consumed
by the robot when passing through the stair, rc = Ec. In the
simulation, when the robot is on stair terrain we set σ1 = 1.0,
σ2 = (1 + sht / sbase), σ3 = 0.003, sbase = 0.04. When the
robot passes through the stair terrain, σ1 = 1.0, σ2 = 0, σ3 =
0. And sht represents the height of the stairs in the current
terrain.

Update method: The state-action value, also known as
Q-value, is used as estimator of the expected future return

R1t =

T∑
i=t

γi−tr(si, ai), (8)

where γ ∈ [0, 1] is a discount factor to adjust the priority of
short-term rewards, and T is the total number of time-steps
taken. When performing action at in state st, we have:

Qπ(st, at) = Esi∼pπ,ai∼π[R1t |st, at]. (9)

The above Bellman equation describes the relationship be-
tween the two state-action pairs, (sm, am) and the subsequent
(s

′

m, a
′

m), as below:

Qπ(sm, am) = r + γEs′m,a′
m
[Qπ(s

′

m, a
′

m)], a
′

m ∼ π(s
′

m).
(10)

In actor-critic-based method, the loss of the critic network
can be designed as:

L(θi) = min
i=1,2

N−1
m

Nm∑
i=1

(Qθi(sm, am)− y)2, (11)

where
y = r + γ min

i=1,2
Qθ

′
i
(s

′

m, πϕ′ (s
′

m)). (12)

and the critic network can be updated by:

θi ← θi − α2∇θiL(θi). (13)

After the critic network has been updated, the policy, known
as the actor, can be updated through the deterministic policy
gradient algorithm [32]:

ϕ← ϕ− α1Esm∼pπϕ
[∇amQθ1(sm, πϕ(sm))∇ϕπϕ(sm)].

(14)

III. SIMULATION AND EXPERIMENT

A. Simulation framework and environment

Our models are implemented in Python using Pytorch and
trained on a computer with a GeForce RTX 3090Ti GPU. We
use Webots platform to implement the simulation experiment,
and introduce the simulation environment used to validate our
method below.

Simulation framework: In this experiment, multiple mod-
ules of the robot can transmit the environmental information
perceived by their sensors to a central brain, and then the
central brain distributes the control command output from
the motion model to each module. In Webots, we used a
supervisor as the central brain and an emitter-receiver mecha-
nism to implement the simulation framework (see Fig.6). The

supervisor can process sense information sent by multiple
modules simultaneously. After sorting and normalizing all
the state information of one step, the supervisor sends it all
to the network models to get their output. At the beginning
of an episode, the supervisor sends the depth image faced by
the modular robot to the configuration model to obtain and
implement the configuration. After that, the supervisor sends
information to the motion model to get the action, and then
distributes the action to each module. Each module processes
the action into a motor command for the current specified
motion mode.

Fig. 6: Simulation framework for our co-optimization
method.

System overview: The system design of the modular robot
is based on the prototype of YaMoR [33]. Each module
has a relatively independent ability to collect environment
information and implement actions (see Fig.7, the z-axis
refers to the height axis). The length of each module is
0.16 meters, the height of its main part is 0.12 meters, and
the wheel radius is 0.06 meters. The sensors used include
some touch sensors, some distance sensors and a rangefinder
sensor which is unique to the first module (initial module).
Each module has two connecting plates that attract or repel
other modules by controlling magnets and resembles the EP-
Face introduced in [34], in principle. Each module has four
motors to realize the three-dimensional motion of the whole
modular robots. These motors include two wheel motors for
flat motion of the modules, and two Z-axis motors for relative
movement along the Z-axis between the modules by swinging
the connecting plates up and down. Each module has a battery
and its charge is known by the simulator at all times.

Implementation of motion models: In this experiment,
we mainly apply two motion modes, stair terrain motion
mode and flat terrain motion mode. The control commands
given by the motion model are parsed into motor commands
that each module can execute according to the current motion
mode. We calculate the speed of the left and right wheels
using Equation (4), and then each module uses its wheel
motors to execute the speed control command. In stair terrain
motion mode, we obtain the motor-steering gear position



Fig. 7: Modular robotic system in various task scenarios: on
stair terrain (upper image), and on flat terrain (lower image),
with different motion modes.

control command from Equation (5), which is executed by
the z-axis motor at the front of each module (except the first
module).

In the simulation experiment, the difference in the config-
uration is mainly the number of modules, except for Face1
of the first module, both faces of the other modules can be
connected in an unconnected state, the exact connection state
being determined by the configuration model of the upper
layer. A single-module robot is directly excluded as it cannot
complete the task of stair climbing, the number of configura-
tions can be selected from the range [2, 10]. When the robot
enters the first terrain, its number of modules is recorded
as Cn for the decision-making primary configuration. When
the terrain classifier classifies the depth image acquired by
the robot as the second terrain, the candidate space for the
number of configuration modules reduces to [2, Cn]. The first
two dimensions of the five-dimensional control command are
used to calculate ω1 and ω2 in Equation (4), while the third
and fifth dimensions are used to calculate ω3 in Equation (5)
(two-module robots only utilize the third dimension), and the
fourth dimension is used to calculate ω4 in Equation (5).

Multi-task scenario: As Fig.8 shows, our simulation
environment contained two main regions for the multi-task
implementation. In the stair terrain area, there are three
steps, the step height appears randomly at three heights of
0.04, 0.06, and 0.08, and the size of flat area for obstacle
avoidance task is 6*6, with each obstacle size 0.3*0.3*0.4.
When training the model, the stair heights are randomized in
each episode and the number of obstacles is 6, the position of
the obstacles is changed randomly at each episode, and the
size of the random area is 6*3. In the test phase, we test the
models’ performances using a different number of random
obstacles, and the stair heights are also random.

Fig. 8: Simulation of multi-task scenario: stair climbing,
traversing and obstacle avoidance.

B. Comparative studies

For evaluation of the proposed method, we compared the
performance of different algorithms and models in various
environments. We remove the upper layer of configuration
model and initialize a configuration without changing it. We
choose several representative configurations Cr with module
number 2, 4, 6, 8 and 10. to carry out the experiment. In
addition, we also compared the performance of the Soft
Actor Critic (SAC) [35] algorithm. For convenience, these
two models are called TD3-Cr and SAC.

Implementation Details: For TD3, the action output
exploration noise is sampled from the normal distribution,
and the mean value of this normal distribution is 0, and
the variance is attenuated from the initial 0.12 to 0.02 in
4000 generations. The learning rate of the actor and critic
networks are chosen as 0.00005, discount γ as 0.99, soft
update parameter µ 0.05 and batch size 256. Every d = 3
transitions, we update the actor network and target network.
An episode is terminated when the modular robot action
covers more than 3500 steps. The upper limit of power use of
each module is 20000J . For SAC, all the hyper parameters
are basically consistent with TD3. For all models, the first
300 episodes randomly output actions to generate exploratory
experiences into the buffer pool, and then they train for
another 4000 episodes.

The training curves are shown in Fig.9. Table I compares
the performance of using TD3 in motion mode, using the up-
per configuration model and not using it in the default scene.
Table II compares the performance of different algorithms in
different training environments. The default test environment
is with random stair height of 0.04, 0.06, 0.08 meter and 6
random obstacles. The Battery and Time column represent
the average energy and time consumed by all successful
cases during the testing phase. In order to further reflect the
performance differences of different models, we counted the
success rate of Robot reaching the goal under three different
stair heights and the average of the three. The Scenario
column shows additional changes to the default environment.
All models are trained with a random seed of 1.



Fig. 9: Performance comparison of various methods. Score
represents the sum in reward of each episode. Training
environment 1: 6 random obstacles; Training environment
2: 7 random obstacles; Training environment 3: 8 random
obstacles, all with random stair height of 0.04, 0.06 and 0.08
m.

TABLE I: Ablation study of the hierarchical framework.

Scenario Default

Framework Ours
Fixed (w/o hierarchy)

2 4 6 8 10

Time(s) 43.1 56.2 42.7 41.3 40.8 49.3
Battery(J) 3090 3006 4572 6633 8380 13200

Success
Rate(%)

85.7 72.5 78.5 75.0 67.6 58.8 (0.04)
90.2 0 71.2 77.8 71.8 63.5 (0.06)
92.1 0 62.0 68.1 75.9 59.1 (0.08)
89.3 24.2 70.6 73.6 71.8 60.5 (AVG)

F (H) 1.136 -0.284 0.598 0.465 0.258 -0.520

TABLE II: Performance comparison of different algorithms.

Scenario Default 7 random
obstacles

8 random
obstacles

Policy TD3 SAC TD3 TD3
Time(s) 43.1 57.6 50.2 66.4

Battery(J) 3090 3987 3564 4455

Success
Rate(%)

85.7 2.28 65.2 47.3 (0.04)
90.2 5.60 67.9 44.3 (0.06)
92.1 1.83 73.1 38.1 (0.08)
89.3 3.24 68.7 43.2 (AVG)

F (H) 1.136 -0.813 0.590 -0.135

For our hierarchical framework, two-module, four-module
and six-module configurations are selected in the case of
random stair height of 0.04, 0.06 and 0.08 m, respectively.
After traversing the stair terrain, the model selects a two-
module configuration to complete subsequent tasks. The two-
module robot performs well through stairs of 0.04 height,
but not through 0.06 and 0.08 height. When the four-module

robot was selected to climb the 0.06 stair height using the
hierarchical framework, the success rate of the final task was
about 90.2%, and the success rate without the hierarchical
framework was 71.2%. It can be seen from Table I that our
hierarchical framework performs better than other algorith-
mic models in terms of success rate, energy consumption
and time efficiency. And when the robot climbs the stairs, in
terms of the success rate alone, the more modules a robot
has, the higher possibility it can climb up the stairs, while
energy consumption will also increase. It can be seen from
Table II that when the SAC algorithm is used in the motion
model, the motion model often outputs extreme values to
control the boundary motion of the robot, which is relatively
rare in the model of the SAC algorithm. In addition, the
actions output by the SAC algorithm are relatively jumpy. For
example, the first move is 0.298, and the next move might be
0.401. This does not apply to robot control commands that
require continuity.

We can observe that the number of modules has an impact
on the robot’s motion strategy training. Firstly, during the
stair climbing task, we observe that the more number of robot
modules, the easier the robot’s motion strategy can be trained.
When the number of robot modules is large, the robot is less
prone to roll and turn over during stair climbing and more
likely to obtain a larger reward value, i.e., τ1 ·∆D as the first
component of R1 in Equation (6); when the robot has a small
number of modules, it is prone to roll over and spend more
time steps on the stair climbing task; when the number of
robot modules is less, its motion strategy is more difficult to
train, such as a two-module robot with a fixed configuration
climbing 0.06 step height. Secondly, in the obstacle avoidance
task, the more modules the robot has, the more difficult it is
for the robot to make turns and have a higher probability of
colliding with the obstacle. Although the robot has distance
sensors on each side of each module, it is still difficult to train
a good motion strategy to complete the obstacle avoidance
task.

We further conducted a set of mixed experiments that
differed from Env 1 in that we placed some obstacles on the
stairs. The robot’s configuration choice was almost identical
to that of Env 1. However, the final success rate was low,
with an average success rate of about 25%, and we believe
that it is difficult for the modular robot to climb stairs while
avoiding obstacles. In the future, when coping with mixed
scenarios, we can consider splitting the modular robot into
multiple agents (with shorter length) to be more flexible and
trade-off between different tasks, and they can re-construct
into fewer number of robots to complete the subsequent tasks.

Based on the above discussion, the experimental results
show that compared with other methods, the proposed frame-
work can obtain high-quality optimized configuration and
motion strategies for modular robots in multi-task scenarios.

IV. CONCLUSIONS

In this work we proposed a co-optimization framework
based on hierarchical deep reinforcement learning, to con-



currently generate optimized morphology and behavior of
modular robots to enhance their adaptability in multi-task
scenarios. The framework consists of a configuration model
and a motion model based on the TD3 algorithm, which
update asynchronously with a shared reward. To reduce the
dimension and complexity of the motion space, we predefined
some motion modes and optimize different groups of param-
eters in the motion model to adapt to various task scenarios.
The proposed framework was demonstrated on the Webots
platform, and preliminary results show that it outperforms
state-of-the-art methods in terms of success rate, time and
energy consumption. In the future, we consider incorporating
more complexity to configuration and motion spaces, as well
as more diversity in the multi-task scenarios, to facilitate the
application of modular robots to real world tasks.
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