
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Active Velocity Estimation using Light Curtains
via Self-Supervised Multi-Armed Bandits

Siddharth Ancha∗ Gaurav Pathak† Ji Zhang‡ Srinivasa Narasimhan‡ David Held‡
∗Massachusetts Institute of Technology, Cambridge, MA 02139, USA

†Adobe, San Jose, CA 95110, USA
‡Carnegie Mellon University, Pittsburgh, PA 15213, USA

Website: https://siddancha.github.io/projects/active-velocity-estimation1

Abstract—To navigate in an environment safely and au-
tonomously, robots must accurately estimate where obstacles
are and how they move. Instead of using expensive traditional
3D sensors, we explore the use of a much cheaper, faster, and
higher resolution alternative: programmable light curtains. Light
curtains are a controllable depth sensor that sense only along a
surface that the user selects. We adapt a probabilistic method
based on particle filters and occupancy grids to explicitly estimate
the position and velocity of 3D points in the scene using partial
measurements made by light curtains. The central challenge is to
decide where to place the light curtain to accurately perform this
task. We propose multiple curtain placement strategies guided
by maximizing information gain and verifying predicted object
locations. Then, we combine these strategies using an online
learning framework. We propose a novel self-supervised reward
function that evaluates the accuracy of current velocity estimates
using future light curtain placements. We use a multi-armed bandit
framework to intelligently switch between placement policies
in real time, outperforming fixed policies. We develop a full-
stack navigation system that uses position and velocity estimates
from light curtains for downstream tasks such as localization,
mapping, path-planning, and obstacle avoidance. This work paves
the way for controllable light curtains to accurately, efficiently,
and purposefully perceive and navigate complex and dynamic
environments.1

I. INTRODUCTION

Robots in the real world must navigate in the presence
of moving objects like humans and vehicles whose motion
is a priori unknown. This is a common challenge in many
applications like autonomous driving, indoor and outdoor
mobile robotics, and robot delivery. How should a robot
sense and perceive such dynamic environments? How can
it accurately estimate the motion of obstacles?

3D sensors such as LiDARs and depth cameras are con-
ventionally used for robot navigation. However, LiDARs are
typically expensive and low-resolution. Although cameras are
cheaper and higher-resolution, depth estimates can be noisy and
inaccurate. An alternative paradigm is active perception [7, 8]
where a controllable sensor is actively guided to focus on
only the relevant parts of the environment. Programmable
light curtains [69, 9, 4, 58, 5] are a recently invented,

1Please see our project website for (1) the appendix, (2) an overview video,
(3) videos showing qualitative results of our method, and (4) source code.
∗Corresponding author. E-mail: sancha@mit.edu.
∗†This work was performed when SA and GP were affiliated with CMU.

lightweight 3D sensor that detects points intersecting any
user-specified 2D surface (“curtain”). Light curtains combine
the best of passive cameras (low cost, high resolution, and
high speed) and LiDARs (accurate depth estimation along
the curtain, robustness to bright lighting and scattered media
like fog/smoke [69]). Compared to widely used commercial
LiDARs like the Ouster OS1-128 [43], a lab-built light curtain
prototype is relatively inexpensive ($1,000 v.s. ∼$20,000),
higher vertical resolution (1280 rows/0.07◦ v.s. 128 rows/0.35◦)
and faster (45-60 Hz v.s. 10-20 Hz). See App. E for benefits
of light curtains over conventional depth sensors. Because
programmable light curtains are an active sensor, realizing these
benefits requires actively deciding where to place the curtain
at each timestep; this is the principal algorithmic challenge
posed by programmable light curtains.

Previously, light curtains have been used for object detec-
tion [4], depth estimation [58], and estimating safety regions [5].
However, light curtains have not been used to explicitly estimate
velocities of dynamic objects. Velocity estimation is crucial for
many tasks in robotics such as trajectory forecasting, obstacle
avoidance, motion planning, and dynamic object removal for
SLAM [65].

The focus of this paper is to develop light curtain placement
strategies that improve velocity estimates. We use dynamic
occupancy grids [23] to estimate velocities and occupancies
from points detected by light curtains without requiring point
cloud segmentation or explicit data association across frames.
First, we extend light curtain placement strategies from previous
works [4, 5] to integrate dynamic occupancy grids. Then, we
propose a novel method to switch between multiple light curtain
placement strategies using a multi-armed bandits approach.
The feedback for the multi-armed bandits is obtained using a
novel self-supervised reward function that evaluates the current
estimates of occupancy and velocity using future light curtain
placements, without requiring ground truth or additional sensors.
We obtain this supervision by reusing intermediate quantities
computed during recursive Bayes estimation of dynamic
occupancy grids; thus the self-supervised rewards do not require
extra light curtain placements or additional computations. We
evaluate our approach on challenging simulated and real-world
environments with complex and fast object motion. We integrate
our method into a full-stack navigation pipeline and show that

https://siddancha.github.io/projects/active-velocity-estimation
https://siddancha.github.io/projects/active-velocity-estimation

(a) Light curtain working principle (b) Bayes filter with self-supervised reward

Figure 1: (a) Illustration of programmable light curtains adapted from [4]. An illumination plane (from the projector) and an
imaging plane (of the camera) intersect to produce a light curtain. A controllable galvanometer mirror rotates synchronously
with the camera’s rolling shutter and images the points of intersection. See Sec. II-A for more details. (b) A Dynamic Bayes
network [65] for controllable sensing. At timestep t, xt corresponds to the state of the world, ut corresponds to the action i.e.
the location of light curtain placement, zt corresponds to light curtain measurements, and bel(xt) and bel(xt) are the inferred
distributions over states before and after incorporating measurements zt, respectively. This is a slightly modified graphical
model for controllable sensing where actions ut don’t affect state xt but directly affect observations zt.

the multi-armed bandits approach is able to outperform each
individual strategy.

Our contributions include:
1) We re-derive the dynamic occupancy grid method [23]

using a more rigorous mathematical analysis grounded in
Bayesian filtering [65] (Sec. IV, App. B).

2) We design curtain placement strategies for dynamic
occupancy grids to verify predicted object locations
(Sec. V-A) and maximize information gain in hybrid
discrete-continuous spaces (Sec. V-B, App. D).

3) We propose a novel self-supervised reward function that
evaluates current velocity estimates using future light curtain
placements without requiring additional supervision. Using
the self-supervised reward, we learn to combine multiple
curtain placement policies using a multi-armed bandit
framework (Sec. VI).

4) We evaluate this approach in simulated and real-world envi-
ronments with fast-moving obstacles and demonstrate that
it outperforms individual placement strategies (Sec. VIII).

5) We develop an efficient and parallelized pipeline where
light curtain sensing, grid estimation and computing curtain
placement are tightly coupled and continuously interact
with each other at ∼45 Hz (Sec. VII, Fig. 4, App. F).

6) We integrate our method into a full-stack navigation
pipeline that uses position and velocity estimates to perform
localization, mapping and obstacle avoidance in real-world
dynamic environments (App. K).

II. BACKGROUND

A. Light curtain working principle
Programmable light curtains [69, 9, 4, 58, 5] are a recently

developed controllable depth sensor that image any user-

specified vertically-ruled 2D surface in the environment. The
device contains two main components: a rolling-shutter camera
and a rotating light sheet laser (see illustration in Fig. 1a). The
camera activates one pixel column at a time, from left to right,
via the rolling shutter. We refer to the top-down projection
of the imaging plane corresponding to each pixel column as
a “camera ray” (shown in Fig. 1a). The shape of the light
curtain is entirely specified by a 2D control point selected on
each camera ray (shown as gray and green circles). The set of
control points forms the input to the light curtain device. The
laser is vertically aligned and synchronized with the camera’s
rolling shutter. A controllable galvo-mirror rotates the light
sheet to point it at the control point corresponding to the
currently active pixel column. Triangulated 3D scene points
that both (1) intersect the laser light sheet and (2) are visible
in the currently active pixel column, get detected by the device.
If there exists an object in the environment at the surface
of this intersection, then the point will have a large intensity
in the camera reading; otherwise it will not; thus the device
outputs the subset of control points (shown as green circles
in Fig. 1a) that correspond to 3D object surfaces. Importantly,
light curtains form a partial observation on the scene, since
only control points can be detected. Please see [9, 69] for
further details on the mechanism behind a programmable light
curtain.

B. Bayes filtering

This section provides a brief background on Bayes filtering
and introduces notation used throughout the paper. A dynamic
Bayes filter [65], also known as a hidden Markov model or a
state space model is represented by a probabilistic graphical
model shown in Fig. 1b. The state of the world at timestep

t is denoted by xt (in our case, xt is the occupancy and
velocity of a set of cells arranged in a 2D grid from the top-
down view; more details in App. B-A). The control actions
are denoted by ut (the locations where the light curtain is
placed). Observations obtained from the sensor are denoted by
zt. Fig. 1b is a slight modification of the standard model for
the task of active perception, where actions don’t affect the
state of the world xt but directly affect the observations zt.

The goal is to infer at each timestep t the posterior
distribution (a.k.a “belief”) bel(xt) = P (xt | u1:t, z1:t) over
the current state xt from the sequence of sensor observations
z1:t and the known sequence of actions u1:t. This is computed
using recursive Bayesian estimation [65] that alternates between
two steps.

bel(xt) =

∫
xt−1

bel(xt−1) P (xt | xt−1) dxt−1 (1)

bel(xt) ∝ P (zt | xt, ut) bel(xt) (2)

First, the motion update step computes an intermediate prior
belief bel(xt) by applying a motion model P (xt | xt−1)
that encodes the dynamics of the environment. Then, the
measurement update step computes the updated posterior belief
bel(xt) by incorporating sensor observations from the current
timestep. To make this paper self-contained, we provide a
detailed mathematical derivation of these steps in App. A.

III. RELATED WORK

A. Active perception and light curtains

Active perception involves actively controlling a sensor such
as camera parameters [7], moving a camera to look around
occlusions [19], and next-best view planning [21] for object
instance classification [76, 28, 26, 60] and 3D reconstruc-
tion [44, 47, 67, 24]. Programmable light curtains [69, 9, 16]
are a controllable depth sensor that have been used for active
perception tasks such as active object detection [4], active
depth estimation [58], and actively estimating safety regions [5].
However, most prior light curtain work has only focused on
estimating object positions. They either place curtains with
fixed scan patterns [69, 16] or adaptive curtains for static
scenes without taking object motion into account [9, 4, 58].
Ancha et al. [5] track safety regions by learning to forecast
future locations; this could be interpreted as implicit velocity
estimation. However, we are the first to explicitly estimate
obstacle velocities which can be used for other downstream
tasks like trajectory forecasting, obstacle avoidance and motion
planning. Furthermore, we combine multiple adaptive strategies
like random curtains [9, 5], maximizing information gain [4],
and verifying predicted object locations [5] using a novel multi-
armed bandit framework for estimating both object positions
and velocities.

B. Velocity estimation from point clouds

Prior works on estimating scene flow [68, 70, 49, 32, 63]
compute correspondences between point clouds acquired
at consecutive timesteps; velocities can then be extracted

from these correspondences. Furthermore, self-supervised
approaches [54, 75, 45, 48, 10, 35] can learn to estimate scene
flow without requiring ground truth annotations. However, these
methods are designed to compute flow between complete scans
of the environment, such as those obtained from a LiDAR
sensor, where correspondences exist for most points. In contrast,
a single light curtain measurement is a partial point cloud – a
subset of visible points that intersect the curtain. Depending on
where they are placed, consecutive light curtains may not
contain any correspondences at all. Therefore, scene flow
methods are not suited for point clouds acquired by light
curtains.

Another approach is to first segment the point cloud into a
collection of separate objects [38, 27, 46, 64, 78, 41], track each
object, and finally register each object’s segmented point cloud
across frames using either optimization-based [11, 59, 36, 79,
77, 51], probabilistic [37, 39, 34, 2], or learning-based [71, 72,
6, 20] methods. However, errors in point cloud segmentation
can lead to incorrect velocity estimates. Instead, our method
uses particle-based occupancy grids and avoids the need to
perform either segmentation or explicit data association across
frames.

C. Self-tuning Bayes filters

Prior works have used innovation i.e. the difference between
predicted and observed measurements of a Kalman filter, to
“self-tune” model parameters without needing ground truth
annotations. Earlier works use an autoregressive moving
average innovation model (ARMA) [33, 55, 30, 25, 80]. More
recent works use the normalized innovation squared (NIS)
metric to optimize Kalman filter noise models using downhill
simplex methods [57], Bayesian optimization [17, 18], and
evolutionary algorithms [56, 12]. Our self-supervised metric
is inspired by Kalman filter innovation, but is used to select
a sensor control strategy at each timestep using multi-armed
bandits rather than tuning noise models.

IV. DYNAMIC OCCUPANCY GRIDS

We now describe how we apply dynamic occupancy
grids [23] for velocity estimation with light curtains. A dynamic
occupancy grid is a Bayes filter that combines two conventional
representations in robotics: occupancy grids and particle filters.
Occupancy grids [29, 65] are a standard tool for mapping
the location of static objects in the environment from the 2D
top-down view. Each cell in the grid contains an occupancy
probability p ∈ [0, 1], denoting the probability of the cell being
occupied by an object. Dynamic occupancy grids [23] are an
extension of classical occupancy grids (see Fig. 2a). Each cell
in the grid contains both the occupancy probability p as well
as a probability distribution over 2D velocities. The velocity
distribution is represented by a set of weighted particles, where
each particles stores a single 2D velocity. The set of weighted
particles approximates the true velocity distribution.

While Danescu et. al. [23] showed that dynamic occupancy
grids can accurately estimate occupancies and velocities, the
precise role of particles and what they represent remained

(a) Dynamic occupancy grid: each cell contains occupancy and velocity distributions (b) Raycasting to compute freespace (c) Raymarching to compute depth probs.

Figure 2: (a) Dynamic occupancy grid. The 2D grid represents the top-down view. Like conventional occupancy grids [29, 65],
each cell contains an occupancy probability p ∈ [0, 1]. In addition, each cell also contains a set of weighted particles where
each particles stores a single 2D velocity. The set of particles together represents a probability distribution of that cell’s velocity.
(b) Ray-casting to light curtain detections to extract freespace information. Red cells contain detected points and are marked
occupied. Blue cells are freespace; they either lie undetected on the light curtain or lie on rays cast from the sensor to the red
cells. Gray denotes unknown occupancy. Purple cells are outside the light curtain’s field of view. (c) Ray-marching to compute
the depth probabilities of cells along a camera ray. The depth probability of the red cell is the product of the probability that
the red cell is occupied and the probabilities of each blue cell being unoccupied.

unclear. Particles were described as representing a cell’s
velocity distribution; however, the movement of particles
from one cell to another is somewhat inconsistent with this
interpretation. Elsewhere, particles are described as being
“physical building blocks of the world”, i.e. parts of objects that
can move; however, under this interpretation, it is unclear what
distribution a set of particles is supposed to represent, since each
particle represents a different part of an object. Furthermore,
the particles were not only used to represent velocities, but
their count inside a cell was proportional to the occupancy
probability. In this work, we re-derive dynamic occupancy
grids using a more rigorous mathematical analysis found in
App. B, in which we explicitly state the assumptions made
and provide a precise, mathematically rigorous interpretation
of particles.

Motion and measurement updates: In the motion update
step, particles are resampled from each cell in the grid and
moved to another cell based on their velocities and the motion
model. We assume access to a depth sensor (e.g. light curtains,
LiDAR, depth cameras) that measures depth but does not
directly measure velocity. In the measurement update step,
the sensor provides (noisy) observations of occupancy for a
subset of un-occluded cells in the grid. These observations
are used to update the occupancy probabilities; velocities are
inferred indirectly in the motion update step that are consistent
with observed occupancies. This method is able to estimate
velocities from depth measurements alone without requiring
explicit data association across frames.

Raycasting to extract freespace information: As explained
in Section II-A, a light curtain only returns whether there is a
3D object surface at the location of the control points where the
camera rays and the laser sheets intersect; no depth information
is returned for other locations in the environment. Fig. 2b shows

an observation grid from a light curtain placement where cells
directly measured to be occupied are shown in red and free
cells are shown in blue. From this figure, we see that all voxels
in between the light curtain source and a detected point must be
unoccupied. Since 3D points were detected in the occupied cells,
light must have traveled along these rays without obstruction;
we mark cells along these rays to be free (shown in blue in
Fig. 2b). To take advantage of this information, we cast rays
using an efficient voxel traversal algorithm [3, 42] from the
sensor to occupied cells (shown in red). More details can be
found in App. B-C. Thus by exploiting visibility constraints,
we are able to extract more information from the light curtain.

V. CURTAIN PLACEMENT STRATEGIES

Using dynamic occupancy grids and Bayesian filtering, we
have a method to infer occupancies and velocities explicitly
from light curtain measurements (details in App. B). The main
challenge that we address in this paper is to compute the
best curtain placement from the dynamic occupancy grid i.e.
from the current estimates of occupancy and velocity. The
measurements from the placed curtain will be input back to
upgrade the grid, closing the loop.

In order to compute the best curtain placement, we must first
predict the occupancy when the next light curtain will be placed.
To do so, we forecast the current dynamic occupancy grid, using
the currently estimated velocities, to the next timestep via the
motion update step (Eqn. 1, Eqn. 4 in App. B-B). In this section,
we propose various curtain placement strategies computed from
the forecasted grid. In Sec. VI, we will propose a novel method
to combine them and outperform each individual strategy.

A. Maximizing depth probability

Strategy 1: Depth Probability: Following Ancha et al. [5],
Strategy 1 places curtains at the highest probability object

(a) (b) (c)

Figure 3: (a) Mobile light curtain robot platform: A light curtain device (in blue) is mounted on top of a mobile robot. We use
this setup to perform real-world experiments. (b) Simulated environment: consists of differently shaped objects (cuboids and
cylinders) moving in (1) linear oscillatory/harmonic motion along various directions, (2) curved sinusoidal motion, and (3)
random Brownian motion. (c) Real-world environment: consists of two pedestrians walking in front of the sensor in multiple
directions, at different speeds and in complex trajectories.

locations. This strategy is motivated by the fact that a light
curtain only senses visible object surfaces when it intersects
them. Therefore, this approach can be used to verify whether
objects are indeed located at the forecasted object locations.

Since occupancy grids are probabilistic, this strategy places
curtains at locations of highest “depth probability”, which is the
probability that a control point at a given cell would return a
depth reading. The depth probability of a cell is the probability
that the cell is occupied, and all occluding cells (lying on
the ray starting from the sensor and ending at the target cell)
are free (see Fig. 2c). We borrow the idea of “ray marching”
from the literature on volumetric rendering [66, 53] to compute
depth probabilities efficiently; see App. C for more details on
the algorithm and computational complexity. For each camera
ray, we place the curtain on the cell with the maximum depth
probability.

B. Maximizing information gain

Another placement strategy that was found useful in previous
work on 3D object detection [4] was to place curtains at the
regions of highest “uncertainty”. This is based on the principle
of maximizing information gain for active sensing.

Recall the dynamic Bayes network in Fig. 1b. Given a
forecasted prior belief P (xt) = bel(xt), the information gain
framework prescribes that the action ut should be taken that
maximizes the information gain IG(xt, zt | ut) between the
state xt and the observations zt when using ut. Information
gain, which is a well-studied quantity in information theory, is
the expected reduction in entropy (i.e. uncertainty) before and
after sensing: H(P (xt))− Ezt|ut

[
H(P (xt | zt, ut))

]
.

While information gain for conventional occupancy grids
is straightforward to derive [4], it is not so for the case of
dynamic occupancy grids. This is because the underlying state
space of dynamic occupancy grids is a ‘mixture’ of discrete
and continuous spaces – a cell can either be unoccupied
or occupied with a continuous velocity. Unfortunately, the
entropy of such mixed discrete-continuous spaces is not well-
defined [31]. We overcome this problem using a more general

definition of information gain based on the “Radon–Nikodym”
derivative [31] that doesn’t require explicitly calculating the
entropy. In App. D, we show that the formula for information
gain for dynamic occupancy grids (under certain assumptions)
turns out to equal the occupancy uncertainty, described next.

Strategy 2: Occupancy Uncertainty: Let ωi
t be the occu-

pancy probability estimated for the i-th cell at the t-th timestep.
Then, the information gain is the sum of binary cross entropies
Hocc(ω

i
t) = −ωi

t log2 ω
i
t − (1− ωi

t) log2(1− ωi
t) of the cells

that the curtain lies on. Intuitively, since measurements from a
depth sensor only provide information about occupancy and
not velocity, the overall information gain is equal to the total
occupancy uncertainty. A similar information gain computation
was used in Ancha et al. [4] for static occupancy grids; in
App. D we prove that the formula for information gain is the
same as total occupancy uncertainty even for the more complex
case of mixed discrete-continuous distributions. Strategy 2
places a curtain that maximizes the occupancy uncertainty.

Strategy 3: Velocity Uncertainty: Each cell also contains
a velocity distribution V i

t = {(vi,mt , pi,mt) | 1 ≤ m ≤ M}
represented by a set of M weighted particles with velocities
vi,mt and weights pi,mt that sum to 1. In this strategy, we
maximize the sum of velocity entropies. The discrete set
of particles is used to approximate what is inherently a
continuous velocity distribution. Therefore, we must compute
the differential entropy of the continuous velocity distribution
by first estimating its probability density function. We fit a
multivariate Gaussian distribution to the set of weighted par-
ticles with mean µ =

∑M
m=1 p

i,m
t vi,mt and covariance matrix

Σ =
∑M

m=1 p
i,m
t (vi,mt − µ)(vi,mt − µ)T . Then, we compute

the differential entropy of the fitted Gaussian: Hvel(V
i
t) =

1
2 log det(2πeΣ). One could alternatively use other families
of continuous distributions, such as kernel density estimators.
Finally, we place a curtain that maximizes the sum of velocity
entropies Hvel of the cells the curtain lies on.

Strategy 4: Combined Uncertainty: In this strategy, we
maximize a weighted combination of occupancy and velocity
entropies: Hcmb(ω

i
t, V

i
t) = Hocc(ω

i
t) + ωi

t Hvel(V
i
t). The

velocity uncertainty is weighted by the occupancy probability.
This captures the notion that if the occupancy probability is very
low, then the overall uncertainty should also be low even if the
velocity uncertainty is high, because the velocity uncertainty
is not relevant if the cell is unoccupied. This is a heuristic
curtain placement policy that performs well in practice.

VI. SELF-SUPERVISED MULTI-ARMED BANDITS

Can we combine the various curtain placement strategies
developed in Sec. V to improve performance? In this section,
we develop a multi-armed bandit method to do so enabled by
a novel self-supervised reward function.

A. Multi-armed bandit framework

A multi-armed bandit [61] is an online learning framework
consisting of a set of actions or “arms”, where each action is
associated with an unknown reward function. The agent only
observe samples from the reward distribution when it takes that
action. The goal is to maximize the cumulative reward over
time. The agent maintains a running average of the rewards
for each action, called Q-values. We use ϵ-greedy multi-armed
bandits [61], that trades-off exploration with exploitation. With
probability ϵ, the bandit performs exploration and chooses an
action at random. With probability 1−ϵ, it performs exploitation
and chooses the action that has the highest Q-value. We use
multi-armed bandits to intelligently switch between the four
curtain placement strategies at test time.

B. Self-supervised rewards

The bandit framework requires a reward function to evaluate
actions. Our eventual goal is to accurately estimate occupancy
and velocity. How can we design a function that rewards
improvements in occupancy and velocity estimates, but can also
be computed at test-time using only light curtain placements
and measurements? This is challenging because light curtains
cannot directly measure velocities; they can only measure the
occupancies of a small set of locations where they are placed.

Let us revisit the dynamic Bayes network from Sec. II-B,
shown in Fig. 1b. Belief distributions are represented by dy-
namic occupancy grids. At timestep t−1, the grid representing
the belief bel(xt−1) was forecasted by applying the motion
model to obtain the prior belief bel(xt) at timestep t (Eqn. 1,
Eqn. 4 in App. B). Then, in the measurement update step, the
current light curtain measurement zt obtained by placing a
curtain at locations ut is used to update the grid to bel(xt)
(Eqn. 2, Eqn. 5 in App. B). Therefore, we attribute the accuracy
of bel(xt) to action ut.

The forecasted occupancy at time t+1 is computed by using
the current velocity estimates to forecast the current occupancy
by an interval ∆t using the motion update step (Eqn. 1, Eqn. 4
in App. B). The forecasted occupancy will be accurate if both
the current velocities and current occupancies are accurate.
Therefore, the accuracy of forecasted occupancy acts as an
appropriate reward function that captures both occupancy and
velocity accuracies.

How do we evaluate forecasted occupancy computed using
bel(xt), without requiring ground truth, in a self-supervised
way? This is possible by reusing intermediate quantities output
during recursive Bayesian updates.

First, note that the forecasted occupancy of bel(xt) is
bel(xt+1) computed by the next motion update step. Our main
insight is that before applying the next measurement update
step, bel(xt+1) can be evaluated using the partial occupancy
observed by the next light curtain measurements zt+1. We
use the F1-score between the forecasted occupancy grid and
the partially observed occupancy grid as a self-supervised
reward for the previous light curtain placement ut (See
Fig. 1b). Specifically, we compute the self-supervised reward
Rt = F1(bel(xt+1), zt+1), where bel(xt+1) is computed using
Eqn. 1 (more specifically, Eqn. 4 in App. B), and zt+1 is the
partial occupancy observed at time t+1. See App. G for details
on the F1-score.

An advantage of our self-supervised reward is that it does not
require any extra computation. This is because (1) occupancy
forecasting of bel(xt) is performed anyway as part of the
motion update step, and (2) the partial occupancy information
from zt+1 is computed anyway in the next measurement update
step. By reusing quantities already computed during recursive
Bayes filtering, our self-supervised reward does not require any
extra forecasting steps nor any extra light curtain placements.

At each timestep, we use the ϵ-greedy strategy to se-
lect one among the four curtain placement strategies a ∈
{a1, a2, a3, a4}. Then we compute the curtain placement ut

according to strategy a. When the accuracy of the forecasted
occupancy Rt is obtained in the next timestep, we update the
Q-value of a as Q(a) := Q(a) + α [Rt −Q(a)]. We use the
non-stationary reward formulation [61] of multi-armed bandits
with smoothing parameter α to account for the possibility that
different strategies {a1, a2, a3, a4} may be superior at different
times. See App. I for more details.

VII. PARALLELIZED PIPELINE

Fig. 4 shows our pipeline that has three processes: (1) light
curtain sensing, (2) Bayes filtering using dynamic occupancy
grids, and (3) computing curtain placement. The processes
are run in parallel threads with shared memory, at their own
independent speeds.

1. Light curtain imaging: This thread continuously places
curtains at locations determined by one of the four strategies
described in Sec. V. However, when waiting for the next curtain
placement to be computed, it places random curtains [5] (that
are generated offline) to sense random locations in the scene.
This ensures that the device is always kept busy and runs at
approximately 45 Hz.

2. Bayes filtering: This thread inputs light curtain measure-
ments and updates the dynamic occupancy grid. It alternates
between motion and measurement update steps (Eqns. 1, 2,
Eqns. 4, 5 in App. B). The motion update step requires two
grids, each representing the current and next timesteps. Particles
are sampled from the current grid, perturbed according to the
motion model, and inserted into the next grid. The roles of the

Figure 4: Implementation of our method as a parallelized pipeline. Our methods contains three components: (1) light curtain
sensing, (2) Bayes estimation of dynamic occupancy grids, and (3) computing curtain placement. Each process can be run in
parallel in a separate thread at its own independent speed. The three processes are tightly coupled in a closed loop using three
grids as shared memory. Our implementation ensures that information flows between the threads safely and continuously.

two grids are swapped at every successive motion update to
avoid copying data. This thread runs at approximately 35 Hz.

3. Computing curtain placement: This uses the most recent
dynamic occupancy grid to compute the next curtain placement
(Sec. V). It first forecasts the grid, using the same motion
update step (Eqn. 1, Eqn. 4 in App. B), to the next timestep
when the next curtain is expected to be imaged. The forecasted
occupancy is used to compute the curtain placement. In App. F,
we describe how an extra grid is used to ensure thread-safety
and that no thread ever needs to wait on another to finish
processing. Finally, the control points of the computed curtain
are sent to the light curtain device. The three inter-dependent
processes are tightly coupled and continuously interact with
each other.

VIII. EXPERIMENTS

A. Environments

Simulation environment: We use a simulated environment
consisting of various blocks moving in a variety of motions
(see Fig. 3b). The environment contains cylinders and cuboids,
moving in (1) linear, harmonic (oscillatory) motion along
different directions, (2) curved sinusoidal motion, and (3)
random Brownian motion. We use an efficient light curtain
simulator described in App. J.
Real-world environment: Our real-world environment consists
of a mobile robot with a mounted light curtain device (Fig. 3a)
navigating in the presence of two pedestrians walking in
multiple directions, at different speeds and in complicated
trajectories (see Fig. 3c).

B. Evaluation metrics

Since we wish to evaluate the accuracy of both occupancy
and velocity estimates, we use the forecasted occupancy [50, 1]
as our evaluation metric. As noted in Sec. VI-B, the forecasted
occupancy will be accurate if both current velocities and current
occupancies are accurate. The future occupancy at time t+∆t is
computed by the motion update step (Eqn. 1, Eqn. 4 in App. B)

Figure 5: Velocity estimation in simulation. (a) The environment
with moving blocks and curtain placement shown in blue. (b)
Color-coding for visualizing velocity from the top-down view.
(c) Ground truth occupancy and velocity. (d) Raw light curtain
images; high intensities are good because it means that object
surfaces were found and intersected by the light curtain. (e)
Partial occupancy observations from light curtain measurements
that are input to the dynamic occupancy grid. (f) Velocity and
occupancy estimated by the dynamic occupancy grid. We advise
the reader to view video examples on the project website.

that uses the current velocity to forecast the current occupancy
by an interval ∆t. This metric is particularly relevant for
obstacle avoidance where estimates of future obstacle locations
must be accurately computed to plan safe, collision-free paths.

Ideally, the accuracy of forecasted occupancy can be com-
puted by comparing it against ground truth occupancy at
t + ∆t. This is possible in simulated environments where
ground truth occupancy is available for all grid cells. In real-
world environments, true occupancy can only be measured for
a subset of cells by the light curtain; in this case, we use the
“self-supervised” version of the metric described in Sec. VI-B.
We follow prior works [40, 52, 62] that treat the evaluation
of occupancy as a classification problem and compute several
metrics: (1) classification accuracy [40, 52], (2) precision, (3)

https://siddancha.github.io/projects/active-velocity-estimation

Simulated environment Real environment
Classification

accuracy Precision Recall F1-score IOU Classification
accuracy Precision Recall F1-score IOU

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Simulated

LiDAR 0.9584 0.2498 0.1073 0.1360 0.0787 NA

Random curtains
only 0.9662 0.2698 0.0567 0.0850 0.0468 0.9852 0.6306 0.2357 0.2405 0.2136

Max. depth
probability 0.9610 0.2448 0.1146 0.1388 0.0792 0.9832 0.5943 0.2727 0.3047 0.2353

Max. occupancy
uncertainty 0.9609 0.2717 0.1266 0.1493 0.0857 0.9811 0.5733 0.3041 0.3319 0.2515

Max. velocity
uncertainty 0.9648 0.2728 0.0581 0.0838 0.0458 0.9864 0.6221 0.2615 0.2545 0.2232

Max. occupancy + velocity
uncertainty 0.9629 0.3026 0.1251 0.1544 0.0895 0.9822 0.5899 0.3175 0.3421 0.2727

Multi-armed bandits
(Ours) 0.9623 0.2814 0.1402 0.1690 0.0976 0.9854 0.6467 0.3647 0.3703 0.3053

Table I: Accuracy of occupancy and velocity estimation measured using forecasted occupancy in (a) simulated, and (b) real
environments.

Figure 6: Velocity estimation in the real world using multi-armed bandits (MAB). Please refer to titles and Fig. 5 for descriptions
of each column. Our method only uses light curtains; RGB images are for visualization only. The rightmost column shows the
Q-values of each strategy. Higher Q-value is better; the action with the highest Q-value is chosen during exploitation. Top row:
shows two pedestrians walking at relaxed speeds. The directions of motion are correctly inferred for each person: the pedestrian
walking to the right is shown in greenish-blue and the person walking to the left is colored in red. The current action selected
maximizes occupancy uncertainty. The bottom row shows a more challenging environment where where a lone pedestrian
performs fast motion: running and jumping. The direction of velocity is correctly inferred as moving top-left (left and away
from the sensor) i.e. reddish pink. The color saturation is high indicating the larger magnitude of velocity. The current action
selected maximizes depth probability. We advise the reader to view the video examples on the project website.

recall, (4) F1-score and (5) the IoU [62] between the predicted
and ground truth occupancy masks. For more details on these
metrics, please see App. G.

C. Quantitative analysis

Table I shows the performance of various light curtain
placement strategies in simulated and real-world environments,
evaluated using multiple forecasted occupancy metrics (see
Sec. VIII-B, App. G). Since a large proportion of cells
are unoccupied, the classification accuracy of all methods
is very similar. Furthermore, precision and recall metrics

can be deceived by mostly predicting negative and positive
labels respectively. However, the F1-score and IoU metrics
are discriminative and robust; they are high only when both
precision and recall are high. Therefore, we focus on these
two metrics (shown in blue). In both sets of experiments,
multi-armed bandits that combine the four curtain placement
policies using our self-supervised reward outperform all other
methods. This shows that intelligently switching between
multiple placement strategies is more beneficial than using
any one single strategy at all times.

Between the other four strategies, maximizing occupancy

https://siddancha.github.io/projects/active-velocity-estimation

Frequency
of selection

Avg. Q-value
function (IOU)

Max. depth
probability 22.9% 0.261

Max. occupancy
uncertainty 31.1% 0.276

Max. velocity
uncertainty 13.4% 0.202

Max. occupancy + velocity
uncertainty 32.5% 0.292

Table II: Quantitative analysis of the multi-armed bandit method.
The first column shows the percentage of times each action
(i.e. curtain placement policy) was chosen. The second column
shows the average Q-value of each action computed by the
multi-armed bandit. Higher Q-value is better; the action with
the highest value is selected during exploitation.

uncertainty and maximizing a linear combination of occupancy
and velocity uncertainty perform comparably. Maximizing
velocity uncertainty tends to perform the worst. Fortunately,
multi-armed bandits learn to downweight this under-performing
strategy (see Table II, rightmost column in Fig. 6). We also
compare against other baselines: using only random curtains
(without placing any computed curtains), and with a simulated
LiDAR. Unsurprisingly, using random curtains performs the
worst. All non-random curtain policies except maximizing
velocity uncertainty are able to outperform LiDAR. This is
because light curtains are faster (∼45 Hz) and can be placed
intelligently to maximize the accuracy of occupancy and
velocity estimates.

Table II shows an analysis specific to the multi-armed bandit
method. Please see the caption for details. We find that the best
performing policies in Table I have the highest Q-values and
are selected most frequently. The following trend holds: the
better the performance of an individual policy when used in
isolation (shown in Table I), the higher is its average Q-value
and its frequency of being chosen. However, a combination of
all policies (MAB) is better than any single one.

D. Qualitative analysis

Visualizing velocities and occupancies: We use the HSV
colorwheel [73] shown in Fig. 5 and 6, to jointly visualize
velocities and occupancies. The color ‘value’ (from HSV)
encodes the occupancy probability; dark is low occupancy
probability and bright is high occupancy probability. The
‘hue’ encodes the direction of velocity from the top-down
view. ‘Saturation’ encodes the magnitude of velocity: white
is stationary whereas colorful corresponds to high speed. See
App. H for more details.

Examples. Fig. 5 shows an example of velocity estimation in
the simulated environment and Fig. 6 shows qualitative results
on the real-world environment using our multi-armed bandits
(MAB) curtain placement method. Please see captions for
explanation. We advise the reader to view the video examples
on the project website. In Fig. 5, we see that the estimated
velocities appear to be consistent with the ground truth, as

shown by the corresponding colors that indicate the estimated
and ground-truth velocity directions.

Full-stack navigation. We integrate our system into a full-
stack navigation pipeline [15] that performs planning, control
and obstacle avoidance. We mount the light curtain device on
a mobile robot (see Fig. 3a). We use ORB-SLAM3 [13] for
localization and mapping that takes depth from light curtains
as input. Using position and velocity estimates, the robot is
able to perform dense mapping in an indoor environment and
avoids static and dynamic obstacles. Please see App. K for
more details.

IX. CONCLUSION

In this work, we develop a method using programmable
light curtains, an actively controllable resource-efficient sensor,
to estimate the positions and velocities of objects in complex,
dynamic scenes. We use a probabilistic framework based
on particle filters and occupancy grids to estimate velocities
from partial light curtain measurements. We design curtain
placement policies that verify predicted object locations and
maximize information gain. Importantly, we combine the
strengths of these policies using a novel multi-armed bandits
framework that switches between the placement strategies
to improve performance. This is enabled by our novel self-
supervised reward function that evaluates current velocity
estimates using future light curtain placements with only
minimal computational overhead. We integrate our method
into a full-stack navigation system that performs localization,
mapping and obstacle avoidance using light curtains. We hope
our work paves the way for combining multiple sensor control
strategies using self-supervised feedback for perception and
navigation in complex and dynamic environments.

ACKNOWLEDGMENTS

We thank Pulkit Grover for discussions on information-
theoretic measures of mixed discrete-continuous random vari-
ables. This material is based upon work supported by the
National Science Foundation under Grants No. IIS-1849154,
IIS-1900821, the United States Air Force and DARPA un-
der Contract No. FA8750-18-C-0092, and a grant from the
Manufacturing Futures Institute at Carnegie Mellon University.

REFERENCES

[1] Waymo Occupancy and Flow Prediction Challenge. 2022.
[Online; accessed 22-December-2022].

[2] Gabriel Agamennoni, Simone Fontana, Roland Y Sieg-
wart, and Domenico G Sorrenti. Point clouds registration
with probabilistic data association. In 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 4092–4098. IEEE, 2016.

[3] John Amanatides, Andrew Woo, et al. A fast voxel
traversal algorithm for ray tracing. In Eurographics,
volume 87, pages 3–10, 1987.

[4] Siddharth Ancha, Yaadhav Raaj, Peiyun Hu, Srinivasa G.
Narasimhan, and David Held. Active Perception Using
Light Curtains for Autonomous Driving. In Andrea

https://siddancha.github.io/projects/active-velocity-estimation
https://waymo.com/open/challenges/2022/occupancy-flow-prediction-challenge#joint-occupancy-and-flow-metrics
https://ieeexplore.ieee.org/document/7759602
https://ieeexplore.ieee.org/document/7759602
http://www.cse.yorku.ca/~amana/research/grid.pdf
http://www.cse.yorku.ca/~amana/research/grid.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500732.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500732.pdf

Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision – ECCV 2020, pages
751–766, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-58558-7.

[5] Siddharth Ancha, Gaurav Pathak, Srinivasa Narasimhan,
and David Held. Active Safety Envelopes using Light
Curtains with Probabilistic Guarantees. In Proceedings of
Robotics: Science and Systems, Virtual, July 2021. doi:
10.15607/rss.2021.xvii.045.

[6] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivat-
san, and Simon Lucey. PointNetLK: Robust & efficient
point cloud registration using PointNet. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 7163–7172, 2019.

[7] Ruzena Bajcsy. Active perception. Proceedings of the
IEEE, 76(8):966–1005, 1988.

[8] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos.
Revisiting active perception. Autonomous Robots, 42(2):
177–196, 2018.

[9] Joseph R Bartels, Jian Wang, William Whittaker, Srini-
vasa G Narasimhan, et al. Agile depth sensing using
triangulation light curtains. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7900–7908, 2019.

[10] Stefan Andreas Baur, David Josef Emmerichs, Frank
Moosmann, Peter Pinggera, Björn Ommer, and Andreas
Geiger. SLIM: Self-supervised LiDAR scene flow and
motion segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
13126–13136, 2021.

[11] P.J. Besl and Neil D. McKay. A method for registration
of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–256, 1992. doi:
10.1109/34.121791.

[12] Levi Cai, Burak Boyacıoğlu, Sarah E Webster, Lora
Van Uffelen, and Kristi Morgansen. Towards auto-
tuning of Kalman filters for underwater gliders based
on consistency metrics. In OCEANS 2019 MTS/IEEE
Seattle, pages 1–6. IEEE, 2019.

[13] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,
José MM Montiel, and Juan D Tardós. ORB-SLAM3:
An accurate open-source library for visual, visual–inertial,
and multimap SLAM. IEEE Transactions on Robotics,
37(6):1874–1890, 2021.

[14] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang.
Tare: A hierarchical framework for efficiently exploring
complex 3d environments. In Robotics: Science and
Systems Conference (RSS), Virtual, 2021.

[15] Chao Cao, Hongbiao Zhu, Fan Yang, Yukun Xia, Howie
Choset, Jean Oh, and Ji Zhang. Autonomous exploration
development environment and the planning algorithms. In
2022 International Conference on Robotics and Automa-
tion (ICRA), pages 8921–8928. IEEE, 2022. URL https:
//www.cmu-exploration.com/development-environment.

[16] Dorian Chan, Srinivasa Narasimhan, and Matthew
O’Toole. Holocurtains: Programming Light Curtains

via Binary Holography. Computer Vision and Pattern
Recognition, 2022.

[17] Zhaozhong Chen, Christoffer Heckman, Simon Julier,
and Nisar Ahmed. Weak in the NEES?: Auto-tuning
Kalman filters with Bayesian optimization. In 2018
21st International Conference on Information Fusion
(FUSION), pages 1072–1079. IEEE, 2018.

[18] Zhaozhong Chen, Nisar Ahmed, Simon Julier, and
Christoffer Heckman. Kalman filter tuning with Bayesian
optimization. arXiv preprint arXiv:1912.08601, 2019.

[19] Ricson Cheng, Arpit Agarwal, and Katerina Fragkiadaki.
Reinforcement learning of active vision for manipulating
objects under occlusions. In Conference on Robot
Learning, pages 422–431. PMLR, 2018.

[20] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 2514–2523, 2020.

[21] Cl Connolly. The determination of next best views.
In Proceedings. 1985 IEEE international conference on
robotics and automation, volume 2, pages 432–435. IEEE,
1985.

[22] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, USA, 2006.
ISBN 0471241954.

[23] Radu Danescu, Florin Oniga, and Sergiu Nedevschi.
Modeling and tracking the driving environment with
a particle-based occupancy grid. IEEE Transactions
on Intelligent Transportation Systems, 12(4):1331–1342,
2011.

[24] Jonathan Daudelin and Mark Campbell. An adaptable,
probabilistic, next-best view algorithm for reconstruction
of unknown 3-d objects. IEEE Robotics and Automation
Letters, 2(3):1540–1547, 2017.

[25] Zi-Li Deng, Yuan Gao, Chun-Bo Li, and Gang Hao.
Self-tuning decoupled information fusion Wiener state
component filters and their convergence. Automatica, 44
(3):685–695, 2008.

[26] Joachim Denzler and Christopher M Brown. Information
theoretic sensor data selection for active object recognition
and state estimation. IEEE Transactions on pattern
analysis and machine intelligence, 24(2):145–157, 2002.

[27] Bertrand Douillard, James Underwood, Noah Kuntz,
Vsevolod Vlaskine, Alastair Quadros, Peter Morton, and
Alon Frenkel. On the segmentation of 3D LIDAR point
clouds. In 2011 IEEE International Conference on
Robotics and Automation, pages 2798–2805. IEEE, 2011.

[28] Andreas Doumanoglou, Rigas Kouskouridas, Sotiris
Malassiotis, and Tae-Kyun Kim. Recovering 6D object
pose and predicting next-best-view in the crowd. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3583–3592, 2016.

[29] Alberto Elfes. Using occupancy grids for mobile robot
perception and navigation. Computer, 22(6):46–57, 1989.

[30] Patrick Fung and Mike Grimble. Dynamic ship position-

http://www.roboticsproceedings.org/rss17/p045.html
http://www.roboticsproceedings.org/rss17/p045.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Aoki_PointNetLK_Robust__Efficient_Point_Cloud_Registration_Using_PointNet_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Aoki_PointNetLK_Robust__Efficient_Point_Cloud_Registration_Using_PointNet_CVPR_2019_paper.html
https://ieeexplore.ieee.org/document/5968
https://link.springer.com/article/10.1007/s10514-017-9615-3
https://openaccess.thecvf.com/content_ICCV_2019/html/Bartels_Agile_Depth_Sensing_Using_Triangulation_Light_Curtains_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Bartels_Agile_Depth_Sensing_Using_Triangulation_Light_Curtains_ICCV_2019_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Baur_SLIM_Self-Supervised_LiDAR_Scene_Flow_and_Motion_Segmentation_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Baur_SLIM_Self-Supervised_LiDAR_Scene_Flow_and_Motion_Segmentation_ICCV_2021_paper.html
https://ieeexplore.ieee.org/document/121791
https://ieeexplore.ieee.org/document/121791
https://ieeexplore.ieee.org/document/8962573
https://ieeexplore.ieee.org/document/8962573
https://ieeexplore.ieee.org/document/8962573
https://ieeexplore.ieee.org/document/9440682
https://ieeexplore.ieee.org/document/9440682
https://ieeexplore.ieee.org/document/9440682
https://ieeexplore.ieee.org/document/9812330
https://ieeexplore.ieee.org/document/9812330
https://www.cmu-exploration.com/development-environment
https://www.cmu-exploration.com/development-environment
https://openaccess.thecvf.com/content/CVPR2022/html/Chan_Holocurtains_Programming_Light_Curtains_via_Binary_Holography_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Chan_Holocurtains_Programming_Light_Curtains_via_Binary_Holography_CVPR_2022_paper.html
https://ieeexplore.ieee.org/document/8454982
https://ieeexplore.ieee.org/document/8454982
https://arxiv.org/abs/1912.08601
https://arxiv.org/abs/1912.08601
https://ieeexplore.ieee.org/abstract/document/1087372
https://ieeexplore.ieee.org/abstract/document/1087372
https://openaccess.thecvf.com/content_CVPR_2020/html/Choy_Deep_Global_Registration_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Choy_Deep_Global_Registration_CVPR_2020_paper.html
https://onlinelibrary.wiley.com/doi/book/10.1002/047174882X
https://onlinelibrary.wiley.com/doi/book/10.1002/047174882X
https://ieeexplore.ieee.org/document/5941005
https://ieeexplore.ieee.org/document/5941005
https://scholar.google.com/scholar?cluster=7456760468603259697&hl=en&as_sdt=5,39&sciodt=0,39
https://scholar.google.com/scholar?cluster=7456760468603259697&hl=en&as_sdt=5,39&sciodt=0,39
https://scholar.google.com/scholar?cluster=7456760468603259697&hl=en&as_sdt=5,39&sciodt=0,39
https://www.sciencedirect.com/science/article/abs/pii/S0005109807003639
https://www.sciencedirect.com/science/article/abs/pii/S0005109807003639
https://ieeexplore.ieee.org/abstract/document/982896
https://ieeexplore.ieee.org/abstract/document/982896
https://ieeexplore.ieee.org/abstract/document/982896
https://ieeexplore.ieee.org/document/5979818
https://ieeexplore.ieee.org/document/5979818
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Doumanoglou_Recovering_6D_Object_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Doumanoglou_Recovering_6D_Object_CVPR_2016_paper.html
https://ieeexplore.ieee.org/document/30720
https://ieeexplore.ieee.org/document/30720
https://ieeexplore-ieee-org.cmu.idm.oclc.org/document/1103226

ing using a self-tuning Kalman filter. IEEE Transactions
on Automatic Control, 28(3):339–350, 1983.

[31] Weihao Gao, Sreeram Kannan, Sewoong Oh, and Pramod
Viswanath. Estimating mutual information for discrete-
continuous mixtures. Advances in neural information
processing systems, 30, 2017.

[32] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. HPLFlowNet: Hierarchical permutohedral
lattice flownet for scene flow estimation on large-scale
point clouds. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 3254–
3263, 2019.

[33] Per Hagander and Björn Wittenmark. A self-tuning
filter for fixed-lag smoothing. IEEE Transactions on
Information Theory, 23(3):377–384, 1977.

[34] Dirk Hähnel and Wolfram Burgard. Probabilistic matching
for 3D scan registration. In Proc. of the VDI-Conference
Robotik, volume 2002. Citeseer, 2002.

[35] Pan He, Patrick Emami, Sanjay Ranka, and Anand Ran-
garajan. Self-Supervised Robust Scene Flow Estimation
via the Alignment of Probability Density Functions. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(1):861–869, Jun. 2022. doi: 10.1609/aaai.v36i1.19968.

[36] David Held, Jesse Levinson, and Sebastian Thrun. Pre-
cision tracking with sparse 3D and dense color 2D data.
In 2013 IEEE International Conference on Robotics and
Automation, pages 1138–1145. IEEE, 2013.

[37] David Held, Jesse Levinson, Sebastian Thrun, and Silvio
Savarese. Combining 3D Shape, Color, and Motion for
Robust Anytime Tracking. In Robotics: science and
systems, volume 1. Citeseer, 2014.

[38] David Held, Devin Guillory, Brice Rebsamen, Sebastian
Thrun, and Silvio Savarese. A Probabilistic Framework
for Real-time 3D Segmentation using Spatial, Temporal,
and Semantic Cues. In Robotics: Science and Systems,
volume 12, 2016.

[39] David Held, Jesse Levinson, Sebastian Thrun, and Silvio
Savarese. Robust real-time tracking combining 3D shape,
color, and motion. The International Journal of Robotics
Research, 35(1-3):30–49, 2016.

[40] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees.
Autonomous robots, 34(3):189–206, 2013.

[41] Peiyun Hu, David Held, and Deva Ramanan. Learning
to optimally segment point clouds. IEEE Robotics and
Automation Letters, 5(2):875–882, 2020.

[42] Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan.
What you see is what you get: Exploiting visibility for
3D object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11001–11009, 2020.

[43] Ouster Inc. Ouster OS1 Hardware Specification Sheet.
2021. URL https://data.ouster.io/downloads/datasheets/
datasheet-revd-v2p0-os1.pdf.

[44] Stefan Isler, Reza Sabzevari, Jeffrey Delmerico, and

Davide Scaramuzza. An information gain formulation
for active volumetric 3D reconstruction. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), pages 3477–3484. IEEE, 2016.

[45] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-
step3d: Model unrolling for self-supervised scene flow
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4114–
4123, 2021.

[46] Klaas Klasing, Dirk Wollherr, and Martin Buss. A
clustering method for efficient segmentation of 3D laser
data. In 2008 IEEE international conference on robotics
and automation, pages 4043–4048. IEEE, 2008.

[47] Simon Kriegel, Christian Rink, Tim Bodenmüller, and
Michael Suppa. Efficient next-best-scan planning for au-
tonomous 3D surface reconstruction of unknown objects.
Journal of Real-Time Image Processing, 10(4):611–631,
2015.

[48] Ruibo Li, Guosheng Lin, and Lihua Xie. Self-point-flow:
Self-supervised scene flow estimation from point clouds
with optimal transport and random walk. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 15577–15586, 2021.

[49] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3D: Learning scene flow in 3D point clouds. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 529–537, 2019.

[50] Reza Mahjourian, Jinkyu Kim, Yuning Chai, Mingxing
Tan, Ben Sapp, and Dragomir Anguelov. Occupancy flow
fields for motion forecasting in autonomous driving. IEEE
Robotics and Automation Letters, 7(2):5639–5646, 2022.

[51] Ameesh Makadia, Alexander Patterson, and Kostas Dani-
ilidis. Fully automatic registration of 3D point clouds. In
2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 1,
pages 1297–1304. IEEE, 2006.

[52] Daniel Meyer-Delius, Maximilian Beinhofer, and Wolfram
Burgard. Occupancy grid models for robot mapping in
changing environments. In Twenty-Sixth AAAI Conference
on Artificial Intelligence, 2012.

[53] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing scenes as neural radiance fields for
view synthesis. In European conference on computer
vision, pages 405–421. Springer, 2020.

[54] Himangi Mittal, Brian Okorn, and David Held. Just go
with the flow: Self-supervised scene flow estimation. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11177–11185, 2020.

[55] T Moir and M Grimble. Optimal self-tuning filtering,
prediction, and smoothing for discrete multivariable
processes. IEEE Transactions on Automatic control, 29
(2):128–137, 1984.

[56] Yaakov Oshman and Ilan Shaviv. Optimal tuning of a
Kalman filter using genetic algorithms. In AIAA Guidance,
Navigation, and Control Conference and Exhibit, page

https://ieeexplore-ieee-org.cmu.idm.oclc.org/document/1103226
https://proceedings.neurips.cc/paper/2017/hash/ef72d53990bc4805684c9b61fa64a102-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ef72d53990bc4805684c9b61fa64a102-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Gu_HPLFlowNet_Hierarchical_Permutohedral_Lattice_FlowNet_for_Scene_Flow_Estimation_on_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Gu_HPLFlowNet_Hierarchical_Permutohedral_Lattice_FlowNet_for_Scene_Flow_Estimation_on_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Gu_HPLFlowNet_Hierarchical_Permutohedral_Lattice_FlowNet_for_Scene_Flow_Estimation_on_CVPR_2019_paper.html
https://ieeexplore-ieee-org.cmu.idm.oclc.org/document/1055719
https://ieeexplore-ieee-org.cmu.idm.oclc.org/document/1055719
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4f75beeeb9958a948492490f69c25f37165a3908
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4f75beeeb9958a948492490f69c25f37165a3908
https://ojs.aaai.org/index.php/AAAI/article/view/19968
https://ojs.aaai.org/index.php/AAAI/article/view/19968
https://ieeexplore.ieee.org/document/6630715
https://ieeexplore.ieee.org/document/6630715
http://www.roboticsproceedings.org/rss10/p14.pdf
http://www.roboticsproceedings.org/rss10/p14.pdf
http://www.roboticsproceedings.org/rss12/p24.html
http://www.roboticsproceedings.org/rss12/p24.html
http://www.roboticsproceedings.org/rss12/p24.html
https://journals.sagepub.com/doi/pdf/10.1177/0278364915593399
https://journals.sagepub.com/doi/pdf/10.1177/0278364915593399
https://link.springer.com/article/10.1007/s10514-012-9321-0
https://link.springer.com/article/10.1007/s10514-012-9321-0
https://ieeexplore.ieee.org/abstract/document/8954778
https://ieeexplore.ieee.org/abstract/document/8954778
https://openaccess.thecvf.com/content_CVPR_2020/html/Hu_What_You_See_is_What_You_Get_Exploiting_Visibility_for_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Hu_What_You_See_is_What_You_Get_Exploiting_Visibility_for_CVPR_2020_paper.html
https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p0-os1.pdf
https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p0-os1.pdf
https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p0-os1.pdf
https://ieeexplore.ieee.org/abstract/document/7487527
https://ieeexplore.ieee.org/abstract/document/7487527
https://openaccess.thecvf.com/content/CVPR2021/html/Kittenplon_FlowStep3D_Model_Unrolling_for_Self-Supervised_Scene_Flow_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kittenplon_FlowStep3D_Model_Unrolling_for_Self-Supervised_Scene_Flow_Estimation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Kittenplon_FlowStep3D_Model_Unrolling_for_Self-Supervised_Scene_Flow_Estimation_CVPR_2021_paper.html
https://ieeexplore.ieee.org/document/4543832
https://ieeexplore.ieee.org/document/4543832
https://ieeexplore.ieee.org/document/4543832
https://link.springer.com/article/10.1007/s11554-013-0386-6
https://link.springer.com/article/10.1007/s11554-013-0386-6
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Self-Point-Flow_Self-Supervised_Scene_Flow_Estimation_From_Point_Clouds_With_Optimal_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Self-Point-Flow_Self-Supervised_Scene_Flow_Estimation_From_Point_Clouds_With_Optimal_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Self-Point-Flow_Self-Supervised_Scene_Flow_Estimation_From_Point_Clouds_With_Optimal_CVPR_2021_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_FlowNet3D_Learning_Scene_Flow_in_3D_Point_Clouds_CVPR_2019_paper.html
https://ieeexplore.ieee.org/document/9713950
https://ieeexplore.ieee.org/document/9713950
https://ieeexplore.ieee.org/document/1640899
https://ojs.aaai.org/index.php/AAAI/article/view/8377
https://ojs.aaai.org/index.php/AAAI/article/view/8377
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123460392.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123460392.pdf
https://openaccess.thecvf.com/content_CVPR_2020/html/Mittal_Just_Go_With_the_Flow_Self-Supervised_Scene_Flow_Estimation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Mittal_Just_Go_With_the_Flow_Self-Supervised_Scene_Flow_Estimation_CVPR_2020_paper.html
https://ieeexplore.ieee.org/document/1103464
https://ieeexplore.ieee.org/document/1103464
https://ieeexplore.ieee.org/document/1103464
https://arc.aiaa.org/doi/10.2514/6.2000-4558
https://arc.aiaa.org/doi/10.2514/6.2000-4558

4558, 2000.
[57] Thomas D Powell. Automated tuning of an extended

Kalman filter using the downhill simplex algorithm.
Journal of Guidance, Control, and Dynamics, 25(5):901–
908, 2002.

[58] Yaadhav Raaj, Siddharth Ancha, Robert Tamburo, David
Held, and Srinivasa Narasimhan. Exploiting and Refining
Depth Distributions with Triangulation Light Curtains. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[59] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz.
Fast point feature histograms (FPFH) for 3D registration.
In 2009 IEEE international conference on robotics and
automation, pages 3212–3217. IEEE, 2009.

[60] William R Scott, Gerhard Roth, and Jean-François Rivest.
View planning for automated three-dimensional object
reconstruction and inspection. ACM Computing Surveys
(CSUR), 35(1):64–96, 2003.

[61] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[62] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas
Brox. Octree generating networks: Efficient convolutional
architectures for high-resolution 3D outputs. In Proceed-
ings of the IEEE international conference on computer
vision, pages 2088–2096, 2017.

[63] Zachary Teed and Jia Deng. RAFT-3D: Scene flow
using rigid-motion embeddings. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8375–8384, 2021.

[64] Alex Teichman, Jesse Levinson, and Sebastian Thrun.
Towards 3D object recognition via classification of
arbitrary object tracks. In 2011 IEEE International
Conference on Robotics and Automation, pages 4034–
4041. IEEE, 2011.

[65] Sebastian Thrun. Probabilistic robotics. Communications
of the ACM, 45(3):52–57, 2002.

[66] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and
Jitendra Malik. Multi-view supervision for single-view
reconstruction via differentiable ray consistency. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2626–2634, 2017.

[67] J Irving Vasquez-Gomez, L Enrique Sucar, Rafael
Murrieta-Cid, and Efrain Lopez-Damian. Volumetric next-
best-view planning for 3D object reconstruction with
positioning error. International Journal of Advanced
Robotic Systems, 11(10):159, 2014.

[68] Sundar Vedula, Simon Baker, Peter Rander, Robert
Collins, and Takeo Kanade. Three-dimensional scene
flow. In Proceedings of the Seventh IEEE International
Conference on Computer Vision, volume 2, pages 722–
729. IEEE, 1999.

[69] Jian Wang, Joseph Bartels, William Whittaker, Aswin C
Sankaranarayanan, and Srinivasa G Narasimhan. Pro-
grammable triangulation light curtains. In Proceedings of
the European Conference on Computer Vision (ECCV),
pages 19–34, 2018.

[70] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric con-
tinuous convolutional neural networks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 2589–2597, 2018.

[71] Yue Wang and Justin M. Solomon. Deep closest point:
Learning representations for point cloud registration. In
Proceedings of the IEEE/CVF international conference
on computer vision, pages 3523–3532, 2019.

[72] Yue Wang and Justin M. Solomon. PRNet: Self-supervised
learning for partial-to-partial registration. Advances in
neural information processing systems, 32, 2019.

[73] Wikipedia contributors. HSL and HSV — Wikipedia, The
Free Encyclopedia, 2022. [Online; accessed 30-November-
2022].

[74] Wikipedia contributors. F-score — Wikipedia, The Free
Encyclopedia, 2022. [Online; accessed 05-December-
2022].

[75] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu,
and Li Fuxin. PointPWC-Net: Cost Volume on Point
Clouds for (Self-) Supervised Scene Flow Estimation. In
European Conference on Computer Vision, pages 88–107.
Springer, 2020.

[76] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1912–1920, 2015.

[77] Heng Yang, Jingnan Shi, and Luca Carlone. TEASER:
Fast and certifiable point cloud registration. IEEE
Transactions on Robotics, 37(2):314–333, 2020.

[78] Yiming Zhao, Xiao Zhang, and Xinming Huang. A divide-
and-merge point cloud clustering algorithm for LiDAR
panoptic segmentation. In 2022 International Conference
on Robotics and Automation (ICRA), pages 7029–7035.
IEEE, 2022.

[79] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast
global registration. In European conference on computer
vision, pages 766–782. Springer, 2016.

[80] Deng Zi-Li and Li Chun-Bo. Self-tuning information
fusion Kalman predictor weighted by diagonal matrices
and its convergence analysis. Acta Automatica Sinica, 33
(2):156–163, 2007.

https://arc.aiaa.org/doi/10.2514/2.4983
https://arc.aiaa.org/doi/10.2514/2.4983
https://openaccess.thecvf.com/content/CVPR2021/html/Raaj_Exploiting__Refining_Depth_Distributions_With_Triangulation_Light_Curtains_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Raaj_Exploiting__Refining_Depth_Distributions_With_Triangulation_Light_Curtains_CVPR_2021_paper.html
https://ieeexplore.ieee.org/document/5152473
https://dl.acm.org/doi/abs/10.1145/641865.641868
https://dl.acm.org/doi/abs/10.1145/641865.641868
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://openaccess.thecvf.com/content_ICCV_2017/papers/Tatarchenko_Octree_Generating_Networks_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Tatarchenko_Octree_Generating_Networks_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/html/Teed_RAFT-3D_Scene_Flow_Using_Rigid-Motion_Embeddings_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Teed_RAFT-3D_Scene_Flow_Using_Rigid-Motion_Embeddings_CVPR_2021_paper.html
https://ieeexplore.ieee.org/abstract/document/5979636
https://ieeexplore.ieee.org/abstract/document/5979636
https://mitpress.mit.edu/9780262201629/probabilistic-robotics/
https://openaccess.thecvf.com/content_cvpr_2017/html/Tulsiani_Multi-View_Supervision_for_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Tulsiani_Multi-View_Supervision_for_CVPR_2017_paper.html
https://journals.sagepub.com/doi/full/10.5772/58759
https://journals.sagepub.com/doi/full/10.5772/58759
https://journals.sagepub.com/doi/full/10.5772/58759
https://ieeexplore.ieee.org/document/1388274
https://ieeexplore.ieee.org/document/1388274
https://openaccess.thecvf.com/content_ECCV_2018/html/Jian_Wang_Programmable_Light_Curtains_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Jian_Wang_Programmable_Light_Curtains_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Deep_Parametric_Continuous_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Deep_Parametric_Continuous_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Deep_Closest_Point_Learning_Representations_for_Point_Cloud_Registration_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Deep_Closest_Point_Learning_Representations_for_Point_Cloud_Registration_ICCV_2019_paper.html
https://proceedings.neurips.cc/paper/2019/hash/ebad33b3c9fa1d10327bb55f9e79e2f3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ebad33b3c9fa1d10327bb55f9e79e2f3-Abstract.html
https://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=1115874918
https://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=1115874918
https://en.wikipedia.org/w/index.php?title=F-score&oldid=1125694227
https://en.wikipedia.org/w/index.php?title=F-score&oldid=1125694227
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500086.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500086.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Wu_3D_ShapeNets_A_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Wu_3D_ShapeNets_A_2015_CVPR_paper.html
https://ieeexplore.ieee.org/document/9286491
https://ieeexplore.ieee.org/document/9286491
https://ieeexplore.ieee.org/document/9812058
https://ieeexplore.ieee.org/document/9812058
https://ieeexplore.ieee.org/document/9812058
https://link.springer.com/chapter/10.1007/978-3-319-46475-6_47
https://link.springer.com/chapter/10.1007/978-3-319-46475-6_47
https://www.sciencedirect.com/science/article/abs/pii/S187410290760007X
https://www.sciencedirect.com/science/article/abs/pii/S187410290760007X
https://www.sciencedirect.com/science/article/abs/pii/S187410290760007X

	Introduction
	Background
	Light curtain working principle
	Bayes filtering

	Related Work
	Active perception and light curtains
	Velocity estimation from point clouds
	Self-tuning Bayes filters

	Dynamic occupancy grids
	Curtain placement strategies
	Maximizing depth probability
	Maximizing information gain

	Self-supervised multi-armed bandits
	Multi-armed bandit framework
	Self-supervised rewards

	Parallelized pipeline
	Experiments
	Environments
	Evaluation metrics
	Quantitative analysis
	Qualitative analysis

	Conclusion

