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Abstract—Imitation learning holds great promise for address-
ing the complex task of autonomous urban driving, as experi-
enced human drivers can navigate highly challenging scenarios
with ease. While behavior cloning is a widely used imitation
learning approach in autonomous driving due to its exemption
from risky online interactions, it suffers from the covariate shift
issue. To address this limitation, we propose a context-conditioned
imitation learning approach that employs a policy to map the
context state into the ego vehicle's future trajectory, rather than
relying on the traditional formulation of both ego and context
states to predict the ego action. Additionally, to reduce the
implicit ego information in the coordinate system, we design an
ego-perturbed goal-oriented coordinate system. The origin of this
coordinate system is the ego vehicle's position plus a zero mean
Gaussian perturbation, and the x-axis direction points towards
its goal position. Our experiments on the real-world large-scale
Lyft and nuPlan datasets show that our method signi�cantly
outperforms state-of-the-art approaches.

I. I NTRODUCTION

Planning a safe, comfortable, and ef�cient trajectory for a
self-driving vehicle (SDV) in complex urban environments is a
challenging and critical task in autonomous driving [1]. Unlike
highway driving [2], urban driving requires handling various
road geometries, such as roundabouts and intersections, while
interacting with traf�c lights, pedestrians, and other vehicles.
Conventional rule-based approaches [3] have achieved some
success in industry but require extensive human engineering
to deal with diverse real-world scenarios. Recent advances in
deep learning techniques have motivated researchers [4, 5, 6]
to employ neural networks to model complex driving policies.
Imitation learning (IL) from human drivers' demonstrations is
a promising solution for learning these policies, as experienced
drivers can handle even the most dif�cult situations, and their
driving data can be easily collected at scale.

The simplest IL algorithm is the behavior cloning (BC) [7]
method, which has wide applications in autonomous driv-
ing [8, 4, 9]. It learns a policy in a supervised fashion by
minimizing the difference between the actions taken by the
learner and those taken by an expert in the expert state
distribution without potentially dangerous online interactions.
Despite its simplicity, the BC method suffers from thecovari-
ate shift issue [10],i.e. the state induced by the learner's policy
cumulatively deviates from the expert's distribution.

To overcome thecovariate shift problem, existing methods
such as DAgger [10] and DART [11] query supervisor correc-
tions at the learner's or perturbed expert's states. Since human
supervision is hard to collect, recent works like GAIL [12]

seek to provide feedback from a neural network-based discrim-
inator to recover from out-of-distribution states induced by the
learner's policy. However, these data augmentation methods
need either expert supervision or rolling out the learner's
policy in the real world, which is impractical in autonomous
driving. Alternatively, some researchers have attempted to
constrain the learned policy formulation to ensure its robust-
ness to policy errors by incorporating control theoretic prior
knowledge, as real-world systems usually have a robustness
property. For example, Palan et al. [13], Havens and Hu
[14] impose Kalman or linear matrix inequality constraints on
learned linear policies to ensure closed-loop stability in a linear
time-invariant system. Yin et al. [15] extends this methodology
by formulating the policy as a simple feed-forward neural
network. Furthermore, East [16] expands the method proposed
in [14] to include polynomial policies and dynamical systems.
However, the urban driving task is too complex to be handled
by these naive linear or polynomial policy formulations.

To learn a stable and general urban driving policy by
imitating of�ine human demonstrations, we propose acontext-
conditioned imitation learning (CCIL) method. Unlike BC,
our approach utilizes a policy network that predicts the SDV's
future trajectory using only its context state, rather than taking
both the ego and context state as inputs to generate the next ac-
tion [17, 18]. In our method, the ego state represents the SDV's
historical trajectory, while the context state encompasses the
states of all other observed objects and the goal positions of
the SDV.

Our approach is primarily motivated by the fact that the
ego state is highly susceptible to policy errors. Even a small
distribution shift in policy inputs can result in greater action
errors and eventually lead to out-of-distribution states. Besides,
in the autonomous driving task, static elements in the context,
such as lanes or crosswalks, remain unaffected by the SDV,
while dynamic elements like human drivers attempt to recover
from the SDV's perturbation. This stability property in the
traf�c system can be leveraged to address the distribution
shift issue by considering only the context as policy input.
In addition, removing the ego state from policy inputs can
also help overcome the inertia problem caused by causal
confusion [19]. For example, when the ego vehicle comes to
a stop, the training data often shows a high probability of it
remaining static. This leads to the formation of a spurious
correlation between low speed and no acceleration, making it
challenging to restart under the imitative policy. However, our
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Fig. 1. Overview of our approach.

introduce an auxiliary task that minimizes theL 1 error at all
previous time steps in the causal Transformer and apply a
squaredL 2 norm regularization to the network parametersθ,
as inspired by Eq. (6). The �nal loss is:
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where pt denotes the ground truth ego pose at time step
t and p̂t

hI is the pose prediction at the pasthI time step
for its relative future t time step. � is an auxiliary task
hyperparameter, and� is a regularization factor.

E. Evaluation Process

While the prediction without ego state input is more stable,
it struggles to ensure the smoothness of the predicted trajectory
from the current state. To address this, prior works [36, 25]
have typically added a differentiable kinematic layer into the
policy network to generate physically feasible planning. How-
ever, this differentiable kinematic layer would incorporate the
SDV's current information, which is undesirable in learning a
policy. Instead, we choose to obtain a smooth trajectory during
the evaluation process by applying the LQR.

LQR is a computationally ef�cient method that minimizes
the total commutative quadratic cost of a linear dynamic
system. For simplicity, we consider a �nite-horizon, discrete-

time linear system with dynamics described by:
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whereD is a diagonal matrix with the interval of each time
step as diagonal entries,ṗ = (! t;vt); p̈t = (� t;at); ut =
(� t; jt) represent the angular and positional velocity and
acceleration, jerk, and control input, respectively. The system
is subject to a quadratic cost function:

J =
TX

t=1
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wherept represents the planned pose, and the predicted pose
p̂t

0 from the policy network are regarded as target pose. We use
weights� ω, � α, � aand� j to balance safety and smoothness of
the planned trajectory. At the end of the optimization, a smooth
trajectory with positions and headings can be generated for the
SDV to follow.

V. EXPERIMENTS

A. Dataset
To evaluate the performance of our method, we conduct

experiments on two large-scale real-world datasets:
Lyft Level 5 Prediction Dataset [21]: It contains approx-

imately 1,000 h of urban driving demonstrations from Palo
Alto, which have been separated into independent scenes of
nearly 25 s at a frequency of 10 Hz. We train our network on



TABLE I
COMPARISON WITH BASELINES OF CLOSED-LOOP PERFORMANCE ON THELYFT AND NUPLAN DATASETS.

Model Num params Collision(%) Off-road(%) Discomfort(%) L2(m)

Raster-perturb∗ 23.6M 15.48 5.06 4.00 5.90
BC-perturb∗ 1.8M 9.38 6.77 39.10 4.77
UrbanDriver∗ 1.8M 13.28 7.27 39.41 5.74
TD3+BC 2.8M 22.53±1.76 15.21±0.97 4.86±0.47 6.34±0.41
Vector-Chauffeur 1.5M 10.12±0.23 3.40±0.32 5.42±0.44 5.03±0.43
CCIL (ours) 1.5M 3.32±0.15 0.62±0.13 4.33±0.22 1.23 ± 0.08

LaneGCN-perturb 2.0M 60.63±2.34 34.25±1.65 17.26±1.80 21.21±1.81
TD3+BC 2.8M 39.12±2.21 18.59±1.04 10.56±0.95 15.04±1.62
Vector-Chauffeur 1.5M 24.12±1.37 10.11±0.62 12.53±1.17 6.12±0.87
CCIL (ours) 1.5M 6.91±0.11 3.08±0.11 1.16±0.05 3.68±0.04

∗There is no variance in Raster-perturb, BC-perturb, and UrbanDriver because we evaluate the deterministic pre-trained models in a deterministic simulator.

TABLE II
ABLATION EXPERIMENTS ON CLOSED-LOOP PERFORMANCE ON THELYFT DATASET

Model Perturb Ego Collision(%) Off-road(%) Discomfort(%) L2(m)

w explicit ego ✓ ✓ 20.29±0.88 19.18±2.98 0.57±0:15 5.50±0.55
w ego dropout ✓ ✓ 14.05±1.53 5.02±0.88 0.63±0.20 4.15±0.47

w ego coordinate ✓ 11.31±1.44 9.79±1.34 0.95±0.05 3.87±0.11
std=0 7.08±0.35 2.86±0.25 0.89±0.10 3.46±0.34
std=1 ✓ 3.39±0.17 1.00±0.16 1.99±0.15 2.10±0.05
std=2 (ours) ✓ 3.32±0.15 0.62±0.13 4.33±0.22 1.23±0.08
std=3 ✓ 3.42±0.12 0.49±0.10 7.35±0.26 0.91±0.04

w/o causal Trans ✓ 4.28±0.25 1.43±0.25 6.53±0.26 1.63±0.10
w/o LQR ✓ 3.81±0.14 2.07±0.12 89.05±0.35 1.02±0.02

w/o regularization ✓ 4.07±0.16 1.05±0.14 4.96±0.30 1.23±0.09
w/o auxiliary ✓ 4.56±0.29 1.02±0.06 3.23±0.31 1.92±0.07

ways, there is a steep drop in the collision and off-road rate
and L2 distance due to thecovariate shift issue.

Coordinate System: To analyze the impact of the implicit
ego information in the coordinate system, we �rst consider
replacing our ego-perturbed goal-oriented coordinate system
with the ego-centric coordinate system in ChauffeurNet using
orientation uniformly around the heading. We observe that the
ChauffeurNet coordinate system leads to inferior closed-loop
performance due to the implicit ego information. Furthermore,
in our coordinate system, we add a Gaussian noise with a
zero mean to the SDV's current position to obtain the origin.
By increasing the standard deviation (std) of the Gaussian
noise, we can reduce the implicit ego information. We observe
that as the std increased, discomfort also increased, while
the off-road rate and closed-loop L2 decreased. This suggests
that although implicit ego information can improve instan-
taneous planning accuracy, it may worsen long-term closed-
loop driving performance. We guess this is because during
closed-loop driving, an auto-regressive model can generate
temporal correlations in planning errors, leading to consistent
bias in one direction that results in off-road events. However,
temporally uncorrelated noise can cause slight oscillations
around the expert trajectory but still enable successful driving.
The phenomenon that of�ine instantaneous planning accuracy
and actual long-term driving quality are weakly correlated was
also noted by Codevilla et al. [35].

Model Architecture: To demonstrate the importance of
the temporal information and the effectiveness of the causal
Transformer in capturing the temporal interactions, we re-
place it with a MLP. Our �ndings suggest that the causal
Transformer achieves better performance by integrating both
spatial and temporal information. Moreover, we conducted an
ablation study on the LQR module to examine its impact on
comfort. We observed a signi�cant decrease in comfort when
the LQR mechanism was removed, as well as a small increase
in collision and off-road rates. However, there was a slight
improvement in the L2 metric. This highlights the importance
of the LQR module in enhancing trajectory smoothness while
acknowledging that the ego information introduced during
evaluation can still impair closed-loop performance on the L2
metric.

Loss Term: To demonstrate the effectiveness of the addi-
tional loss terms, we remove the auxiliary and regularization
loss term respectively. We �nd that both are bene�cial to
improving performance, although the improvement brought by
norm regularization is limited, likely because our policy net-
work has a modest parameter number and is well-regularized
even without the loss term.

E. Qualitative Analysis
We visualize and compare the closed-loop trajectories of

our method and the baselines in two Lyft scenarios. As
shown in Fig. 2, our method generates a feasible trajectory
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APPENDIX

A. Map prepossessing

In Lyft, there are only two types of map elements: lane and
crosswalk. In nuPlan, the map elements consist of a lane, lane
connector, intersection, stop line, crosswalk, walkway, and car
park. We categorize them into polyline elements including
lanes and lane connectors, and polygon elements including
stop lines, crosswalks, intersections, walkways, and car parks.

For each polyline element, it is approximated by a sequence
of vectors with an interval of 3 m. For both datasets, we
prepossess the polyline map into a graph to take advantage
of the topological information. We connect each vector with
its nearest left, right, and next vector if any exist. The nearest
left or right vector is the nearest vector of its reachable left or
right polyline. And the distance between vectors is represented
by the Euclidean distance between their starting points. After
building the vector graph, we can compute the travel distance
between any two vectors using Dijkstra's algorithm. For both
datasets, the polyline vector has shared features, including
coordinates of the starting and ending points, distances to the
left and right vectors, distances to the mission goal, traf�c light
states (red or green), and the sequence order. However, lane
vectors in Lyft have a lane width feature because the vectors
approximate the computed middle lines of lanes, while the
lane or lane connector vectors in nuPlan have a lane left and
width feature because the vectors approximate an annotated
baseline. In addition, the polyline vectors in nuPlan have an
additional speed limit and type feature.

For each polygon element, we also approximate it with a
sequence of vectors. In the Lyft dataset, the crosswalk vectors
are directly constructed by connecting the original sequential
annotation coordinates. But we approximate each polygon with
a �xed set of 20 vectors because the annotation point number
is too large for elements like intersections. For both datasets,
each polygon vector has features including coordinates of
starting and ending points and its order sequence, while vectors
in nuPlan have additional type features.

The inputs to our neural network are composed of two types
of map elements: polylines and polygons, and two types of
agent elements: other agents and an ego goal. The missing
inputs are padded with zeros and masked out when calculating
the attention. The origin is the perturbed SDV position.

Polyline: 30 topologically nearest polylines with vectors
whose starting points are within 35 m from the origin. The
topological distance between the origin and a polyline is the
minimum of the distances between the origin and its vectors.

Polygons: 20 polygons whose boundaries are within 35 m
from the origin. If there are more than 20 polygons, they are
selected according to the importance of their types: stop line,
crosswalk, intersection, walkway, and car park.

Agents: the 30 nearest agents whose oriented boxes' cen-
troids are within 50 m from the origin. The agent features in
Lyft include its centroid coordinates, yaws, shapes, types, and
relative times in the past 2 and current steps. The nuPlan agents
additionally have velocity features, as they are provided.
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TABLE IV
AVERAGED RUNTIME PER FRAME OF INDIVIDUAL COMPONENTS FOR EACH METHOD

Model Data process (ms) Model inference (ms) Control (ms) Total (ms)

Raster-perturb 6.03±0.61 4.62±0.16 - 10.65±0.64
BC-perturb 6.69±0.72 6.78±5.26 - 13.47±5.65
UrbanDriver 6.33±1.41 12.78±8.80 - 19.11±9.23
CCIL 4.92±0.63 6.74±0.34 11.09±0.27 22.75±1.07

orientation to the center of the circular road as thex-axis
direction. The trajectory perturbation is applied to augment
the data in the BC-perturb method. For outputs, the BC and
CCIL methods generate the relative position and yaw at the
next time step and the BC-perturb method produces the next
10 time steps. In the UrbanDriver method, we unroll the policy
for 32 time steps.

In each method, we employ a two-layer MLP with a hidden
size of 128 as a policy network. We train the neural networks
using the Adam optimizer with a learning rate of 0.0001 and
random initial weights 100 times. We stop training after 10000
steps and then unroll the policy from one random starting
point on the circle of radius 50 m for 100 time steps. The 100
closed-loop trajectories for each method are depicted in Fig. 6.
We can observe that some trajectories in the baseline methods
deviate from the road due to the covariate shift issue, but the
trajectories in our method keep following the route.

Fig. 6. Closed-loop trajectories of each model trained on the toy dataset.
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